A New Hybrid Particle Swarm Optimization–Teaching–Learning-Based Optimization for Solving Optimization Problems
Abstract
:1. Introduction
- hPSO-TLBO is developed based on the combination of particle swarm optimization–teaching–learning-based optimization.
- The performance of hPSO-TLBO is tested on fifty-two standard benchmark functions from unimodal, high-dimensional multimodal, fixed-dimensional multimodal types, and the CEC 2017 test suite.
- The performance of hPSO-TLBO is evaluated in handling real-world applications, challenged on four design engineering problems.
- The results of hPSO-TLBO are compared with the performance of twelve well-known metaheuristic algorithms.
2. Literature Review
3. Hybrid Particle Swarm Optimization–Teaching–Learning-Based Optimization
3.1. Particle Swarm Optimization (PSO)
3.2. Teaching–Learning-Based Optimization (TLBO)
3.3. Proposed Hybrid Particle Swarm Optimization–Teaching–Learning-Based Optimization (hPSO-TLBO)
Algorithm 1. Pseudocode of hPSO-TLBO | ||||
Start hPSO-TLBO. | ||||
1. | Input problem information: variables, objective function, and constraints. | |||
2. | Set the population size and the maximum number of iterations . | |||
3. | Generate the initial population matrix at random. | |||
4. | Evaluate the objective function. | |||
5. | For to | |||
6. | Update the value of by Equation (3) and the value of the teacher . | |||
7. | Calculate using Equation (5). | |||
8. | For to | |||
9. | Update based on comparison with . | |||
10. | Set the best population member as teacher T. | |||
11. | Calculate hybrid velocity for the th member using Equation (7). | |||
12. | Calculate new position of the th population member using Equation (8). | |||
13. | Update the th member using Equation (9). | |||
14. | Determine candidate students set for the th member using Equation (10). | |||
15. | Calculate the new position of the th population member based on modified student phase by Equation (11). | |||
16. | Update the th member using Equation (12). | |||
17. | end | |||
18. | Save the best candidate solution so far. | |||
19. | end | |||
20. | Output the best quasi-optimal solution obtained with hPSO-TLBO. | |||
End hPSO-TLBO. |
3.4. Computational Complexity of hPSO-TLBO
4. Simulation Studies and Results
4.1. Performance Comparison and Experimental Settings
4.2. Evaluation of Unimodal Test Functions F1 to F7
4.3. Evaluation of High-Dimensional Multimodal Test Functions F8 to F13
4.4. Evaluation of Fixed-Dimensional Multimodal Test Functions F14 to F23
4.5. Evaluation CEC 2017 Test Suite
4.6. Statistical Analysis
5. hPSO-TLBO for Real-World Applications
5.1. Pressure Vessel Design Problem
5.2. Speed Reducer Design Problem
5.3. Welded Beam Design
5.4. Tension/Compression Spring Design
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Eng. Appl. Artif. Intell. 2022, 114, 105075. [Google Scholar] [CrossRef]
- Sergeyev, Y.D.; Kvasov, D.; Mukhametzhanov, M. On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep. 2018, 8, 453. [Google Scholar] [CrossRef] [PubMed]
- Jahani, E.; Chizari, M. Tackling global optimization problems with a novel algorithm—Mouth Brooding Fish algorithm. Appl. Soft Comput. 2018, 62, 987–1002. [Google Scholar] [CrossRef]
- Liberti, L.; Kucherenko, S. Comparison of deterministic and stochastic approaches to global optimization. Int. Trans. Oper. Res. 2005, 12, 263–285. [Google Scholar] [CrossRef]
- Zeidabadi, F.-A.; Dehghani, M.; Trojovský, P.; Hubálovský, Š.; Leiva, V.; Dhiman, G. Archery Algorithm: A Novel Stochastic Optimization Algorithm for Solving Optimization Problems. Comput. Mater. Contin. 2022, 72, 399–416. [Google Scholar] [CrossRef]
- De Armas, J.; Lalla-Ruiz, E.; Tilahun, S.L.; Voß, S. Similarity in metaheuristics: A gentle step towards a comparison methodology. Nat. Comput. 2022, 21, 265–287. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Dehghani, A.; Malik, O.P.; Morales-Menendez, R.; Dhiman, G.; Nouri, N.; Ehsanifar, A.; Guerrero, J.M.; Ramirez-Mendoza, R.A. Binary spring search algorithm for solving various optimization problems. Appl. Sci. 2021, 11, 1286. [Google Scholar] [CrossRef]
- Trojovská, E.; Dehghani, M.; Trojovský, P. Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm. IEEE Access 2022, 10, 49445–49473. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput.-Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems. In International Fuzzy Systems Association World Congress; Springer: Berlin/Heidelberg, Germany, 2007; pp. 789–798. [Google Scholar]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 1996, 26, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-S. Firefly Algorithms for Multimodal Optimization. In Proceedings of the International Symposium on Stochastic Algorithms, Sapporo, Japan, 26–28 October 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 169–178. [Google Scholar]
- Dehghani, M.; Montazeri, Z.; Trojovská, E.; Trojovský, P. Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 2023, 259, 110011. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Braik, M.; Hammouri, A.; Atwan, J.; Al-Betar, M.A.; Awadallah, M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl.-Based Syst. 2022, 243, 108457. [Google Scholar] [CrossRef]
- Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications. Sensors 2022, 22, 855. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Bektemyssova, G.; Malik, O.P.; Dhiman, G.; Ahmed, A.E. Kookaburra Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2023, 8, 470. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior. Sci. Rep. 2023, 13, 8775. [Google Scholar] [CrossRef]
- Chopra, N.; Ansari, M.M. Golden Jackal Optimization: A Novel Nature-Inspired Optimizer for Engineering Applications. Expert Syst. Appl. 2022, 198, 116924. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar] [CrossRef]
- Dehghani, M.; Bektemyssova, G.; Montazeri, Z.; Shaikemelev, G.; Malik, O.P.; Dhiman, G. Lyrebird Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2023, 8, 507. [Google Scholar] [CrossRef] [PubMed]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [Google Scholar] [CrossRef]
- Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- De Castro, L.N.; Timmis, J.I. Artificial immune systems as a novel soft computing paradigm. Soft Comput. 2003, 7, 526–544. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Dhiman, G.; Malik, O.; Morales-Menendez, R.; Ramirez-Mendoza, R.A.; Dehghani, A.; Guerrero, J.M.; Parra-Arroyo, L. A spring search algorithm applied to engineering optimization problems. Appl. Sci. 2020, 10, 6173. [Google Scholar] [CrossRef]
- Dehghani, M.; Samet, H. Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Appl. Sci. 2020, 2, 1720. [Google Scholar] [CrossRef]
- Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [Google Scholar] [CrossRef]
- Cuevas, E.; Oliva, D.; Zaldivar, D.; Pérez-Cisneros, M.; Sossa, H. Circle detection using electro-magnetism optimization. Inf. Sci. 2012, 182, 40–55. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
- Pereira, J.L.J.; Francisco, M.B.; Diniz, C.A.; Oliver, G.A.; Cunha, S.S., Jr; Gomes, G.F. Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization. Expert Syst. Appl. 2021, 170, 114522. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110, 69–84. [Google Scholar] [CrossRef]
- Dehghani, M.; Mardaneh, M.; Guerrero, J.M.; Malik, O.; Kumar, V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020, 13, 514–523. [Google Scholar] [CrossRef]
- Moghdani, R.; Salimifard, K. Volleyball premier league algorithm. Appl. Soft Comput. 2018, 64, 161–185. [Google Scholar] [CrossRef]
- Kaveh, A.; Zolghadr, A. A Novel Meta-Heuristic Algorithm: Tug of War Optimization. Int. J. Optim. Civ. Eng. 2016, 6, 469–492. [Google Scholar]
- Montazeri, Z.; Niknam, T.; Aghaei, J.; Malik, O.P.; Dehghani, M.; Dhiman, G. Golf Optimization Algorithm: A New Game-Based Metaheuristic Algorithm and Its Application to Energy Commitment Problem Considering Resilience. Biomimetics 2023, 8, 386. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Montazeri, Z.; Saremi, S.; Dehghani, A.; Malik, O.P.; Al-Haddad, K.; Guerrero, J.M. HOGO: Hide objects game optimization. Int. J. Intell. Eng. Syst. 2020, 13, 216–225. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Givi, H.; Guerrero, J.M.; Dhiman, G. Darts game optimizer: A new optimization technique based on darts game. Int. J. Intell. Eng. Syst. 2020, 13, 286–294. [Google Scholar] [CrossRef]
