Bioinspire-Explore: Taxonomy-Driven Exploration of Biodiversity Data for Bioinspired Innovation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Architecture
2.3. Word Vectorization and Expansion
- “Taxon” entities were taken from the GBIF taxonomic backbone [37].
- “Biological Process” entities were derived from a Wikidata list of biological processes https://www.wikidata.org/wiki/Property:P682 (accessed on 1 January 2023), filtered manually by the authors to remove irrelevant content.
- “Habitat” entities are those listed under “biome” in the ontology ENVO [38].
- “Measurement” entities are listed as the “quantities” in Ontology of units of Measure (OM) https://www.ebi.ac.uk/ols/ontologies/om (accessed on 1 January 2023).
3. Results
3.1. Dynamic Taxon Search Capability
3.2. Biological and Environmental Data
3.3. Semantic Proximity between Biological Entities
3.4. An Example “User Journey” in Bioinspire-Explore
4. Discussion
4.1. Bioinspire-Explore’s Audience
4.2. Challenges and Next Steps
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ISO 18458:2015; Biomimetics: Terminology, Concepts and Methodology. ISO: Geneve, Switzerland, 2015.
- Shao, H.; Bachus, K.N.; Stewart, R.J. A Water-Borne Adhesive Modeled after the Sandcastle Glue of P. californica. Macromol. Biosci. 2009, 9, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.; Adamatzky, A. Computation of the travelling salesman problem by a shrinking blob. Nat. Comput. 2014, 13, 1–16. [Google Scholar] [CrossRef]
- Dupeyroux, J.; Serres, J.R.; Viollet, S. AntBot: A six-legged walking robot able to home like desert ants in outdoor environments. Sci. Robot. 2019, 4, eaau0307. [Google Scholar] [CrossRef] [PubMed]
- Cruz, E. Biomimétisme: Le vivant, une bibliothèque pour l’innovation. Technica 2018, 1, 15–22. [Google Scholar]
- Boucle, S.P.; Boutin, C. Compte-Rendu Commenté de la Visite de la ZRV de St Just (34) (Zone Libellule). HAL. 2015. Available online: https://agris.fao.org/search/en/providers/122439/records/64747234425ec3c088f288ee (accessed on 1 January 2024).
- Mthunzi, S.N.; Benkhelifa, E.; Bosakowski, T.; Hariri, S. A Bio-inspired Approach to Cyber Security. In Machine Learning for Computer and Cyber Security, 1st ed.; A Science Publishers Book; Gupta, B.B., Sheng, M., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2019; pp. 75–104. [Google Scholar] [CrossRef]
- Lechner, M.; Hasani, R.; Amini, A.; Henzinger, T.A.; Rus, D.; Grosu, R. Neural circuit policies enabling auditable autonomy. Nat. Mach. Intell. 2020, 2, 642–652. [Google Scholar] [CrossRef]
- Vasileiou, T.; Summerer, L. A biomimetic approach to shielding from ionizing radiation: The case of melanized fungi. PLoS ONE 2020, 15, e0229921. [Google Scholar] [CrossRef]
- Ellery, A. Tutorial Review of Bio-Inspired Approaches to Robotic Manipulation for Space Debris Salvage. Biomimetics 2020, 5, 19. [Google Scholar] [CrossRef]
- Xu, B.; Yang, Y.; Zhang, B. Bionics design and dynamics analysis of space webs based on spider predation. Acta Astronaut. 2019, 159, 294–307. [Google Scholar] [CrossRef]
- Müller, R.; Abaid, N.; Boreyko, J.B.; Fowlkes, C.; Goel, A.K.; Grimm, C.; Jung, S.; Kennedy, B.; Murphy, C.; Cushing, N.D.; et al. Biodiversifying bioinspiration. Bioinspir. Biomimetics 2018, 13, 053001. [Google Scholar] [CrossRef]
- Hayes, S.; Desha, C.; Baumeister, D. Learning from nature—Biomimicry innovation to support infrastructure sustainability and resilience. Technol. Forecast. Soc. Chang. 2020, 161, 120287. [Google Scholar] [CrossRef]
- Bánki, O.; Roskov, Y.; Döring, M.; Ower, G.; Hernández Robles, D.R.; Plata Corredor, C.A.; Stjernegaard Jeppesen, T.; Örn, A.; Vandepitte, L.; Hobern, D.; et al. Catalogue of Life Checklist; Leiden, The Netherlands, 2023; Available online: https://biss.pensoft.net/article/111684/ (accessed on 1 January 2024).
