Nanoscale Surface Metal-Coating Method without Pretreatment for High-Magnification Biological Observation and Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentation
2.2. Biological Samples
2.3. Gold Sputtering on Biological Samples
2.4. Bioimaging of Sputtered Samples
2.5. Electrochemical Monitoring of A. vulgare Using Sputtered Gold Film
3. Results and Discussion
3.1. Detail of Deposited Gold Nanoparticles
3.2. Sputtering on M. aurora
3.3. Sputtering on T. cruzi
3.4. Sputtering on Living A. vulgare
3.5. Applications of Gold Film Deposition beyond Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hüsser, O.E.; Craston, D.H.; Bard, A.J. Scanning electrochemical microscopy: High-resolution deposition and etching of metals. J. Electrochem. Soc. 1989, 136, 3222–3229. [Google Scholar] [CrossRef]
- Egerton, R.F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Sherman, A. Chemical Vapor Deposition for Microelectronics: Principles, Technology, and Applications; Noyes Publications: Park Ridge, NJ, USA, 1987; pp. 13–25. [Google Scholar]
- Sproul, W.D. Physical vapor deposition tool coatings. Surf. Coat. Technol. 1996, 81, 1–7. [Google Scholar] [CrossRef]
- Schröder, H.; Langer, T.; Hartl, F.U.; Bukau, B. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 1993, 12, 4137–4144. [Google Scholar] [CrossRef]
- Hassan, A.N.; Frank, J.F.; Elsoda, M. Observation of bacterial exopolysaccharide in dairy products using cryo-scanning electron microscopy. Int. Dairy J. 2003, 13, 755–762. [Google Scholar] [CrossRef]
- Thompson, R.F.; Walker, M.; Siebert, C.A.; Muench, S.P.; Ranson, N.A. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 2016, 100, 3–15. [Google Scholar] [CrossRef]
- Wightman, R. An overview of cryo-scanning electron microscopy techniques for plant imaging. Plants 2022, 11, 1113. [Google Scholar] [CrossRef] [PubMed]
- Takaku, Y.; Suzuki, H.; Ohta, I.; Tsutsui, T.; Matsumoto, H.; Shimomura, M.; Hariyama, T. A “NanoSuit” surface shield successfully protects organisms in high vacuum: Observations on living organisms in an FE-SEM. Proc. R Soc. B Biol. Sci. 2015, 282, 20142857. [Google Scholar] [CrossRef]
- Kawasaki, H.; Itoh, T.; Takaku, Y.; Suzuki, H.; Kosugi, I.; Meguro, S.; Iwashita, T.; Hariyama, T. The NanoSuit® method: A novel histological approach for examining paraffin sections in a nondestructive manner by correlative light and electron microscopy. Lab. Investig. 2020, 100, 161–173. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Bräuer, G.; Szyszka, B.; Vergöhl, M.; Bandorf, R. Magnetron sputtering–Milestones of 30 years. Vacuum 2010, 84, 1354–1359. [Google Scholar] [CrossRef]
- Wadley, H.N.; Zhou, X.; Johnson, R.A.; Neurock, M. Mechanisms, models and methods of vapor deposition. Prog. Mater. Sci. 2001, 46, 329–377. [Google Scholar] [CrossRef]
- Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S.J. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999, 122, 73–93. [Google Scholar] [CrossRef]
- Jiang, B.; Zheng, J.; Qiu, S.; Wu, M.; Zhang, Q.; Yan, Z.; Xue, Q. Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 2014, 236, 348–368. [Google Scholar] [CrossRef]
- Moisan, M.; Barbeau, J.; Crevier, M.-C.; Pelletier, J.; Philip, N.; Saoudi, B. Plasma sterilization. Methods and mechanisms. Pure Appl. Chem. 2002, 74, 349–358. [Google Scholar] [CrossRef]
- Musil, J.; Heřman, D.; Šícha, J. Low-temperature sputtering of crystalline TiO2 films. J. Vac. Sci. Technol. A 2006, 24, 521–528. [Google Scholar] [CrossRef]
- Yang, W.; Liu, Z.; Peng, D.-L.; Zhang, F.; Huang, H.; Xie, Y.; Wu, Z. Room-temperature deposition of transparent conducting Al-doped ZnO films by RF magnetron sputtering method. Appl. Surf. Sci. 2009, 255, 5669–5673. [Google Scholar] [CrossRef]
- Akutsu, Y.; Doi, M.; Furukawa, K.; Takagi, Y. Introducing a gene knockout directly into the amastigote stage of Trypanosoma cruzi using the Crispr/Cas9 system. J. Vis. Exp. 2019, 149, e59962. [Google Scholar]
- Motomura, T.; Tabaru, T. Magnetron sputtering cathode for low power density operation. AIP Adv. 2017, 7, 12. [Google Scholar] [CrossRef]
- Motomura, T.; Tabaru, T.; Uehara, M.; Fujio, Y.; Okuyama, T. Low-temperature AlN film deposition using magnetic mirror-type magnetron cathode for low gas pressure operation. J. Vac. Sci. Technol. B 2020, 38, 032205. [Google Scholar] [CrossRef]
- Bennett, J.M.; Ashley, E.J. Infrared reflectance and emittance of silver and gold evaporated in ultrahigh vacuum. Appl. Opt. 1965, 4, 221–224. [Google Scholar] [CrossRef]
- Ung, T.; Liz-Marzán, L.M.; Mulvaney, P. Gold nanoparticle thin films. Colloids Surf. A Physicochem. Eng. Asp. 2002, 202, 119–126. [Google Scholar] [CrossRef]