- Zeidabadi, F.A.; Dehghani, M. POA: Puzzle Optimization Algorithm. Int. J. Intell. Eng. Syst. 2022, 15, 273–281. [Google Scholar]
- Dehghani, M.; Mardaneh, M.; Guerrero, J.M.; Malik, O.P.; Ramirez-Mendoza, R.A.; Matas, J.; Vasquez, J.C.; Parra-Arroyo, L. A new “Doctor and Patient” optimization algorithm: An application to energy commitment problem. Appl. Sci. 2020, 10, 5791. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovský, P. Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization. Sensors 2021, 21, 4567. [Google Scholar] [CrossRef]
- Moosavi, S.H.S.; Bardsiri, V.K. Poor and rich optimization algorithm: A new human-based and multi populations algorithm. Eng. Appl. Artif. Intell. 2019, 86, 165–181. [Google Scholar] [CrossRef]
- Matoušová, I.; Trojovský, P.; Dehghani, M.; Trojovská, E.; Kostra, J. Mother optimization algorithm: A new human-based metaheuristic approach for solving engineering optimization. Sci. Rep. 2023, 13, 10312. [Google Scholar] [CrossRef] [PubMed]
- Al-Betar, M.A.; Alyasseri, Z.A.A.; Awadallah, M.A.; Abu Doush, I. Coronavirus herd immunity optimizer (CHIO). Neural Comput. Appl. 2021, 33, 5011–5042. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Trojovská, E.; Trojovský, P. A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Sci. Rep. 2022, 12, 9924. [Google Scholar] [CrossRef] [PubMed]
- Braik, M.; Ryalat, M.H.; Al-Zoubi, H. A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Comput. Appl. 2022, 34, 409–455. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. A new optimization algorithm based on mimicking the voting process for leader selection. PeerJ Comput. Sci. 2022, 8, e976. [Google Scholar] [CrossRef] [PubMed]
- Trojovská, E.; Dehghani, M. A new human-based metahurestic optimization method based on mimicking cooking training. Sci. Rep. 2022, 12, 14861. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Trojovská, E.; Zuščák, T. A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training. Sci. Rep. 2022, 12, 17387. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M.; Trojovská, E.; Milkova, E. The Language Education Optimization: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems: Language Education Optimization. Comput. Model. Eng. Sci. 2022, 136, 1527–1573. [Google Scholar]
- Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K. Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern. 2020, 11, 1501–1529. [Google Scholar] [CrossRef]
- Ayyarao, T.L.; RamaKrishna, N.; Elavarasam, R.M.; Polumahanthi, N.; Rambabu, M.; Saini, G.; Khan, B.; Alatas, B. War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization. IEEE Access 2022, 10, 25073–25105. [Google Scholar] [CrossRef]
- Talatahari, S.; Goodarzimehr, V.; Taghizadieh, N. Hybrid teaching-learning-based optimization and harmony search for optimum design of space trusses. J. Optim. Ind. Eng. 2020, 13, 177–194. [Google Scholar]
- Khatir, A.; Capozucca, R.; Khatir, S.; Magagnini, E.; Benaissa, B.; Le Thanh, C.; Wahab, M.A. A new hybrid PSO-YUKI for double cracks identification in CFRP cantilever beam. Compos. Struct. 2023, 311, 116803. [Google Scholar] [CrossRef]
- Al Thobiani, F.; Khatir, S.; Benaissa, B.; Ghandourah, E.; Mirjalili, S.; Wahab, M.A. A hybrid PSO and Grey Wolf Optimization algorithm for static and dynamic crack identification. Theor. Appl. Fract. Mech. 2022, 118, 103213. [Google Scholar] [CrossRef]
- Singh, R.; Chaudhary, H.; Singh, A.K. A new hybrid teaching–learning particle swarm optimization algorithm for synthesis of linkages to generate path. Sādhanā 2017, 42, 1851–1870. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y. Hybrid teaching-learning-based PSO for trajectory optimisation. Electron. Lett. 2017, 53, 777–779. [Google Scholar] [CrossRef]
- Yun, Y.; Gen, M.; Erdene, T.N. Applying GA-PSO-TLBO approach to engineering optimization problems. Math. Biosci. Eng. 2023, 20, 552–571. [Google Scholar] [CrossRef] [PubMed]
- Azad-Farsani, E.; Zare, M.; Azizipanah-Abarghooee, R.; Askarian-Abyaneh, H. A new hybrid CPSO-TLBO optimization algorithm for distribution network reconfiguration. J. Intell. Fuzzy Syst. 2014, 26, 2175–2184. [Google Scholar] [CrossRef]
- Shukla, A.K.; Singh, P.; Vardhan, M. A new hybrid wrapper TLBO and SA with SVM approach for gene expression data. Inf. Sci. 2019, 503, 238–254. [Google Scholar] [CrossRef]
- Nenavath, H.; Jatoth, R.K. Hybrid SCA–TLBO: A novel optimization algorithm for global optimization and visual tracking. Neural Comput. Appl. 2019, 31, 5497–5526. [Google Scholar] [CrossRef]
- Sharma, S.R.; Singh, B.; Kaur, M. Hybrid SFO and TLBO optimization for biodegradable classification. Soft Comput. 2021, 25, 15417–15443. [Google Scholar] [CrossRef]
- Kundu, T.; Deepmala; Jain, P. A hybrid salp swarm algorithm based on TLBO for reliability redundancy allocation problems. Appl. Intell. 2022, 52, 12630–12667. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Liu, A.; Wang, J.; Kong, X. An intelligence-based hybrid PSO-SA for mobile robot path planning in warehouse. J. Comput. Sci. 2023, 67, 101938. [Google Scholar] [CrossRef]
- Murugesan, S.; Suganyadevi, M.V. Performance Analysis of Simplified Seven-Level Inverter using Hybrid HHO-PSO Algorithm for Renewable Energy Applications. Iran. J. Sci. Technol. Trans. Electr. Eng. 2023. [Google Scholar] [CrossRef]
- Hosseini, M.; Navabi, M.S. Hybrid PSO-GSA based approach for feature selection. J. Ind. Eng. Manag. Stud. 2023, 10, 1–15. [Google Scholar]
- Bhandari, A.S.; Kumar, A.; Ram, M. Reliability optimization and redundancy allocation for fire extinguisher drone using hybrid PSO–GWO. Soft Comput. 2023, 27, 14819–14833. [Google Scholar] [CrossRef]
- Amirteimoori, A.; Mahdavi, I.; Solimanpur, M.; Ali, S.S.; Tirkolaee, E.B. A parallel hybrid PSO-GA algorithm for the flexible flow-shop scheduling with transportation. Comput. Ind. Eng. 2022, 173, 108672. [Google Scholar] [CrossRef]
- Koh, J.S.; Tan, R.H.; Lim, W.H.; Tan, N.M. A Modified Particle Swarm Optimization for Efficient Maximum Power Point Tracking under Partial Shading Condition. IEEE Trans. Sustain. Energy 2023, 14, 1822–1834. [Google Scholar] [CrossRef]
- Zare, M.; Akbari, M.-A.; Azizipanah-Abarghooee, R.; Malekpour, M.; Mirjalili, S.; Abualigah, L. A modified Particle Swarm Optimization algorithm with enhanced search quality and population using Hummingbird Flight patterns. Decis. Anal. J. 2023, 7, 100251. [Google Scholar] [CrossRef]
- Cui, G.; Qin, L.; Liu, S.; Wang, Y.; Zhang, X.; Cao, X. Modified PSO algorithm for solving planar graph coloring problem. Prog. Nat. Sci. 2008, 18, 353–357. [Google Scholar] [CrossRef]
- Lihong, H.; Nan, Y.; Jianhua, W.; Ying, S.; Jingjing, D.; Ying, X. Application of Modified PSO in the Optimization of Reactive Power. In Proceedings of the 2009 Chinese Control and Decision Conference, Guilin, China, 17–19 June 2009; pp. 3493–3496. [Google Scholar]
- Krishnamurthy, N.K.; Sabhahit, J.N.; Jadoun, V.K.; Gaonkar, D.N.; Shrivastava, A.; Rao, V.S.; Kudva, G. Optimal Placement and Sizing of Electric Vehicle Charging Infrastructure in a Grid-Tied DC Microgrid Using Modified TLBO Method. Energies 2023, 16, 1781. [Google Scholar] [CrossRef]
- Eirgash, M.A.; Toğan, V.; Dede, T.; Başağa, H.B. Modified Dynamic Opposite Learning Assisted TLBO for Solving Time-Cost Optimization in Generalized Construction Projects. In Structures; Elsevier: Amsterdam, The Netherlands, 2023; pp. 806–821. [Google Scholar]
- Amiri, H.; Radfar, N.; Arab Solghar, A.; Mashayekhi, M. Two ımproved teaching–learning-based optimization algorithms for the solution of ınverse boundary design problems. Soft Comput. 2023, 1–22. [Google Scholar] [CrossRef]
- Yaqoob, M.T.; Rahmat, M.K.; Maharum, S.M.M. Modified teaching learning based optimization for selective harmonic elimination in multilevel inverters. Ain Shams Eng. J. 2022, 13, 101714. [Google Scholar] [CrossRef]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [Google Scholar]
- Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P.; Definitions, P. Evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technol. Rep. 2016. [Google Scholar]
- Bashir, M.U.; Paul, W.U.H.; Ahmad, M.; Ali, D.; Ali, M.S. An Efficient Hybrid TLBO-PSO Approach for Congestion Management Employing Real Power Generation Rescheduling. Smart Grid Renew. Energy 2021, 12, 113–135. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 196–202. [Google Scholar]
- Kannan, B.; Kramer, S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994, 116, 405–411. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.-S. Benchmark problems in structural optimization. In Computational Optimization, Methods and Algorithms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 259–281. [Google Scholar]
- Mezura-Montes, E.; Coello, C.A.C. Useful infeasible solutions in engineering optimization with evolutionary algorithms. In Proceedings of the Mexican International Conference on Artificial Intelligence, Monterrey, Mexico, 14–18 November 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 652–662. [Google Scholar]
F | hPSO-TLBO | WSO | AVOA | RSA | MPA | TSA | GWO | hPT2 | hPT1 | ITLBO | IPSO | TLBO | PSO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | Mean | 0 | 58.07159 | 7.09E-61 | 7.09E-61 | 1.69E-49 | 4.1E-47 | 7.09E-61 | 0.131844 | 1.63E-59 | 7.09E-61 | 1.17E-16 | 0.088953 | 26.87535 |
Best | 0 | 4.665568 | 5.99E-63 | 5.99E-63 | 3.36E-52 | 1.27E-50 | 5.99E-63 | 0.092965 | 1.38E-61 | 5.99E-63 | 4.72E-17 | 0.000429 | 15.79547 | |
Worst | 0 | 210.5042 | 3.09E-60 | 3.09E-60 | 1.46E-48 | 2.91E-46 | 3.09E-60 | 0.177363 | 7.11E-59 | 3.09E-60 | 3.29E-16 | 1.231554 | 50.15932 | |
Std | 0 | 45.40585 | 8.38E-61 | 8.38E-61 | 3.38E-49 | 8.61E-47 | 8.38E-61 | 0.023884 | 1.92E-59 | 8.38E-61 | 6.16E-17 | 0.267405 | 9.002594 | |
Median | 0 | 40.01959 | 4.31E-61 | 4.31E-61 | 3.67E-50 | 3.77E-48 | 4.31E-61 | 0.13263 | 9.91E-60 | 4.31E-61 | 9.97E-17 | 0.008564 | 24.84615 | |
Rank | 1 | 11 | 2 | 2 | 5 | 6 | 2 | 9 | 4 | 3 | 7 | 8 | 10 | |
F2 | Mean | 0 | 1.885416 | 5.43E-36 | 5.43E-36 | 6.14E-28 | 1.86E-28 | 5.43E-36 | 0.228358 | 1.25E-34 | 5.44E-36 | 4.83E-08 | 0.789031 | 2.456858 |
Best | 0 | 0.583709 | 1.95E-37 | 1.95E-37 | 1.63E-29 | 1.78E-30 | 1.95E-37 | 0.141042 | 4.49E-36 | 1.97E-37 | 3.07E-08 | 0.039898 | 1.537836 | |
Worst | 0 | 6.560237 | 3.17E-35 | 3.17E-35 | 4.15E-27 | 1.61E-27 | 3.17E-35 | 0.32117 | 7.29E-34 | 3.17E-35 | 1.09E-07 | 2.196863 | 3.353961 | |
Std | 0 | 1.526648 | 7.67E-36 | 7.67E-36 | 9.41E-28 | 4.55E-28 | 7.67E-36 | 0.0542 | 1.76E-34 | 7.67E-36 | 1.61E-08 | 0.621855 | 0.468754 | |
Median | 0 | 1.348491 | 2.61E-36 | 2.61E-36 | 3.1E-28 | 1.74E-29 | 2.61E-36 | 0.236442 | 5.99E-35 | 2.63E-36 | 4.52E-08 | 0.514708 | 2.415588 | |
Rank | 1 | 10 | 2 | 2 | 6 | 5 | 2 | 8 | 4 | 3 | 7 | 9 | 11 | |
F3 | Mean | 0 | 1573.92 | 8.72E-16 | 8.72E-16 | 2.21E-12 | 1.04E-10 | 17586.09 | 14.07412 | 2E-14 | 8.72E-16 | 418.9635 | 341.9832 | 1911.093 |
Best | 0 | 916.7392 | 9.45E-21 | 9.45E-21 | 1.62E-16 | 2.18E-18 | 1819.369 | 5.263941 | 2.17E-19 | 9.48E-21 | 216.719 | 19.18004 | 1254.853 | |
Worst | 0 | 3121.842 | 1.62E-14 | 1.62E-14 | 1.27E-11 | 1.72E-09 | 30564.02 | 43.12089 | 3.73E-13 | 1.62E-14 | 1045.265 | 903.4752 | 3047.672 | |
Std | 0 | 540.174 | 3.53E-15 | 3.53E-15 | 3.77E-12 | 3.75E-10 | 7362.857 | 9.262445 | 8.11E-14 | 3.53E-15 | 189.5394 | 248.1753 | 550.4119 | |
Median | 0 | 1373.011 | 1.87E-17 | 1.87E-17 | 1.61E-13 | 9.48E-14 | 17907.73 | 10.46683 | 4.3E-16 | 1.87E-17 | 352.7354 | 258.2018 | 1850.929 | |
Rank | 1 | 10 | 2 | 2 | 5 | 6 | 12 | 7 | 4 | 3 | 9 | 8 | 11 | |
F4 | Mean | 0 | 15.23952 | 4.92E-16 | 4.92E-16 | 4.92E-16 | 0.003897 | 45.65984 | 0.482066 | 1.13E-14 | 4.92E-16 | 1.088936 | 5.533212 | 2.492984 |
Best | 0 | 10.49816 | 2.63E-17 | 2.63E-17 | 2.67E-17 | 8.51E-05 | 0.797019 | 0.234307 | 6.04E-16 | 2.63E-17 | 8.72E-09 | 2.017958 | 1.952933 | |
Worst | 0 | 21.00169 | 2.3E-15 | 2.3E-15 | 2.3E-15 | 0.031568 | 80.80556 | 0.848542 | 5.29E-14 | 2.3E-15 | 4.341798 | 11.77172 | 3.518006 | |
Std | 0 | 2.484433 | 5.71E-16 | 5.71E-16 | 5.71E-16 | 0.006836 | 25.48147 | 0.165382 | 1.31E-14 | 5.71E-16 | 1.193547 | 2.153131 | 0.401768 | |
Median | 0 | 15.65954 | 2.55E-16 | 2.55E-16 | 2.55E-16 | 0.001295 | 48.83455 | 0.467904 | 5.85E-15 | 2.55E-16 | 0.799113 | 5.183052 | 2.452526 | |
Rank | 1 | 11 | 2 | 2 | 4 | 6 | 12 | 7 | 5 | 3 | 8 | 10 | 9 | |
F5 | Mean | 0 | 9516.431 | 1.066232 | 12.51932 | 21.61701 | 26.15764 | 25.12883 | 85.84715 | 24.48729 | 24.6691 | 39.87864 | 4064.647 | 525.661 |
Best | 0 | 1188.169 | 1.025518 | 1.025505 | 21.1648 | 23.70648 | 24.59573 | 25.39379 | 23.55223 | 23.59366 | 23.85439 | 24.20836 | 202.6519 | |
Worst | 0 | 81,693.13 | 1.089267 | 26.63229 | 22.24073 | 26.54457 | 26.40645 | 334.024 | 25.01649 | 26.42328 | 148.4471 | 79368.29 | 1989.749 | |
Std | 0 | 17,267.51 | 0.020618 | 12.68763 | 0.333573 | 0.674837 | 0.500437 | 87.30341 | 0.473488 | 0.806602 | 38.14302 | 17309.01 | 365.6698 | |
Median | 0 | 4943.759 | 1.052191 | 1.088766 | 21.59754 | 26.44754 | 24.93124 | 27.53712 | 24.16495 | 24.2643 | 24.28404 | 76.94997 | 420.079 | |
Rank | 1 | 13 | 2 | 3 | 4 | 8 | 7 | 10 | 5 | 6 | 9 | 12 | 11 | |
F6 | Mean | 0 | 88.93565 | 0.026507 | 5.716556 | 0.026507 | 3.27064 | 0.098382 | 0.159556 | 0.608782 | 1.137933 | 0.026507 | 0.08241 | 30.11387 |
Best | 0 | 14.95731 | 0.009897 | 3.257687 | 0.009897 | 2.279437 | 0.023498 | 0.089817 | 0.22729 | 0.233809 | 0.009897 | 0.010145 | 13.77592 | |
Worst | 0 | 337.0663 | 0.05023 | 6.428149 | 0.05023 | 4.238575 | 0.308096 | 0.250358 | 1.153614 | 1.917394 | 0.05023 | 0.497324 | 55.34426 | |
Std | 0 | 82.15401 | 0.01201 | 0.885657 | 0.01201 | 0.596429 | 0.084744 | 0.041251 | 0.275827 | 0.423887 | 0.01201 | 0.125926 | 11.65958 | |
Median | 0 | 61.32398 | 0.029174 | 6.111534 | 0.029174 | 3.382167 | 0.060521 | 0.16307 | 0.670012 | 1.099359 | 0.029174 | 0.030784 | 27.94543 | |
Rank | 1 | 13 | 4 | 11 | 3 | 10 | 6 | 7 | 8 | 9 | 2 | 5 | 12 | |
F7 | Mean | 2.54E-05 | 0.000115 | 9.04E-05 | 6.18E-05 | 0.000517 | 0.003862 | 0.001161 | 0.010269 | 0.000767 | 0.001383 | 0.046565 | 0.162282 | 0.009365 |
Best | 2.35E-06 | 2.3E-05 | 1.5E-05 | 1.43E-05 | 0.000133 | 0.001351 | 8.11E-05 | 0.00354 | 0.000168 | 8.83E-05 | 0.012474 | 0.060852 | 0.002701 | |
Worst | 6.89E-05 | 0.000317 | 0.000261 | 0.000159 | 0.000801 | 0.008816 | 0.004798 | 0.019927 | 0.001803 | 0.002604 | 0.08422 | 0.362473 | 0.019393 | |
Std | 1.93E-05 | 7.92E-05 | 6.36E-05 | 3.04E-05 | 0.000184 | 0.002009 | 0.001241 | 0.004336 | 0.00042 | 0.000755 | 0.021471 | 0.067986 | 0.004146 | |
Median | 1.83E-05 | 8.37E-05 | 7.21E-05 | 5.91E-05 | 0.000502 | 0.003319 | 0.000752 | 0.010003 | 0.00078 | 0.001351 | 0.045702 | 0.156642 | 0.009006 | |
Rank | 1 | 4 | 3 | 2 | 5 | 9 | 7 | 11 | 6 | 8 | 12 | 13 | 10 | |
Sum rank | 7 | 72 | 17 | 24 | 32 | 50 | 48 | 59 | 36 | 35 | 54 | 65 | 74 | |
Mean rank | 1 | 10.28571 | 2.428571 | 3.428571 | 4.571429 | 7.142857 | 6.857143 | 8.428571 | 5.142857 | 5 | 7.714286 | 9.285714 | 10.57143 | |
Total ranking | 1 | 12 | 2 | 3 | 4 | 8 | 7 | 10 | 6 | 5 | 9 | 11 | 13 |
F | hPSO-TLBO | WSO | AVOA | RSA | MPA | TSA | GWO | hPT2 | hPT1 | ITLBO | IPSO | TLBO | PSO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F8 | Mean | −12,498.6 | −7441.49 | −12,216.6 | −6018.45 | −9764.22 | −6637.83 | −10,978.1 | −8130.21 | −6585.37 | −6161.34 | −3679.16 | −6997.53 | −8648.79 |
Best | −12,622.8 | −9148.22 | −12,328.4 | −6214.34 | −10450.1 | −7689.05 | −12314 | −9292.31 | −7292.22 | −7424.16 | −4727.93 | −8481.16 | −9748.05 | |
Worst | −11,936.3 | −6604.3 | −11715 | −5570.82 | −9263.23 | −5103.76 | −8038.63 | −7294.3 | −5644.31 | −5239.76 | −3087.21 | −5627.46 | −7433.78 | |
Std | 185.933 | 632.4496 | 166.3366 | 191.7651 | 309.4905 | 620.8402 | 1488.781 | 623.0539 | 425.9794 | 530.8499 | 431.4128 | 643.493 | 548.4352 | |
Median | −12,577.8 | −7384.82 | −12,293.4 | −6058.43 | −9804.06 | −6608.26 | −11,853.8 | −8022.38 | −6586.24 | −6192.06 | −3598.29 | −7140.36 | −8616.57 | |