- Mitov, M. Cholesteric liquid crystals in living matter. Soft Matter 2017, 13, 4176–4209. [Google Scholar] [CrossRef] [PubMed]
- Sivasankaran, P.N.; Ward, T.A.; Viyapuri, R.; Johan, M.R. Static strength analysis of dragonfly inspired wings for biomimetic micro aerial vehicles. Chin. J. Aeronaut. 2016, 29, 411–423. [Google Scholar] [CrossRef]
- Audibert, C.; Chaves-Jacob, J.; Linares, J.M.; Lopez, Q.A. Bio-inspired method based on bone architecture to optimize the structure of mechanical workspieces. Mater. Des. 2018, 160, 708–717. [Google Scholar] [CrossRef]
- Graeff, E.; Maranzana, N.; Aoussat, A. Biological practices and fields, the missing pieces of the biomimetics’ methodological puzzle. Biomimetics 2020, 5, 62. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Lee, J.H. A study on metadata structure and recommenders of biological systems to support bio-inspired design. Eng. Appl. Artif. Intell. 2017, 57, 16–41. [Google Scholar] [CrossRef]
- Troudet, J.; Grandcolas, P.; Blin, A.; Vignes-Lebbe, R.; Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 2017, 7, 9132. [Google Scholar] [CrossRef] [PubMed]
- Cruz, E.; Hubert, T.; Chancoco, G.; Naim, O.; Chayaamor-Heil, N.; Cornette, F.; Menezo, C.; Badarnah, L.; Raskin, K. Design processes and multi-regulation of biomimetic building skins: A comparative analysis. Energy Build. 2021, 246, 111034. [Google Scholar] [CrossRef]
- Deldin, J.; Schuknecht, M. The AskNature Database: Enabling Solutions in Biomimetic Design. In Biologically Inspired Design; Springer: Berlin/Heidelberg, Germany, 2014; pp. 17–27. [Google Scholar]
- Shyam, V.; Friend, L.; Whiteaker, B.; Bense, N.; Dowdall, J.; Boktor, B.; Johny, M.; Reyes, I.; Naser, A.; Sakhamuri, N.; et al. PeTaL (Periodic Table of Life) and Physiomimetics. Designs 2019, 3, 43. [Google Scholar] [CrossRef]
- Vincent, J.F. The trade-off: A central concept for biomimetics. Bioinspired Biomim. Nanobiomater. 2017, 6, 67–76. [Google Scholar] [CrossRef]
- Kruiper, R. Trade-offs in Computer-aided Biomimetics. In Engineering Conferences International Proceedings; 2019; Available online: https://dc.engconfintl.org/nature_inspired/10/ (accessed on 1 January 2024).
- Chiu, I.; Shu, L.H. Bridging Cross-Domain Terminology for Biomimetic Design. In Proceedings of the Volume 5a: 17th International Conference on Design Theory and Methodology, Long Beach, CA, USA, 24–28 September 2005; Volume 2005, pp. 93–101. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Sarkar, P.; Leelavathamma, B.; Nataraju, B. A functional representation for aiding biomimetic and artificial inspiration of new ideas. AI EDAM 2005, 19, 113–132. [Google Scholar] [CrossRef]
- Nagel, J.K.S.; Stone, R.B.; McAdams, D.A. An Engineering-to-Biology Thesaurus for Engineering Design. In Proceedings of the Volume 5: 22nd International Conference on Design Theory and Methodology, Special Conference on Mechanical Vibration and Noise, Montreal, QC, Canada, 15–18 August 2010; pp. 117–128. [Google Scholar] [CrossRef]
- McInerney, S.; Khakipoor, B.; Garner, A.; Houette, T.; Unsworth, C.; Rupp, A.; Weiner, N.; Vincent, J.; Nagel, J.; Niewiarowski, P. E2BMO: Facilitating User Interaction with a BioMimetic Ontology via Semantic Translation and Interface Design. Designs 2018, 2, 53. [Google Scholar] [CrossRef]
- Troudet, J.; Vignes-Lebbe, R.; Grandcolas, P.; Legendre, F. The Increasing Disconnection of Primary Biodiversity Data from Specimens: How Does It Happen and How to Handle It? Syst. Biol. 2018, 67, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Lecointre, G.; Aish, A.; Améziane, N.; Chekchak, T.; Goupil, C.; Grandcolas, P.; Vincent, J.F.V.; Sun, J.S. Revisiting Nature’s “Unifying Patterns”: A Biological Appraisal. Biomimetics 2023, 8, 362. [Google Scholar] [CrossRef] [PubMed]
- Graeff, E. Biomimetics from practical feedback to an interdisciplinary process. Res. Eng. Des. 2021, 32, 349–375. [Google Scholar] [CrossRef]
- Letard, A.; Maranzana, N.; Brun, J.; Raskin, K.; Aoussat, A. Biomimetics practice in industrial context: Methodological parameters to promote interdisciplinary collaboration and knowledge transfer. Creat. Innov. Manag. 2024, unpublished, under revision. [Google Scholar]
- Aish, A.; Sun, J.S. Bioinspire-Museum: Scoping Paper. Muséum National d’Histoire Naturelle, Paris, 24 Pages. 2020. Available online: https://www.mnhn.fr/sites/mnhn.fr/files/atoms/files/bioinspire_museum_scoping_paper.pdf (accessed on 1 January 2023).