- Stavenga, D.G.; Stowe, S.; Siebke, K.; Zeil, J.; Arikawa, K. Butterfly wing colours: Scale beads make white pierid wings brighter. Proc. R Soc. Lond. B Biol. Sci. 2004, 271, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, X.; Wang, Z.L. Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett. 2006, 6, 2325–2331. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, X.; Jiang, L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter 2007, 3, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Aitken, A.; Learmonth, M. Protein determination by UV absorption. In The Protein Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 1996; pp. 3–6. [Google Scholar]
- Noble, J.E.; Bailey, M.J. Quantitation of protein. Methods Enzymol. 2009, 463, 73–95. [Google Scholar] [PubMed]
- Whitaker, J.R.; Granum, P.E. An absolute method for protein determination based on difference in absorbance at 235 and 280 nm. Anal. Biochem. 1980, 109, 156–159. [Google Scholar] [CrossRef]
- Chowdhury, A.D.; Nasrin, F.; Gangopadhyay, R.; Ganganboina, A.B.; Takemura, K.; Kozaki, I.; Honda, H.; Hara, T.; Abe, F.; Park, S.; et al. Controlling distance, size and concentration of nanoconjugates for optimized Lspr based biosensors. Biosens. Bioelectron. 2020, 170, 112657. [Google Scholar] [CrossRef]
- Taylor, B.E.; Carefoot, T.H. Terrestrial life in isopods: Evolutionary loss of gas-exchange and survival capability in water. Can. J. Zool. 1993, 71, 1372–1378. [Google Scholar] [CrossRef]
- Smigel, J.T.; Gibbs, A.G. Conglobation in the pill bug, Armadillidium vulgare, as a water conservation mechanism. J. Insect Sci. 2008, 8, 44. [Google Scholar] [CrossRef]
- Nguyen, S.H.; Webb, H.K.; Mahon, P.J.; Crawford, R.J.; Ivanova, E.P. Natural insect and plant micro-/nanostructured surfaces: An excellent selection of valuable templates with superhydrophobic and self-cleaning properties. Molecules 2014, 19, 13614–13630. [Google Scholar] [CrossRef] [PubMed]
- Verderber, A.; McKnight, M.; Bozkurt, A. Early metamorphic insertion technology for insect flight behavior monitoring. J. Vis. Exp. 2014, 89, 50901. [Google Scholar]
- Kiskin, I.; Sinka, M.; Cobb, A.D.; Rafique, W.; Wang, L.; Zilli, D.; Gutteridge, B.; Dam, R.; Marinos, T.; Li, Y.H. HumBugDB: A large-scale acoustic mosquito dataset. arXiv 2021, arXiv:2110.07607. [Google Scholar]
- Rhodes, M.W.; Bennie, J.J.; Spalding, A.; ffrench-Constant, R.H.; Maclean, I.M.D. Recent advances in the remote sensing of insects. Biol. Rev. Camb. Philos. Soc. 2022, 97, 343–360. [Google Scholar] [CrossRef]
- Akino, K.; Mineda, T.; Akita, S. Early cellular changes of human mesenchymal stem cells and their interaction with other cells. Wound Repair Regen. 2005, 13, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Hariyama, T.; Takaku, Y.; Kawasaki, H.; Shimomura, M.; Senoh, C.; Yamahama, Y.; Hozumi, A.; Ito, S.; Matsuda, N.; Yamada, S.; et al. Microscopy and biomimetics: The NanoSuit® method and image retrieval platform. Microscopy 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Spies, A.G.; Spence, K.D. Effect of sublethal Bacillus thuringiensis crystal endotoxin treatment on the larval midgut of a moth, Manduca: SEM study. Tissue Cell 1985, 17, 379–394. [Google Scholar] [CrossRef]
Sensor Material | Signal | Sample Number/Sensor | Information | Invasiveness | Ref. |
---|---|---|---|---|---|
Implanted electrode | Electric | Individual | Movement | High | [34] |
Acoustic sensor | Acoustic | Group | Sounds | - | [35] |
Radar detector | Optical | Group | Size, shape, speed | - | [36] |
Surface electrode | Electric | Individual | Movement, solution from the insect’s body | Low | This work |
Pretreatment | Advantage | Disadvantage | Ref. |
---|---|---|---|
Dry freezing | Long-term stable storage | Long vacuum exposure time, immobilization with protective reagents for drying | [37] |
Polymer coating | Protection from desiccation, live observation of specific organisms | Brief X-ray exposure for polymerization | [38] |
Metal coating | Application analysis using metallic films | Brief vacuum and plasma exposure, heat damage, lyophilization required | [39] |
This method | Live observation of specific organisms, application analysis using metallic films, large-area coating | Brief vacuum exposure | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takemura, K.; Motomura, T.; Takagi, Y. Nanoscale Surface Metal-Coating Method without Pretreatment for High-Magnification Biological Observation and Applications. Biomimetics 2024, 9, 588. https://doi.org/10.3390/biomimetics9100588
Takemura K, Motomura T, Takagi Y. Nanoscale Surface Metal-Coating Method without Pretreatment for High-Magnification Biological Observation and Applications. Biomimetics. 2024; 9(10):588. https://doi.org/10.3390/biomimetics9100588
Chicago/Turabian StyleTakemura, Kenshin, Taisei Motomura, and Yuko Takagi. 2024. "Nanoscale Surface Metal-Coating Method without Pretreatment for High-Magnification Biological Observation and Applications" Biomimetics 9, no. 10: 588. https://doi.org/10.3390/biomimetics9100588
APA StyleTakemura, K., Motomura, T., & Takagi, Y. (2024). Nanoscale Surface Metal-Coating Method without Pretreatment for High-Magnification Biological Observation and Applications. Biomimetics, 9(10), 588. https://doi.org/10.3390/biomimetics9100588