Rank | 1 | 7 | 2 | 12 | 4 | 9 | 3 | 6 | 10 | 11 | 13 | 8 | 5 | |
F9 | Mean | 0 | 21.70166 | 6.84E-16 | 6.84E-16 | 6.84E-16 | 152.5399 | 6.84E-16 | 86.19788 | 1.57E-14 | 6.84E-16 | 25.11628 | 59.66324 | 48.1797 |
Best | 0 | 12.88139 | 0 | 0 | 0 | 79.07429 | 0 | 46.51055 | 0 | 0 | 12.27323 | 35.06638 | 20.47009 | |
Worst | 0 | 40.48713 | 4.56E-15 | 4.56E-15 | 4.56E-15 | 253.9196 | 4.56E-15 | 131.5313 | 1.05E-13 | 4.56E-15 | 42.95628 | 100.9408 | 67.75744 | |
Std | 0 | 7.415334 | 1.27E-15 | 1.27E-15 | 1.27E-15 | 43.88833 | 1.27E-15 | 21.68033 | 2.92E-14 | 1.27E-15 | 7.886816 | 16.21153 | 11.8805 | |
Median | 0 | 19.99106 | 0 | 0 | 0 | 146.858 | 0 | 85.53992 | 0 | 0 | 23.23147 | 57.33199 | 46.35864 | |
Rank | 1 | 4 | 2 | 2 | 2 | 9 | 2 | 8 | 3 | 2 | 5 | 7 | 6 | |
F10 | Mean | 8.88E-16 | 4.662244 | 1.52E-15 | 1.52E-15 | 4.5E-15 | 1.094762 | 4.34E-15 | 0.509188 | 1.55E-14 | 4.65E-15 | 7.24E-09 | 2.402969 | 3.150025 |
Best | 8.88E-16 | 2.980712 | 1.17E-15 | 1.17E-15 | 1.74E-15 | 8E-15 | 1.46E-15 | 0.088639 | 7.43E-15 | 4.3E-15 | 4.11E-09 | 1.4921 | 2.5393 | |
Worst | 8.88E-16 | 7.22389 | 1.74E-15 | 1.74E-15 | 4.87E-15 | 2.972354 | 8E-15 | 2.216136 | 2.05E-14 | 4.87E-15 | 1.27E-08 | 4.455792 | 4.090043 | |
Std | 0 | 1.050992 | 1.39E-16 | 1.39E-16 | 6.46E-16 | 1.350455 | 1.96E-15 | 0.582673 | 3.19E-15 | 1.39E-16 | 2.01E-09 | 0.738078 | 0.341285 | |
Median | 8.88E-16 | 4.563645 | 1.46E-15 | 1.46E-15 | 4.59E-15 | 2.03E-14 | 4.59E-15 | 0.171211 | 1.4E-14 | 4.59E-15 | 6.81E-09 | 2.408861 | 3.198028 | |
Rank | 1 | 12 | 2 | 2 | 4 | 9 | 3 | 8 | 6 | 5 | 7 | 10 | 11 | |
F11 | Mean | 0 | 1.512162 | 5.37E-05 | 5.37E-05 | 5.37E-05 | 0.007845 | 5.37E-05 | 0.352208 | 0.001234 | 5.37E-05 | 6.351044 | 0.163292 | 1.298331 |
Best | 0 | 0.972628 | 0 | 0 | 0 | 0 | 0 | 0.22393 | 0 | 0 | 2.639784 | 0.002841 | 1.134942 | |
Worst | 0 | 2.894179 | 0.000755 | 0.000755 | 0.000755 | 0.018104 | 0.000755 | 0.472258 | 0.017341 | 0.000755 | 11.13516 | 0.771711 | 1.520656 | |
Std | 0 | 0.466901 | 0.000176 | 0.000176 | 0.000176 | 0.005425 | 0.000176 | 0.070424 | 0.004033 | 0.000176 | 2.341121 | 0.196554 | 0.106538 | |
Median | 0 | 1.410629 | 0 | 0 | 0 | 0.008084 | 0 | 0.367154 | 0 | 0 | 6.442223 | 0.107808 | 1.275578 | |
Rank | 1 | 8 | 2 | 2 | 2 | 4 | 2 | 6 | 3 | 2 | 9 | 5 | 7 | |
F12 | Mean | 1.57E-32 | 2.882539 | 0.0016 | 1.162552 | 0.0016 | 5.105635 | 0.019307 | 0.807492 | 0.036737 | 0.064448 | 0.186664 | 1.324184 | 0.243809 |
Best | 1.57E-32 | 0.841956 | 0.000504 | 0.678786 | 0.000504 | 0.915241 | 0.002818 | 0.001689 | 0.011573 | 0.022023 | 0.001228 | 0.002242 | 0.055508 | |
Worst | 1.57E-32 | 6.513307 | 0.003481 | 1.450986 | 0.003481 | 12.45602 | 0.121128 | 3.392312 | 0.079946 | 0.120129 | 0.821731 | 4.600176 | 0.576584 | |
Std | 2.74E-48 | 1.574216 | 0.000836 | 0.26155 | 0.000836 | 3.338511 | 0.03409 | 1.029815 | 0.019191 | 0.018042 | 0.264223 | 1.106087 | 0.119679 | |
Median | 1.57E-32 | 2.551467 | 0.001521 | 1.225406 | 0.001521 | 3.794602 | 0.006401 | 0.371998 | 0.034924 | 0.063014 | 0.072401 | 1.133776 | 0.234452 | |
Rank | 1 | 12 | 3 | 10 | 2 | 13 | 4 | 9 | 5 | 6 | 7 | 11 | 8 | |
F13 | Mean | 1.35E-32 | 3171.704 | 0.02061 | 0.02061 | 0.022811 | 2.414466 | 0.209698 | 0.049488 | 0.473338 | 0.991581 | 0.070534 | 3.199289 | 2.406486 |
Best | 1.35E-32 | 12.16954 | 1.88E-06 | 1.88E-06 | 0.007909 | 1.790394 | 0.047447 | 0.019729 | 4.32E-05 | 0.539453 | 0.007909 | 0.028472 | 1.150151 | |
Worst | 1.35E-32 | 54770.43 | 0.03811 | 0.03811 | 0.03811 | 3.308616 | 0.624983 | 0.105229 | 0.875262 | 1.377995 | 0.844427 | 11.10643 | 3.48383 | |
Std | 2.74E-48 | 11920.44 | 0.010099 | 0.010099 | 0.009378 | 0.481365 | 0.159473 | 0.023458 | 0.231945 | 0.200568 | 0.179163 | 2.605342 | 0.652146 | |
Median | 1.35E-32 | 38.99428 | 0.020744 | 0.020744 | 0.023381 | 2.251915 | 0.166636 | 0.04162 | 0.476406 | 1.000383 | 0.028803 | 2.930893 | 2.536779 | |
Rank | 1 | 13 | 3 | 2 | 4 | 11 | 7 | 5 | 8 | 9 | 6 | 12 | 10 | |
Sum Rank | 6 | 56 | 14 | 30 | 18 | 55 | 21 | 42 | 35 | 35 | 47 | 53 | 47 | |
Mean rank | 1 | 9.333333 | 2.333333 | 5 | 3 | 9.166667 | 3.5 | 7 | 5.833333 | 5.833333 | 7.833333 | 8.833333 | 7.833333 | |
Total ranking | 1 | 11 | 2 | 5 | 3 | 10 | 4 | 7 | 6 | 6 | 8 | 9 | 8 |
F | hPSO-TLBO | WSO | AVOA | RSA | MPA | TSA | GWO | hPT2 | hPT1 | ITLBO | IPSO | TLBO | PSO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F14 | Mean | 0.397887 | 0.397928 | 0.397928 | 0.409123 | 0.398381 | 0.39796 | 0.397928 | 0.397928 | 0.397929 | 0.397992 | 0.397928 | 0.703449 | 0.457962 |
Best | 0.397887 | 0.397887 | 0.397887 | 0.39867 | 0.397887 | 0.397893 | 0.397887 | 0.397887 | 0.397888 | 0.397899 | 0.397887 | 0.397887 | 0.397887 | |
Worst | 0.397887 | 0.398145 | 0.398145 | 0.474877 | 0.401023 | 0.398168 | 0.398146 | 0.398145 | 0.398145 | 0.398164 | 0.398145 | 2.506628 | 1.591156 | |
Std | 0 | 7.35E-05 | 7.36E-05 | 0.016725 | 0.000896 | 8.73E-05 | 7.35E-05 | 7.36E-05 | 7.35E-05 | 8.56E-05 | 7.36E-05 | 0.61029 | 0.260471 | |
Median | 0.397887 | 0.397894 | 0.397894 | 0.403092 | 0.397971 | 0.397918 | 0.397895 | 0.397894 | 0.397894 | 0.397973 | 0.397894 | 0.397918 | 0.397966 | |
Rank | 1 | 4 | 2 | 10 | 9 | 7 | 5 | 3 | 6 | 8 | 2 | 12 | 11 | |
F15 | Mean | 3 | 3.2491 | 3.249101 | 5.693971 | 6.034843 | 10.74003 | 3.249123 | 3.249101 | 3.249112 | 3.249101 | 3.2491 | 3.2491 | 7.040393 |
Best | 3 | 3.001098 | 3.001098 | 3.002107 | 3.013375 | 3.001104 | 3.001098 | 3.001098 | 3.001101 | 3.001099 | 3.001098 | 3.001098 | 3.003001 | |
Worst | 3 | 5.127366 | 5.127366 | 27.95563 | 28.91822 | 81.45687 | 5.127367 | 5.127367 | 5.127377 | 5.127368 | 5.127366 | 5.127366 | 31.20499 | |
Std | 1.14E-15 | 0.489279 | 0.489279 | 7.321184 | 5.961004 | 22.46757 | 0.489272 | 0.489279 | 0.489277 | 0.489279 | 0.489279 | 0.489279 | 8.990184 | |
Median | 3 | 3.04441 | 3.04441 | 3.14002 | 3.541047 | 3.140014 | 3.044417 | 3.04441 | 3.04443 | 3.044411 | 3.04441 | 3.04441 | 3.179816 | |
Rank | 1 | 2 | 6 | 10 | 11 | 13 | 9 | 5 | 8 | 7 | 4 | 3 | 12 | |
F16 | Mean | −3.86278 | −3.85185 | −3.85185 | −3.82907 | −3.7303 | −3.8515 | −3.84977 | −3.85185 | −3.85051 | −3.85088 | −3.85185 | −3.85185 | −3.85171 |
Best | −3.86278 | −3.86278 | −3.86278 | −3.85382 | −3.86278 | −3.86268 | −3.86277 | −3.86278 | −3.86278 | −3.86253 | −3.86278 | −3.86278 | −3.86276 | |
Worst | −3.86278 | −3.81789 | −3.81789 | −3.77776 | −3.31594 | −3.81781 | −3.8175 | −3.81789 | −3.81778 | −3.81766 | −3.81789 | −3.81789 | −3.81759 | |
Std | 2.22E-15 | 0.010564 | 0.010564 | 0.021113 | 0.12881 | 0.010411 | 0.010321 | 0.010564 | 0.010614 | 0.01013 | 0.010564 | 0.010564 | 0.010686 | |
Median | −3.86278 | −3.85184 | −3.85184 | −3.83257 | −3.73109 | −3.8518 | −3.85033 | −3.85184 | −3.85132 | −3.85144 | −3.85184 | −3.85184 | −3.85177 | |
Rank | 1 | 2 | 4 | 11 | 12 | 7 | 10 | 5 | 9 | 8 | 3 | 3 | 6 | |
F17 | Mean | −3.322 | −3.24156 | −3.21013 | −2.76672 | −2.56172 | −3.19829 | −3.19374 | −3.21528 | −3.20179 | −3.18745 | −3.25727 | −3.20672 | −3.17472 |
Best | −3.322 | −3.31434 | −3.28525 | −3.038 | −3.22873 | −3.31233 | −3.30934 | −3.31434 | −3.31434 | −3.29852 | −3.31434 | −3.31434 | −3.2439 | |
Worst | −3.322 | −3.15104 | −3.10447 | −1.75378 | −1.84535 | −3.07187 | −3.0508 | −3.096 | −3.00597 | −2.93767 | −3.20079 | −3.04679 | −2.9906 | |
Std | 4.34E-16 | 0.044955 | 0.059342 | 0.276987 | 0.31673 | 0.060395 | 0.075584 | 0.064426 | 0.079772 | 0.082864 | 0.026923 | 0.077408 | 0.06172 | |
Median | −3.322 | −3.2565 | −3.21667 | −2.84296 | −2.61407 | −3.18964 | −3.20415 | −3.24865 | −3.21227 | −3.19193 | −3.2616 | −3.23928 | −3.18554 | |
Rank | 1 | 3 | 5 | 12 | 13 | 8 | 9 | 4 | 7 | 10 | 2 | 6 | 11 | |
F18 | Mean | −10.1532 | −8.37918 | −9.91819 | −5.42633 | −7.63223 | −6.1929 | −9.24171 | −8.80122 | −9.24604 | −7.01014 | −7.31095 | −5.92734 | −6.48809 |
Best | −10.1532 | −10.1447 | −10.1531 | −5.6612 | −10.1516 | −10.1238 | −10.1524 | −10.153 | −10.1529 | −9.25331 | −10.1531 | −10.0716 | −9.60167 | |
Worst | −10.1532 | −3.1694 | −9.54887 | −5.05701 | −5.05701 | −3.10699 | −5.28384 | −5.25966 | −5.09691 | −3.88379 | −3.1694 | −3.14741 | −2.90764 | |