- Mikolov, T.; Yih, W.t.; Zweig, G. Linguistic Regularities in Continuous Space Word Representations. In Proceedings of the NAACL, Atlanta, GA, USA, 9–14 June 2013. [Google Scholar]
- Tchakarov, N.; Racca, L.; Peybernes, T.; Saint-Sardos, A. A Scientific Corpus and Search Engine for Biomimetics. SSRN Electron. J. 2023. [Google Scholar] [CrossRef]
- Secretariat, G. GBIF Backbone Taxonomy. Checklist Dataset. 2022. Available online: https://www.gbif.org/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c (accessed on 1 January 2023).
- Buttigieg, P.; Morrison, N.; Smith, B.; Mungall, C.J.; Lewis, S.E.; The ENVO Consortium. The environment ontology: Contextualising biological and biomedical entities. J. Biomed. Semant. 2013, 4, 43. [Google Scholar] [CrossRef]
- Willot, Q.; Simonis, P.; Vigneron, J.P.; Aron, S. Total Internal Reflection Accounts for the Bright Color of the Saharan Silver Ant. PLoS ONE 2016, 11, e0152325. [Google Scholar] [CrossRef]
- Wang, Y.; Shang, S.; Chiu, K.l.; Jiang, S. Mimicking Saharan silver ant’s hair: A bionic solar heat shielding architextile with hexagonal ZnO microrods coating. Mater. Lett. 2020, 261, 127013. [Google Scholar] [CrossRef]
- Fayemi, P.E.; Wanieck, K.; Zollfrank, C.; Maranzana, N.; Aoussat, A. Biomimetics: Process, tools and practice. Bioinspir. Biomimetics 2017, 12, 011002. [Google Scholar] [CrossRef]
- Wanieck, K.; Ritzinger, D.; Zollfrank, C.; Jacobs, S. Biomimetics: Teaching the tools of the trade. FEBS Open Bio. 2020, 10, 2250–2267. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Weigelt, P.; Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 2016, 19, 992–1006. [Google Scholar] [CrossRef] [PubMed]
- Waller, J. Finding Data Gaps in the GBIF Backbone Taxonomy. Biodivers. Inf. Sci. Stand. 2022, 6, e91312. [Google Scholar] [CrossRef]
- Smith, B.E.; Johnston, M.K.; Lücking, R. From GenBank to GBIF: Phylogeny-Based Predictive Niche Modeling Tests Accuracy of Taxonomic Identifications in Large Occurrence Data Repositories. PLoS ONE 2016, 11, e0151232. [Google Scholar] [CrossRef] [PubMed]
- Bourgoin, T.; Bailly, N.; Zaragueta, R.; Vignes-Lebbe, R. Complete formalization of taxa with their names, contents and descriptions improves taxonomic databases and access to the taxonomic knowledge they support. Syst. Biodivers. 2021, 19, 738–746. [Google Scholar] [CrossRef]
- Zizka, A.; Antunes Carvalho, F.; Calvente, A.; Rocio Baez-Lizarazo, M.; Cabral, A.; Coelho, J.F.R.; Colli-Silva, M.; Fantinati, M.R.; Fernandes, M.F.; Ferreira-Araújo, T.; et al. No one-size-fits-all solution to clean GBIF. PeerJ 2020, 8, e9916. [Google Scholar] [CrossRef]
- Secretariat, G. GBIF to Serve as Administrative Host for Species 2000 Secretariat. 2024. Available online: https://www.gbif.org/news/5LO3xYHTbo53rB8UwcSpgA/gbif-to-serve-as-administrative-host-for-species-2000-secretariat (accessed on 16 January 2024).