Std | 2.03E-15 | 2.727104 | 0.169179 | 0.169179 | 1.920128 | 2.796647 | 1.602728 | 1.93072 | 1.67125 | 1.762604 | 2.999827 | 2.451367 | 2.42999 | |
Median | −10.1532 | −9.84425 | −9.95037 | −5.45851 | −7.99154 | −5.27858 | −9.84367 | −9.80279 | −9.91216 | −7.29137 | −9.75152 | −5.33906 | −7.07368 | |
Rank | 1 | 6 | 2 | 13 | 7 | 11 | 4 | 5 | 3 | 9 | 8 | 12 | 10 | |
F19 | Mean | −10.4029 | −9.8836 | −10.2207 | −5.53737 | −8.18247 | −7.12047 | −8.19905 | −8.48644 | −10.2202 | −8.05921 | −9.97953 | −6.67863 | −7.54998 |
Best | −10.4029 | −10.4027 | −10.4027 | −5.71945 | −10.4006 | −10.3165 | −10.3774 | −10.3792 | −10.4025 | −9.81922 | −10.4027 | −10.383 | −10.0062 | |
Worst | −10.4029 | −3.63785 | −9.98411 | −5.30082 | −5.30082 | −2.43296 | −2.47727 | −3.53837 | −9.98285 | −4.54312 | −5.44475 | −3.25513 | −3.17664 | |
Std | 3.42E-15 | 1.444153 | 0.161004 | 0.161004 | 1.961534 | 3.117332 | 2.608368 | 2.356317 | 0.161051 | 1.460086 | 1.054647 | 3.033817 | 1.711875 | |
Median | −10.4029 | −10.2047 | −10.296 | −5.61271 | −9.10019 | −7.78563 | −9.98165 | −10.0327 | −10.2957 | −8.36284 | −10.2334 | −5.41806 | −7.93751 | |
Rank | 1 | 5 | 2 | 13 | 8 | 11 | 7 | 6 | 3 | 9 | 4 | 12 | 10 | |
F20 | Mean | −10.5364 | −10.4274 | −10.4274 | −5.66249 | −9.20887 | −7.67717 | −8.70667 | −9.48063 | −10.427 | −8.26849 | −10.208 | −6.80118 | −6.74773 |
Best | −10.5364 | −10.5295 | −10.5295 | −5.76459 | −10.4527 | −10.4346 | −10.5286 | −10.5295 | −10.5293 | −9.76719 | −10.5295 | −10.5216 | −9.80024 | |
Worst | −10.5364 | −10.1103 | −10.1103 | −5.34538 | −5.34538 | −3.35452 | −2.60974 | −5.38693 | −10.11 | −4.87011 | −6.04545 | −3.2291 | −3.28855 | |
Std | 2.7E-15 | 0.113406 | 0.113406 | 0.113407 | 1.381663 | 2.948184 | 2.843599 | 1.92362 | 0.113391 | 1.422554 | 0.963479 | 3.310305 | 2.211936 | |
Median | −10.5364 | −10.4585 | −10.4585 | −5.69352 | −9.5868 | −10.0178 | −10.413 | −10.4331 | −10.4582 | −8.77756 | −10.4585 | −4.53964 | −7.24575 | |
Rank | 1 | 2 | 3 | 13 | 7 | 10 | 8 | 6 | 4 | 9 | 5 | 11 | 12 | |
F21 | Mean | 0.397887 | 0.397928 | 0.397928 | 0.409123 | 0.398381 | 0.39796 | 0.397928 | 0.397928 | 0.397929 | 0.397992 | 0.397928 | 0.703449 | 0.457962 |
Best | 0.397887 | 0.397887 | 0.397887 | 0.39867 | 0.397887 | 0.397893 | 0.397887 | 0.397887 | 0.397888 | 0.397899 | 0.397887 | 0.397887 | 0.397887 | |
Worst | 0.397887 | 0.398145 | 0.398145 | 0.474877 | 0.401023 | 0.398168 | 0.398146 | 0.398145 | 0.398145 | 0.398164 | 0.398145 | 2.506628 | 1.591156 | |
Std | 0 | 7.35E-05 | 7.36E-05 | 0.016725 | 0.000896 | 8.73E-05 | 7.35E-05 | 7.36E-05 | 7.35E-05 | 8.56E-05 | 7.36E-05 | 0.61029 | 0.260471 | |
Median | 0.397887 | 0.397894 | 0.397894 | 0.403092 | 0.397971 | 0.397918 | 0.397895 | 0.397894 | 0.397894 | 0.397973 | 0.397894 | 0.397918 | 0.397966 | |
Rank | 1 | 4 | 2 | 10 | 9 | 7 | 5 | 3 | 6 | 8 | 2 | 12 | 11 | |
F22 | Mean | 3 | 3.2491 | 3.249101 | 5.693971 | 6.034843 | 10.74003 | 3.249123 | 3.249101 | 3.249112 | 3.249101 | 3.2491 | 3.2491 | 7.040393 |
Best | 3 | 3.001098 | 3.001098 | 3.002107 | 3.013375 | 3.001104 | 3.001098 | 3.001098 | 3.001101 | 3.001099 | 3.001098 | 3.001098 | 3.003001 | |
Worst | 3 | 5.127366 | 5.127366 | 27.95563 | 28.91822 | 81.45687 | 5.127367 | 5.127367 | 5.127377 | 5.127368 | 5.127366 | 5.127366 | 31.20499 | |
Std | 1.14E-15 | 0.489279 | 0.489279 | 7.321184 | 5.961004 | 22.46757 | 0.489272 | 0.489279 | 0.489277 | 0.489279 | 0.489279 | 0.489279 | 8.990184 | |
Median | 3 | 3.04441 | 3.04441 | 3.14002 | 3.541047 | 3.140014 | 3.044417 | 3.04441 | 3.04443 | 3.044411 | 3.04441 | 3.04441 | 3.179816 | |
Rank | 1 | 2 | 6 | 10 | 11 | 13 | 9 | 5 | 8 | 7 | 4 | 3 | 12 | |
F23 | Mean | −3.86278 | −3.85185 | −3.85185 | −3.82907 | −3.7303 | −3.8515 | −3.84977 | −3.85185 | −3.85051 | −3.85088 | −3.85185 | −3.85185 | −3.85171 |
Best | −3.86278 | −3.86278 | −3.86278 | −3.85382 | −3.86278 | −3.86268 | −3.86277 | −3.86278 | −3.86278 | −3.86253 | −3.86278 | −3.86278 | −3.86276 | |
Worst | −3.86278 | −3.81789 | −3.81789 | −3.77776 | −3.31594 | −3.81781 | −3.8175 | −3.81789 | −3.81778 | −3.81766 | −3.81789 | −3.81789 | −3.81759 | |
Std | 2.22E-15 | 0.010564 | 0.010564 | 0.021113 | 0.12881 | 0.010411 | 0.010321 | 0.010564 | 0.010614 | 0.01013 | 0.010564 | 0.010564 | 0.010686 | |
Median | −3.86278 | −3.85184 | −3.85184 | −3.83257 | −3.73109 | −3.8518 | −3.85033 | −3.85184 | −3.85132 | −3.85144 | −3.85184 | −3.85184 | −3.85177 | |
Rank | 1 | 2 | 4 | 11 | 12 | 7 | 10 | 5 | 9 | 8 | 3 | 3 | 6 | |
Sum rank | 10 | 44 | 34 | 106 | 88 | 102 | 67 | 51 | 67 | 74 | 48 | 81 | 96 | |
Mean rank | 1 | 4.4 | 3.4 | 10.6 | 8.8 | 10.2 | 6.7 | 5.1 | 6.7 | 7.4 | 4.8 | 8.1 | 9.6 | |
Total ranking | 1 | 3 | 2 | 12 | 9 | 11 | 6 | 5 | 6 | 7 | 4 | 8 | 10 |
hPSO-TLBO | WSO | AVOA | RSA | MPA | TSA | GWO | hPT2 | hPT1 | ITLBO | IPSO | TLBO | PSO | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C17-F1 | Mean | 100 | 5.29E+09 | 3748.368 | 9.6E+09 | 33,159,361 | 1.64E+09 | 82,897,341 | 42,368,208 | 50,218,729 | 46,455,430 | 2.19E+09 | 1.38E+08 | 3091.392 |
Best | 100 | 4.38E+09 | 508.7437 | 8.29E+09 | 10,544.92 | 3.5E+08 | 26,138.81 | 10,715,873 | 14,220,698 | 14,179,262 | 1.92E+09 | 61,616,141 | 341.377 | |
Worst | 100 | 6.79E+09 | 11272.16 | 1.14E+10 | 1.2E+08 | 3.56E+09 | 3.01E+08 | 78,853,365 | 82,349,955 | 75,758,100 | 2.6E+09 | 3.34E+08 | 9150.309 | |
Std | 0 | 1.1E+09 | 5382.989 | 1.49E+09 | 61,500,184 | 1.51E+09 | 1.54E+08 | 32,783,474 | 35,674,006 | 31,933,461 | 3.27E+08 | 1.38E+08 | 4290.734 | |
Median | 100 | 5E+09 | 1606.281 | 9.33E+09 | 6,078,119 | 1.31E+09 | 15,193,524 | 39,951,797 | 52,152,132 | 47,942,180 | 2.12E+09 | 79,005,680 | 1436.94 | |
Rank | 1 | 12 | 3 | 13 | 4 | 10 | 8 | 5 | 7 | 6 | 11 | 9 | 2 | |
C17-F3 | Mean | 300 | 8033.049 | 301.7791 | 9082.776 | 1340.568 | 10543.27 | 2901.42 | 958.6736 | 981.4005 | 863.5039 | 2647.886 | 700.4938 | 300 |
Best | 300 | 4074.832 | 300 | 4905.748 | 761.6017 | 4026.168 | 1454.004 | 589.3344 | 598.4639 | 546.0747 | 2060.398 | 460.8804 | 300 | |
Worst | 300 | 10,742.63 | 303.8055 | 12,146.04 | 2399.799 | 14,898.69 | 5549.497 | 1575.43 | 1603.381 | 1365.497 | 3170.95 | 857.0187 | 300 | |
Std | 0 | 3069.111 | 2.171373 | 3482.46 | 795.0646 | 4856.717 | 1987.661 | 471.1406 | 478.0596 | 388.2045 | 532.1373 | 182.6734 | 0 | |
Median | 300 | 8657.364 | 301.6555 | 9639.658 | 1100.436 | 11624.12 | 2301.09 | 834.9652 | 861.8787 | 771.2216 | 2680.099 | 742.0381 | 300 | |
Rank | 1 | 11 | 3 | 12 | 8 | 13 | 10 | 6 | 7 | 5 | 9 | 4 | 2 | |
C17-F4 | Mean | 400 | 902.4571 | 405.3373 | 1295.052 | 407.1945 | 566.7586 | 411.9069 | 406.1412 | 407.7145 | 405.3359 | 611.6262 | 409.4929 | 419.97 |
Best | 400 | 677.5934 | 401.6131 | 818.3657 | 402.3049 | 473.6418 | 405.7307 | 402.8584 | 403.3799 | 403.6201 | 498.7167 | 407.9005 | 400.1039 | |
Worst | 400 | 1104.07 | 409.1497 | 1760.71 | 411.9996 | 674.1198 | 426.6833 | 410.3496 | 414.603 | 407.151 | 713.2278 | 411.7909 | 469.1877 | |
Std | 0 | 204.0081 | 3.31691 | 422.7467 | 5.124688 | 102.6733 | 10.46654 | 3.59682 | 5.216529 | 1.981138 | 93.99366 | 1.725242 | 34.87123 | |
Median | 400 | 914.0825 | 405.2932 | 1300.566 | 407.2368 | 559.6364 | 407.6068 | 405.6784 | 406.4375 | 405.2862 | 617.2802 | 409.1402 | 405.2941 | |
Rank | 1 | 12 | 3 | 13 | 5 | 10 | 8 | 4 | 6 | 2 | 11 | 7 | 9 | |
C17-F5 | Mean | 501.2464 | 561.909 | 543.0492 | 570.3636 | 513.4648 | 562.3384 | 513.5991 | 514.2683 | 517.4738 | 517.9574 | 529.0633 | 533.5634 | 527.7224 |
Best | 500.9951 | 547.5217 | 526.9607 | 555.91 | 508.5995 | 543.3011 | 508.5861 | 510.1615 | 512.195 | 514.5008 | 519.2719 | 527.6244 | 511.0772 | |
Worst | 501.9917 | 570.3438 | 561.9262 | 585.6405 | 518.5725 | 592.2042 | 520.7717 | 517.8512 | 522.4134 | 521.9358 | 541.1436 | 537.1694 | 551.4064 | |
Std | 0.522698 | 11.04339 | 19.14307 | 17.23184 | 5.815881 | 23.14391 | 5.492417 | 4.336286 | 5.549772 | 3.400253 | 11.51121 | 4.627727 | 19.5741 | |
Median | 500.9993 | 564.8853 | 541.655 | 569.9518 | 513.3437 | 556.9241 | 512.5192 | 514.5302 | 517.6433 | 517.6965 | 527.9188 | 534.7298 | 524.2029 | |
Rank | 1 | 11 | 10 | 13 | 2 | 12 | 3 | 4 | 5 | 6 | 8 | 9 | 7 | |
C17-F6 | Mean | 600 | 631.2476 | 616.8356 | 639.1331 | 601.4607 | 623.9964 | 601.397 | 602.1618 | 602.9351 | 603.8761 | 611.6091 | 606.8656 | 607.4064 |