- Beck, J.; Böller, M.; Erhardt, A.; Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform. 2014, 19, 10–15. [Google Scholar] [CrossRef]
- García-Roselló, E.; González-Dacosta, J.; Lobo, J.M. The biased distribution of existing information on biodiversity hinders its use in conservation, and we need an integrative approach to act urgently. Biol. Conserv. 2023, 283, 110118. [Google Scholar] [CrossRef]
- Sahraoui, M.; Pignal, M.; Vignes Lebbe, R.; Guigue, V. NEARSIDE: Structured kNowledge Extraction frAmework from SpecIes DEscriptions. Biodivers. Inf. Sci. Stand. 2022, 6, e94297. [Google Scholar] [CrossRef]
- Aish, A. Palaeo-Bioinspiration: Drawing on the Fossil Record to Advance Innovation. 2024. in press. Available online: https://palaeo-bioinsp.sciencesconf.org/ (accessed on 1 January 2024).
- Alroy, J. The Paleobiology Database. 2021. Available online: https://paleobiodb.org/#/ (accessed on 1 January 2024).
- Graeff, E.; Maranzana, N.; Aoussat, A. Engineers’ and Biologists’ Roles during Biomimetic Design Processes, towards a Methodological Symbiosis. Proc. Des. Soc. Int. Conf. Eng. Des. 2019, 1, 319–328. [Google Scholar] [CrossRef]
Data Type | Sourced From |
---|---|
Taxonomic backbone | GBIF |
Occurrence data | GBIF |
Taxon-related photographs | iNaturalist |
General information on given taxon | Wikipedia |
Geo-climatic data | WorldClim |
List of biological process | Wikidata |
Related entities, e.g., co-cited species | Biomig corpus |
User Request | Propositions of the Research Bar | Explanation of the Result |
---|---|---|
“blue whale” | Balaenoptera musculus, Prionace glauca | two taxa associated with the vernacular name “blue whale” |
“mockingbird” | Mimus gundlachii, Mimus polyglottos, Mimus macdonaldi, Mimus gilvus, Melanotis caerulescens, Mimus saturninus, Mimus triurus, Mimus thenca | eight species associated with the vernacular “mockingbird” |
“nikolay” | Bolinichthys nikolayi, Chersodromia nikolayi, Melamphaes nikolayi, Stauroneis nikolayi, Conterinia nikolayi, Prodalmanitina nikolayevi, Pseudepipona nikolayi | seven taxa whose specific epithet contain “nikolay” |
“escherichia” | Escherichia (Genus), Escherichia hermannii, Escherichia vulneris, Escherichia fergisonii, Escherichia albertii, Eschericia marmotae, Escherichia ruysiae, Escherichia coli | exact match with genus and generic names |
User Request | Taxon | Process | Habitat | Measure |
---|---|---|---|---|
Vespa soror | Platygastridae, Argidae, Theroa zethus | hunting, swarm, autothysis | plant, tropical, meadow | heat, frequency, length |
Morpho menelaus | Greta oto, Papilio ulysses, Callophrys rubi | polyphenism, colouration, flying | feather, desert, meadow | angle, heat, hydrophobicity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saint-Sardos, A.; Aish, A.; Tchakarov, N.; Bourgoin, T.; Petit, L.-M.; Sun, J.-S.; Vignes-Lebbe, R. Bioinspire-Explore: Taxonomy-Driven Exploration of Biodiversity Data for Bioinspired Innovation. Biomimetics 2024, 9, 63. https://doi.org/10.3390/biomimetics9020063
Saint-Sardos A, Aish A, Tchakarov N, Bourgoin T, Petit L-M, Sun J-S, Vignes-Lebbe R. Bioinspire-Explore: Taxonomy-Driven Exploration of Biodiversity Data for Bioinspired Innovation. Biomimetics. 2024; 9(2):63. https://doi.org/10.3390/biomimetics9020063
Chicago/Turabian StyleSaint-Sardos, Adrien, Annabelle Aish, Nikolay Tchakarov, Thierry Bourgoin, Luce-Marie Petit, Jian-Sheng Sun, and Régine Vignes-Lebbe. 2024. "Bioinspire-Explore: Taxonomy-Driven Exploration of Biodiversity Data for Bioinspired Innovation" Biomimetics 9, no. 2: 63. https://doi.org/10.3390/biomimetics9020063
APA StyleSaint-Sardos, A., Aish, A., Tchakarov, N., Bourgoin, T., Petit, L. -M., Sun, J. -S., & Vignes-Lebbe, R. (2024). Bioinspire-Explore: Taxonomy-Driven Exploration of Biodiversity Data for Bioinspired Innovation. Biomimetics, 9(2), 63. https://doi.org/10.3390/biomimetics9020063