Best | 600 | 627.3127 | 615.7521 | 636.0102 | 600.8105 | 614.5053 | 600.8308 | 601.3224 | 601.7229 | 603.1373 | 609.0681 | 604.6699 | 601.3504 | |
Worst | 600 | 634.131 | 619.2083 | 642.9987 | 603.1224 | 638.5972 | 601.9612 | 603.9859 | 605.5767 | 604.9986 | 616.0634 | 610.5068 | 619.1985 | |
Std | 0 | 3.305217 | 1.686946 | 3.432936 | 1.171408 | 10.83277 | 0.549504 | 1.316626 | 1.912893 | 0.905984 | 3.231394 | 2.819375 | 8.516125 | |
Median | 600 | 631.7734 | 616.1909 | 638.7618 | 600.955 | 621.4415 | 601.398 | 601.6695 | 602.2204 | 603.6842 | 610.6524 | 606.1428 | 604.5383 | |
Rank | 1 | 12 | 10 | 13 | 3 | 11 | 2 | 4 | 5 | 6 | 9 | 7 | 8 | |
C17-F7 | Mean | 711.1267 | 799.8043 | 763.968 | 800.9678 | 724.9498 | 823.9647 | 726.2615 | 726.252 | 729.6364 | 731.7253 | 742.712 | 751.0914 | 732.6781 |
Best | 710.6726 | 780.3107 | 743.0682 | 788.1026 | 720.9932 | 785.4855 | 718.1642 | 723.984 | 727.3951 | 729.0775 | 738.5639 | 746.5242 | 725.5384 | |
Worst | 711.7995 | 816.1562 | 790.5001 | 813.545 | 728.9161 | 864.0148 | 742.7212 | 728.6154 | 733.1142 | 734.773 | 749.4638 | 759.339 | 744.2048 | |
Std | 0.538751 | 15.89892 | 23.05212 | 12.5471 | 3.619511 | 35.90389 | 11.9049 | 2.287687 | 2.824638 | 2.697238 | 5.23572 | 6.055654 | 8.957916 | |
Median | 711.0174 | 801.3751 | 761.1518 | 801.1118 | 724.9449 | 823.1792 | 722.0802 | 726.2044 | 729.0182 | 731.5253 | 741.4101 | 749.2512 | 730.4845 | |
Rank | 1 | 11 | 10 | 12 | 2 | 13 | 4 | 3 | 5 | 6 | 8 | 9 | 7 | |
C17-F8 | Mean | 801.4928 | 847.368 | 830.689 | 852.2232 | 813.0826 | 847.0627 | 816.1175 | 814.5802 | 817.6934 | 817.3872 | 823.3427 | 836.9731 | 822.7208 |
Best | 800.995 | 839.9264 | 820.163 | 841.7367 | 809.2484 | 831.8296 | 810.8479 | 813.4555 | 816.3749 | 815.8313 | 821.7669 | 830.0727 | 815.66 | |
Worst | 801.9912 | 855.1817 | 845.4663 | 857.0366 | 815.4123 | 865.287 | 820.5682 | 817.0288 | 820.7097 | 819.2567 | 826.6415 | 844.4105 | 829.1593 | |
Std | 0.604721 | 7.476443 | 11.16894 | 7.438301 | 2.867818 | 15.79139 | 4.31119 | 1.732891 | 2.128168 | 1.740719 | 2.340614 | 7.688001 | 7.036328 | |
Median | 801.4926 | 847.182 | 828.5632 | 855.0598 | 813.8348 | 845.5672 | 816.5269 | 813.9183 | 816.8444 | 817.2305 | 822.4812 | 836.7047 | 823.0318 | |
Rank | 1 | 12 | 9 | 13 | 2 | 11 | 4 | 3 | 6 | 5 | 8 | 10 | 7 | |
C17-F9 | Mean | 900 | 1399.012 | 1175.026 | 1441.344 | 905.1431 | 1358.747 | 911.5695 | 904.9645 | 905.8344 | 936.0052 | 1025.904 | 911.4671 | 904.2313 |
Best | 900 | 1262.075 | 951.2954 | 1350.309 | 900.3551 | 1155.798 | 900.5895 | 901.8209 | 902.4042 | 908.0793 | 1006.621 | 906.9387 | 900.897 | |
Worst | 900 | 1533.658 | 1626.152 | 1572.35 | 912.7679 | 1633.582 | 931.6466 | 908.4465 | 908.8868 | 989.7544 | 1057.233 | 919.6198 | 912.2878 | |
Std | 0 | 128.106 | 328.8354 | 99.49603 | 5.777535 | 217.3993 | 15.20639 | 2.852761 | 2.828695 | 39.22887 | 23.05723 | 5.878449 | 5.721816 | |
Median | 900 | 1400.157 | 1061.328 | 1421.359 | 903.7246 | 1322.804 | 907.021 | 904.7952 | 906.0233 | 923.0936 | 1019.88 | 909.6549 | 901.8702 | |
Rank | 1 | 12 | 10 | 13 | 4 | 11 | 7 | 3 | 5 | 8 | 9 | 6 | 2 | |
C17-F10 | Mean | 1006.179 | 2272.674 | 1775.365 | 2531.984 | 1528.608 | 2016.237 | 1725.841 | 1517.585 | 1630.457 | 1557.721 | 1809.69 | 2147.981 | 1934.218 |
Best | 1000.284 | 2023.195 | 1480.899 | 2368.324 | 1393.692 | 1773.52 | 1533.16 | 1368.113 | 1438.83 | 1389.851 | 1638.212 | 1762.198 | 1553.546 | |
Worst | 1012.668 | 2447.536 | 2374.322 | 2873.26 | 1616.944 | 2238.049 | 1995.308 | 1624.587 | 1775.287 | 1643.554 | 1931.07 | 2437.728 | 2335.345 | |
Std | 7.002135 | 197.3598 | 436.2218 | 244.329 | 107.0706 | 266.5065 | 205.4292 | 117.2316 | 151.6732 | 120.6617 | 148.1346 | 301.1232 | 337.7875 | |
Median | 1005.882 | 2309.983 | 1623.12 | 2443.176 | 1551.898 | 2026.69 | 1687.449 | 1538.821 | 1653.855 | 1598.741 | 1834.739 | 2195.999 | 1923.991 | |
Rank | 1 | 12 | 7 | 13 | 3 | 10 | 6 | 2 | 5 | 4 | 8 | 11 | 9 | |
C17-F11 | Mean | 1100 | 3706.841 | 1147.646 | 3823.904 | 1127.395 | 5216.321 | 1154.034 | 1124.996 | 1130.054 | 1127.69 | 1740.549 | 1149.919 | 1142.951 |
Best | 1100 | 2532.404 | 1118.884 | 1439.991 | 1114.214 | 5075.943 | 1122.162 | 1116.939 | 1121.208 | 1120.79 | 1195.462 | 1137.25 | 1131.823 | |
Worst | 1100 | 4840.894 | 1197.819 | 6177.695 | 1158.269 | 5292.963 | 1223.95 | 1142.362 | 1148.311 | 1136.876 | 2267.18 | 1169.998 | 1164.161 | |
Std | 0 | 1091.707 | 36.77475 | 2240.039 | 22.00052 | 101.5156 | 50.03127 | 12.30356 | 13.03865 | 8.484187 | 511.199 | 14.76569 | 15.3188 | |
Median | 1100 | 3727.033 | 1136.941 | 3838.966 | 1118.549 | 5248.19 | 1135.013 | 1120.341 | 1125.348 | 1126.546 | 1749.777 | 1146.215 | 1137.909 | |
Rank | 1 | 11 | 7 | 12 | 3 | 13 | 9 | 2 | 5 | 4 | 10 | 8 | 6 | |
C17-F12 | Mean | 1352.959 | 3.34E+08 | 1,041,840 | 6.67E+08 | 537,442.3 | 984,200.6 | 1,339,676 | 1,119,517 | 1,391,129 | 1,447,652 | 1.52E+08 | 4,781,626 | 8018.164 |
Best | 1318.646 | 74,974,042 | 337,122.5 | 1.48E+08 | 19,273.83 | 510,668.3 | 43,473.74 | 545,184.3 | 617,787.2 | 614,496.8 | 33,669,030 | 1,279,648 | 2505.361 | |
Worst | 1438.176 | 5.84E+08 | 1,889,187 | 1.17E+09 | 841,127.5 | 120,7984 | 2,097,033 | 1,919,043 | 2,399,960 | 2,461,224 | 2.65E+08 | 8,464,893 | 13,785.05 | |
Std | 60.27339 | 2.71E+08 | 763,715.2 | 5.42E+08 | 380,785.4 | 345,933.8 | 952,033.6 | 661,001.8 | 879,737.4 | 953,977.1 | 1.23E+08 | 4,003,531 | 5405.839 | |
Median | 1327.506 | 3.39E+08 | 970,525.5 | 6.77E+08 | 644,684 | 1,109,075 | 1,609,099 | 1,006,920 | 1,273,385 | 1,357,444 | 1.54E+08 | 4,690,982 | 7891.125 | |
Rank | 1 | 12 | 5 | 13 | 3 | 4 | 7 | 6 | 8 | 9 | 11 | 10 | 2 | |
C17-F13 | Mean | 1305.324 | 16,270,434 | 17,645.32 | 32530469 | 5441.239 | 12351.58 | 10,044.19 | 6291.857 | 7405.297 | 8219.529 | 7,388,048 | 16,125.5 | 6564.175 |
Best | 1303.114 | 1,357,783 | 2693.02 | 2700954 | 3735.496 | 7913.531 | 6372.143 | 5115.949 | 6074.468 | 6835.592 | 615,922 | 15,108.72 | 2367.428 | |
Worst | 1308.508 | 54,003,827 | 29,936.8 | 1.08E+08 | 6879.06 | 19310 | 13,730 | 7769.705 | 9547.435 | 10,480.91 | 24,516,110 | 18,714.84 | 16,549.6 | |
Std | 2.390774 | 26,518,937 | 14,969.87 | 53036127 | 1535.233 | 5258.8 | 3196.376 | 1212.391 | 1609.972 | 1827.786 | 12,037,713 | 1826.012 | 7080.253 | |
Median | 1304.837 | 4,860,063 | 18,975.73 | 9,713,262 | 5575.2 | 11,091.4 | 10,037.31 | 6140.887 | 6999.642 | 7780.809 | 2,210,080 | 15,339.21 | 3669.834 | |
Rank | 1 | 12 | 10 | 13 | 2 | 8 | 7 | 3 | 5 | 6 | 11 | 9 | 4 | |
C17-F14 | Mean | 1400.746 | 3925.288 | 2057.876 | 5207.557 | 1980.469 | 3350.637 | 2365.338 | 1807.086 | 1903.042 | 1740.355 | 2937.621 | 1649.611 | 2980.369 |
Best | 1400 | 3067.479 | 1697.619 | 4645.47 | 1434.591 | 1489.137 | 1470.095 | 1453.804 | 1467.202 | 1498.386 | 2195.607 | 1515.859 | 1432.215 | |
Worst | 1400.995 | 5224.087 | 2758.654 | 6608.887 | 2857.453 | 5364.252 | 4808.816 | 2285.551 | 2338.789 | 2124.347 | 4045.413 | 1833.038 | 6791.638 | |
Std | 0.523309 | 1056.743 | 519.5787 | 986.0415 | 713.9192 | 2220.777 | 1716.878 | 441.5361 | 528.3317 | 288.3858 | 834.9858 | 140.3634 | 2694.358 | |
Median | 1400.995 | 3704.793 | 1887.614 | 4787.935 | 1814.917 | 3274.581 | 1591.22 | 1744.495 | 1903.088 | 1669.343 | 2754.732 | 1624.773 | 1848.812 | |
Rank | 1 | 12 | 7 | 13 | 6 | 11 | 8 | 4 | 5 | 3 | 9 | 2 | 10 | |
C17-F15 | Mean | 1500.331 | 10,141.39 | 5420.887 | 13544.47 | 4168.477 | 7035.452 | 5909.892 | 3267.633 | 3681.831 | 3018.033 | 7377.044 | 2021.457 | 8924.747 |
Best | 1500.001 | 3199.972 | 2428.092 | 2943.897 | 3518.151 | 2551.255 | 3846.725 | 2857.078 | 2946.817 | 2337.027 | 4624.808 | 1842.257 | 2858.362 | |
Worst | 1500.5 | 17,211.28 | 12098.81 | 28,895.1 | 5286.274 | 12348.58 | 6956.217 | 4051.452 | 4770.569 | 3748.602 | 9747.737 | 2152.946 | 14665.88 | |
Std | 0.247648 | 6166.653 | 4733.27 | 11904.67 | 828.5131 | 4366.529 | 1487.545 | 574.9909 | 815.2069 | 631.9577 | 2486.011 | 136.7122 | 5191.053 | |
Median | 1500.413 | 10077.16 | 3578.324 | 11169.44 | 3934.741 | 6620.985 | 6418.313 | 3081.001 | 3504.969 | 2993.251 | 7567.815 | 2045.312 | 9087.371 | |
Rank | 1 | 12 | 7 | 13 | 6 | 9 | 8 | 4 | 5 | 3 | 10 | 2 | 11 | |
C17-F16 | Mean | 1600.76 | 2004.613 | 1812.435 | 2008.33 | 1693.73 | 2037.573 | 1735.653 | 1675.247 | 1696.691 | 1675.458 | 1821.143 | 1686.788 | 1920.464 |
Best | 1600.356 | 1942.809 | 1650.286 | 1817.989 | 1654.67 | 1863.642 | 1630.12 | 1653.19 | 1675.794 | 1668.794 | 1761.02 | 1660.138 | 1820.271 | |
Worst | 1601.12 | 2147.237 | 1924.089 | 2263.297 | 1719.019 | 2207.992 | 1823.788 | 1695.833 | 1716.189 | 1682.292 | 1862.547 | 1734.499 | 2078.647 | |
Std | 0.332314 | 100.9265 | 121.8302 | 196.52 | 31.24997 | 162.9157 | 83.92401 | 20.85885 | 23.36918 | 6.773129 | 47.08525 | 34.94773 | 125.8979 | |
Median | 1600.781 | 1964.204 | 1837.683 | 1976.017 | 1700.616 | 2039.328 | 1744.351 | 1675.982 | 1697.39 | 1675.374 | 1830.503 | 1676.257 | 1891.469 | |
Rank | 1 | 11 | 8 | 12 | 5 | 13 | 7 | 2 | 6 | 3 | 9 | 4 | 10 | |
C17-F17 | Mean | 1700.099 | 1814.266 | 1750.562 | 1814.408 | 1736.121 | 1799.078 | 1767.188 | 1731.472 | 1737.416 | 1733.435 | 1753.892 | 1757.577 | 1751.874 |
Best | 1700.02 | 1805.452 | 1734.572 | 1798.473 | 1723.307 | 1784.404 | 1725.151 | 1722.744 | 1728.511 | 1725.121 | 1749.079 | 1748.26 | 1745.29 | |
Worst | 1700.332 | 1819.514 | 1792.558 | 1823.434 | 1773.326 | 1809.306 | 1864.923 | 1753.753 | 1760.192 | 1750.076 | 1763.547 | 1766.912 | 1758.499 | |
Std | 0.163219 | 6.467607 | 29.52981 | 11.56531 | 26.09862 | 11.31541 | 68.90608 | 15.67995 | 16.06212 | 11.86723 | 7.104734 | 9.869326 | 5.942316 | |
Median | 1700.022 | 1816.048 | 1737.558 | 1817.862 | 1723.925 | 1801.301 | 1739.339 | 1724.696 | 1730.481 | 1729.272 | 1751.471 | 1757.569 | 1751.853 | |
Rank | 1 | 12 | 6 | 13 | 4 | 11 | 10 | 2 | 5 | 3 | 8 | 9 | 7 | |
C17-F18 | Mean | 1805.36 | 2,700,242 | 12,164.85 | 5,383,877 | 11,402.61 | 12,356.16 | 19,768.51 | 12,292.58 | 14,853.55 | 12,788.06 | 1,232,709 | 28,836.63 | 21,629.9 |
Best | 1800.003 | 138,517.9 | 4723.003 | 266,622.3 | 4264.898 | 7199.645 | 6310.461 | 6928.172 | 8412.253 | 8741.04 | 66,373.95 | 23,000.7 | 2867.661 | |
Worst | 1820.451 | 7,824,444 | 16,330.68 | 15,627,891 | 17,201.99 | 15,723.79 | 31,879.1 | 16,355.13 | 19,819.87 | 15,990.6 | 3,564,332 | 36,637.14 | 40,262.56 | |
Std | 10.58584 | 3,744,655 | 5510.427 | 7,486,898 | 5844.873 | 3889.499 | 13,653.75 | 4139.17 | 5194.742 | 3184.802 | 1,705,209 | 6740.655 | 20,306.86 | |
Median | 1800.492 | 1,419,003 | 13,802.86 | 2,820,497 | 12,071.78 | 13,250.6 | 20,442.24 | 12,943.52 | 15,591.04 | 13,210.29 | 650,064.1 | 27,854.34 | 21,694.7 | |
Rank | 1 | 12 | 3 | 13 | 2 | 5 | 8 | 4 | 7 | 6 | 11 | 10 | 9 | |
C17-F19 | Mean | 1900.445 | 375,744.6 | 7433.981 | 666,091.6 | 6385.277 | 119,677.3 | 6182.604 | 5568.259 | 6953.678 | 4601.691 | 16,1041.9 | 5533.399 | 24,663.69 |
Best | 1900.039 | 23,791.01 | 2314.747 | 43,418.54 | 2448.01 | 2024.057 | 2198.753 | 2410.486 | 2462.793 | 3059.651 | 11,808.98 | 2168.611 | 2615.743 | |
Worst | 1901.559 | 791,564.4 | 13,172.51 | 1,428,796 | 12,225.8 | 240,192.4 | 13,706.12 | 9972.915 | 14,000.35 | 5757.046 | 32,7034.9 | 12,057.43 | 75,964.03 | |
Std | 0.783273 | 347,977.3 | 4854.412 | 656805.8 | 4951.454 | 142,642.6 | 5427.918 | 3428.423 | 5249.274 | 1234.592 | 145,239.8 | 4793.22 | 36,380.59 | |
Median | 1900.09 | 343,811.5 | 7124.333 | 596075.7 | 5433.649 | 118,246.3 | 4412.77 | 4944.818 | 5675.786 | 4795.034 | 152,661.8 | 3953.779 | 10,037.49 | |
Rank | 1 | 12 | 8 | 13 | 6 | 10 | 5 | 4 | 7 | 2 | 11 | 3 | 9 | |
C17-F20 | Mean | 2000.312 | 2210.424 | 2168.398 | 2217.963 | 2094.49 | 2203.182 | 2167.789 | 2070.211 | 2083.096 | 2073.4 | 2131.918 | 2075.291 | 2166.904 |
Best | 2000.312 | 2157.425 | 2035.901 | 2161.66 | 2077.367 | 2108.709 | 2132.315 | 2059.651 | 2073.652 | 2068.536 | 2110.495 | 2066.244 | 2143.076 | |
Worst | 2000.312 | 2278.136 | 2286.855 | 2269.353 | 2122.343 | 2311.801 | 2238.703 | 2085.805 | 2097.633 | 2076.984 | 2146.375 | 2084.098 | 2198.36 | |
Std | 0 | 52.6401 | 118.8435 | 55.96682 | 20.40431 | 90.57678 | 50.6873 | 11.6748 | 10.75655 | 4.049637 | 17.75158 | 7.780774 | 28.90349 | |
Median | 2000.312 | 2203.068 | 2175.419 | 2220.419 | 2089.124 | 2196.11 | 2150.068 | 2067.693 | 2080.549 | 2074.04 | 2135.401 | 2075.411 | 2163.091 | |
Rank | 1 | 12 | 10 | 13 | 6 | 11 | 9 | 2 | 5 | 3 | 7 | 4 | 8 | |
C17-F21 | Mean | 2200 | 2293.113 | 2218.166 | 2268.57 | 2259.186 | 2323.447 | 2312.219 | 2253.103 | 2264.824 | 2247.422 | 2271.055 | 2299.357 | 2317.423 |
Best | 2200 | 2248.137 | 2209.252 | 2228.085 | 2256.486 | 2224.969 | 2307.894 | 2238.417 | 2245.395 | 2229.816 | 2264.436 | 2208.954 | 2309.456 | |
Worst | 2200 | 2317.485 | 2242.32 | 2291.427 | 2261.821 | 2368.166 | 2317.154 | 2258.256 | 2271.644 | 2253.95 | 2276.721 | 2335.586 | 2324.888 | |
Std | 0 | 34.11594 | 16.97517 | 29.54726 | 2.42295 | 70.30435 | 4.009014 | 10.30393 | 13.62872 | 12.38228 | 5.441208 | 63.82541 | 7.984688 | |
Median | 2200 | 2303.416 | 2210.546 | 2277.384 | 2259.219 | 2350.326 | 2311.915 | 2257.869 | 2271.129 | 2252.961 | 2271.532 | 2326.444 | 2317.675 | |
Rank | 1 | 9 | 2 | 7 | 5 | 13 | 11 | 4 | 6 | 3 | 8 | 10 | 12 | |
C17-F22 | Mean | 2300.073 | 2713.841 | 2309.071 | 2883.186 | 2305.307 | 2692.102 | 2308.709 | 2306.569 | 2308.325 | 2307.335 | 2438.143 | 2319.089 | 2313.126 |
Best | 2300 | 2594.706 | 2304.299 | 2685.119 | 2300.92 | 2441.121 | 2301.226 | 2302.865 | 2303.674 | 2304.701 | 2389.617 | 2312.725 | 2300.631 | |
Worst | 2300.29 | 2845.002 | 2311.883 | 3027.823 | 2309.028 | 2888.349 | 2321.372 | 2310.282 | 2312.188 | 2311.213 | 2469.466 | 2329.793 | 2344.973 | |
Std | 0.152615 | 121.8081 | 3.496248 | 152.0155 | 3.871741 | 210.3358 | 9.356375 | 3.681474 | 4.734889 | 3.042804 | 37.56147 | 8.270263 | 22.38123 | |
Median | 2300 | 2707.829 | 2310.05 | 2909.901 | 2305.639 | 2719.468 | 2306.119 | 2306.565 | 2308.718 | 2306.713 | 2446.746 | 2316.919 | 2303.451 | |
Rank | 1 | 12 | 7 | 13 | 2 | 11 | 6 | 3 | 5 | 4 | 10 | 9 | 8 | |
C17-F23 | Mean | 2600.919 | 2693.942 | 2641.835 | 2697.28 | 2615.498 | 2718.917 | 2614.945 | 2617.187 | 2621.763 | 2620.083 | 2640.702 | 2642.286 | 2643.937 |
Best | 2600.003 | 2654.227 | 2630.609 | 2669.522 | 2612.898 | 2634.545 | 2609.025 | 2616.18 | 2620.188 | 2618.871 | 2631.633 | 2631.733 | 2636.826 | |
Worst | 2602.87 | 2716.599 | 2658.423 | 2735.505 | 2617.81 | 2761.529 | 2621.062 | 2618.675 | 2623.595 | 2620.645 | 2648.436 | 2650.816 | 2655.745 | |
Std | 1.388886 | 30.84248 | 13.79002 | 32.48161 | 2.349835 | 60.1772 | 6.381254 | 1.199337 | 1.496877 | 0.865276 | 8.465968 | 8.871236 | 9.013826 | |
Median | 2600.403 | 2702.471 | 2639.155 | 2692.047 | 2615.641 | 2739.797 | 2614.846 | 2616.947 | 2621.635 | 2620.408 | 2641.369 | 2643.297 | 2641.588 | |
Rank | 1 | 11 | 8 | 12 | 3 | 13 | 2 | 4 | 6 | 5 | 7 | 9 | 10 | |
C17-F24 | Mean | 2630.488 | 2775.69 | 2766.263 | 2844.242 | 2636.472 | 2672.139 | 2748.42 | 2658.064 | 2672.069 | 2672.271 | 2721.323 | 2755.106 | 2764.326 |
Best | 2516.677 | 2723.653 | 2734.285 | 2820.922 | 2622.02 | 2537.506 | 2724.236 | 2620.287 | 2645.719 | 2637.937 | 2695.625 | 2742.434 | 2755.438 | |
Worst | 2732.32 | 2853.529 | 2786.472 | 2904.605 | 2643.687 | 2810.158 | 2761.841 | 2687.9 | 2692.953 | 2703.001 | 2756.65 | 2767.175 | 2785.859 | |
Std | 122.5498 | 66.25804 | 26.01061 | 42.42327 | 10.52639 | 153.1914 | 18.113 | 36.73978 | 24.59657 | 36.41109 | 28.98253 | 12.15716 | 15.28211 | |
Median | 2636.477 | 2762.789 | 2772.148 | 2825.721 | 2640.09 | 2670.446 | 2753.801 | 2662.034 | 2674.802 | 2674.073 | 2716.509 | 2755.407 | 2758.003 | |
Rank | 1 | 12 | 11 | 13 | 2 | 5 | 8 | 3 | 4 | 6 | 7 | 9 | 10 | |
C17-F25 | Mean | 2932.639 | 3147.52 | 2914.105 | 3258.12 | 2918.278 | 3122.551 | 2937.974 | 2924.361 | 2923.909 | 2924.435 | 2998.858 | 2933.081 | 2923.428 |
Best | 2898.047 | 3060.682 | 2899.066 | 3194.189 | 2915.276 | 2907.931 | 2922.626 | 2910.753 | 2911.757 | 2909.85 | 2994.502 | 2915.173 | 2898.661 | |
Worst | 2945.793 | 3340.747 | 2948.83 | 3328.696 | 2924.512 | 3617.385 | 2945.848 | 2933.713 | 2934.162 | 2936.692 | 3003.784 | 2950.078 | 2946.546 | |
Std | 24.28873 | 136.745 | 24.50997 | 58.41904 | 4.545926 | 350.9255 | 10.96339 | 10.4474 | 9.942083 | 12.25131 | 4.891705 | 20.20376 | 27.48149 | |
Median | 2943.359 | 3094.325 | 2904.261 | 3254.798 | 2916.663 | 2982.444 | 2941.711 | 2926.489 | 2924.858 | 2925.599 | 2998.573 | 2933.536 | 2924.253 | |
Rank | 7 | 12 | 1 | 13 | 2 | 11 | 9 | 5 | 4 | 6 | 10 | 8 | 3 | |
C17-F26 | Mean | 2900 | 3564.329 | 2975.83 | 3711.483 | 3005.965 | 3583.082 | 3246.291 | 3009.708 | 3026.412 | 3022.556 | 3121.487 | 3190.688 | 2904.021 |
Best | 2900 | 3234.171 | 2811.89 | 3400.454 | 2897.241 | 3136.09 | 2970.3 | 2917.262 | 2917.91 | 2904.846 | 3091.367 | 2911.421 | 2807.879 | |
Worst | 2900 | 3796.619 | 3140.237 | 4030.65 | 3268.876 | 4197.64 | 3850.233 | 3263.987 | 3311.448 | 3306.742 | 3165.835 | 3820.463 | 3008.206 | |
Std | 3.91E-13 | 283.394 | 199.1308 | 284.9489 | 185.0471 | 548.1546 | 427.1786 | 178.4936 | 200.1559 | 200.2849 | 33.22064 | 444.7674 | 86.1682 | |
Median | 2900 | 3613.263 | 2975.597 | 3707.413 | 2928.871 | 3499.298 | 3082.316 | 2928.793 | 2938.146 | 2939.317 | 3114.373 | 3015.434 | 2900 | |
Rank | 1 | 11 | 3 | 13 | 4 | 12 | 10 | 5 | 7 | 6 | 8 | 9 | 2 | |
C17-F27 | Mean | 3089.518 | 3204.167 | 3120.41 | 3225.692 | 3105.902 | 3176.807 | 3116.721 | 3104.304 | 3108.182 | 3104.823 | 3139.886 | 3115.756 | 3135.637 |
Best | 3089.518 | 3156.248 | 3097.214 | 3125.56 | 3092.427 | 3103.962 | 3094.506 | 3092.667 | 3093.499 | 3093.73 | 3100.949 | 3097.288 | 3097.024 | |
Worst | 3089.518 | 3273.898 | 3180.171 | 3407.879 | 3135.533 | 3216.28 | 3176.245 | 3119.472 | 3124.883 | 3119.855 | 3180.549 | 3168.415 | 3182.511 | |
Std | 2.76E-13 | 52.2364 | 41.98196 | 131.1143 | 21.01533 | 54.05908 | 41.81935 | 12.40577 | 14.58567 | 13.29019 | 37.02128 | 36.95224 | 37.81668 | |
Median | 3089.518 | 3193.26 | 3102.127 | 3184.664 | 3097.825 | 3193.493 | 3098.068 | 3102.539 | 3107.174 | 3102.853 | 3139.023 | 3098.661 | 3131.506 | |
Rank | 1 | 12 | 8 | 13 | 4 | 11 | 7 | 2 | 5 | 3 | 10 | 6 | 9 | |
C17-F28 | Mean | 3100 | 3603.64 | 3237.661 | 3751.609 | 3221.039 | 3569.029 | 3340.651 | 3210.964 | 3234.096 | 3213.894 | 3350.357 | 3321.862 | 3303.482 |
Best | 3100 | 3559.755 | 3103.322 | 3668.181 | 3175.855 | 3407.301 | 3202.125 | 3198.356 | 3221.507 | 3193.392 | 3293.056 | 3215.875 | 3176.295 | |
Worst | 3100 | 3638.239 | 3387.263 | 3810.552 | 3243.76 | 3761.461 | 3403.302 | 3222.506 | 3247.961 | 3224.092 | 3390.265 | 3387.482 | 3387.467 | |
Std | 0 | 34.63407 | 131.9717 | 69.78185 | 33.67228 | 193.5914 | 97.91534 | 11.64192 | 11.86854 | 14.86709 | 44.26733 | 83.67492 | 100.7125 | |
Median | 3100 | 3608.284 | 3230.029 | 3763.852 | 3232.269 | 3553.676 | 3378.588 | 3211.497 | 3233.458 | 3219.045 | 3359.054 | 3342.046 | 3325.084 | |
Rank | 1 | 12 | 6 | 13 | 4 | 11 | 9 | 2 | 5 | 3 | 10 | 8 | 7 | |
C17-F29 | Mean | 3132.241 | 3323.772 | 3282.346 | 3368.261 | 3205.185 | 3236.586 | 3264.015 | 3190.529 | 3202.051 | 3196.414 | 3250.557 | 3214.224 | 3264.841 |
Best | 3130.076 | 3306.05 | 3207.841 | 3296.377 | 3165.729 | 3173.711 | 3194.377 | 3165.16 | 3171.76 | 3172.48 | 3191.255 | 3171.844 | 3167.558 | |
Worst | 3134.841 | 3340.313 | 3362.494 | 3434.075 | 3242.993 | 3298.718 | 3370.766 | 3215.251 | 3225.83 | 3225.81 | 3285.27 | 3238.474 | 3346.938 | |
Std | 2.611232 | 18.67158 | 81.30356 | 72.1697 | 35.30926 | 53.97501 | 89.62088 | 21.55151 | 23.57208 | 24.3712 | 43.08385 | 32.07396 | 85.65981 | |
Median | 3132.023 | 3324.362 | 3279.524 | 3371.295 | 3206.009 | 3236.958 | 3245.458 | 3190.853 | 3205.307 | 3193.684 | 3262.852 | 3223.288 | 3272.434 | |
Rank | 1 | 12 | 11 | 13 | 5 | 7 | 9 | 2 | 4 | 3 | 8 | 6 | 10 | |
C17-F30 | Mean | 3418.734 | 2,111,674 | 294,724.6 | 3,484,443 | 407,950.5 | 596,404.5 | 899,516.1 | 253,362 | 276,973.7 | 223,025.7 | 1,045,246 | 73,878.61 | 382,013.5 |
Best | 3394.682 | 1,277,340 | 99,075.07 | 781,071.3 | 15,417.93 | 138,930.3 | 32,077.15 | 14,510.35 | 16,141.98 | 30,921.79 | 354,534.7 | 28,022.71 | 6354.214 | |
Worst | 3442.907 | 3,145,244 | 757,357.9 | 5,477,669 | 61,0461.1 | 122,6181 | 1,291,826 | 374,902.6 | 417,356.2 | 313,368.7 | 1,361,416 | 129,022 | 757,392.4 | |
Std | 29.21253 | 813,970 | 326,040.1 | 2,072,605 | 280,538.3 | 484,692.4 | 624,972.1 | 170,483.8 | 188,716.3 | 136,522.3 | 488,851.6 | 43,961.79 | 455,349.8 | |
Median | 3418.673 | 2,012,056 | 161,232.7 | 3,839,517 | 502,961.4 | 510,253.1 | 1,137,081 | 312,017.5 | 337,198.3 | 273,906.2 | 1,232,517 | 69,234.87 | 382,153.8 | |
Rank | 1 | 12 | 6 | 13 | 8 | 9 | 10 | 4 | 5 | 3 | 11 | 2 | 7 | |
Sum rank | 35 | 338 | 199 | 366 | 115 | 299 | 211 | 101 | 160 | 132 | 267 | 209 | 207 | |
Mean rank | 1.206897 | 11.65517 | 6.862069 | 12.62069 | 3.965517 | 10.31034 | 7.275862 | 3.482759 | 5.517241 | 4.551724 | 9.206897 | 7.206897 | 7.137931 | |
Total rank | 1 | 12 | 6 | 13 | 3 | 11 | 9 | 2 | 5 | 4 | 10 | 8 | 7 |
Compared Algorithms | Unimodal | High-Multimodal | Fixed-Multimodal | CEC 2017 Test Suite |
---|---|---|---|---|
hPSO-TLBO vs. WSO | 1.85E-24 | 1.97E-21 | 2.09E-34 | 2.02E-21 |
hPSO-TLBO vs. AVOA | 3.02E-11 | 4.99E-05 | 1.44E-34 | 3.77E-19 |
hPSO-TLBO vs. RSA | 4.25E-07 | 1.63E-11 | 1.44E-34 | 1.97E-21 |
hPSO-TLBO vs. MPA | 1.01E-24 | 1.04E-14 | 2.09E-34 | 2.00E-18 |
hPSO-TLBO vs. TSA | 1.01E-24 | 1.31E-20 | 1.44E-34 | 9.50E-21 |
hPSO-TLBO vs. GWO | 1.01E-24 | 5.34E-16 | 1.44E-34 | 5.23E-21 |
hPSO-TLBO vs. hPT2 | 1.01E-24 | 1.51E-22 | 1.44E-34 | 5.88E-20 |
hPSO-TLBO vs. hPT1 | 1.01E-24 | 4.09E-17 | 1.44E-34 | 3.41E-22 |
hPSO-TLBO vs. ITLBO | 1.01E-24 | 5.34E-16 | 1.44E-34 | 2.40E-22 |
hPSO-TLBO vs. IPSO | 1.01E-24 | 2.46E-24 | 1.44E-34 | 1.04E-19 |
hPSO-TLBO vs. TLBO | 1.01E-24 | 1.97E-21 | 1.44E-34 | 1.60E-18 |
hPSO-TLBO vs. PSO | 1.01E-24 | 1.97E-21 | 1.44E-34 | 1.54E-19 |
Algorithm | Optimum Variables | Optimum Cost | |||
---|---|---|---|---|---|
Ts | Th | R | L | ||
hPSO-TLBO | 0.778027 | 0.384579 | 40.31228 | 200 | 5882.901 |
WSO | 0.778027 | 0.384579 | 40.31228 | 200 | 5882.901 |
AVOA | 0.778031 | 0.384581 | 40.31251 | 199.9969 | 5882.909 |
RSA | 1.266864 | 0.684455 | 64.03621 | 21.84755 | 8083.221 |
MPA | 0.778027 | 0.384579 | 40.31228 | 200 | 5882.901 |
TSA | 0.779753 | 0.386033 | 40.39931 | 200 | 5913.936 |
GWO | 0.778534 | 0.386025 | 40.32206 | 199.9583 | 5891.47 |
hPT1 | 0.863331 | 0.551663 | 43.82355 | 178.1357 | 7423.859 |
hPT2 | 0.909754 | 0.612768 | 45.4607 | 170.1978 | 8203.294 |
ITLBO | 1.007644 | 0.429869 | 44.41372 | 164.2482 | 7173.881 |
IPSO | 0.971381 | 0.574936 | 45.31477 | 185.8739 | 8924.884 |
TLBO | 1.697384 | 0.497968 | 48.96822 | 111.6649 | 11,655.86 |
PSO | 1.683083 | 0.664227 | 67.07266 | 23.90255 | 10,707.79 |
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
hPSO-TLBO | 5882.895451 | 5882.895451 | 5882.895451 | 2.06E-12 | 5882.895451 | 1 |
WSO | 5892.660121 | 5882.901051 | 5979.188336 | 28.7049213 | 5882.901464 | 3 |
AVOA | 6277.54171 | 5882.908511 | 7246.78008 | 455.2164111 | 6076.08962 | 5 |
RSA | 13,534.14797 | 8083.221035 | 22,422.75871 | 4039.895167 | 12,354.52124 | 9 |
MPA | 5882.901057 | 5882.901052 | 5882.901064 | 4.76E-06 | 5882.901055 | 2 |
TSA | 6338.024708 | 5913.936056 | 7131.963127 | 430.4115812 | 6188.536588 | 6 |
GWO | 6034.674549 | 5891.469631 | 6806.784466 | 309.2651669 | 5901.245264 | 4 |
hPT1 | 11,215.46634 | 7423.857014 | 16,642.53656 | 2954.126869 | 11,038.72283 | 8 |
hPT2 | 13,923.19832 | 8203.292711 | 21,021.48088 | 4224.527187 | 13,968.72996 | 10 |
ITLBO | 11,172.03452 | 7173.87948 | 18,660.95934 | 3548.614934 | 10,397.25346 | 7 |
IPSO | 15,785.03122 | 8924.882242 | 22,541.58427 | 5160.561356 | 16,389.87266 | 11 |
TLBO | 32,131.25646 | 11,655.86208 | 69,689.83545 | 17,822.77646 | 28,265.18798 | 12 |
PSO | 33,789.17406 | 10,707.79023 | 58,436.51582 | 16,685.46389 | 37,331.59553 | 13 |
Algorithm | Optimum Variables | Optimum Cost | ||||||
---|---|---|---|---|---|---|---|---|
b | M | p | l1 | l2 | d1 | d2 | ||
hPSO-TLBO | 3.5 | 0.7 | 17 | 7.3 | 7.8 | 3.350215 | 5.286683 | 2996.348 |
WSO | 3.5 | 0.7 | 17 | 7.30001 | 7.8 | 3.350215 | 5.286683 | 2996.348 |
AVOA | 3.5 | 0.7 | 17 | 7.300001 | 7.8 | 3.350215 | 5.286683 | 2996.348 |
RSA | 3.595192 | 0.7 | 17 | 8.25192 | 8.27596 | 3.355842 | 5.489744 | 3188.946 |
MPA | 3.5 | 0.7 | 17 | 7.3 | 7.8 | 3.350215 | 5.286683 | 2996.348 |
TSA | 3.513321 | 0.7 | 17 | 7.3 | 8.27596 | 3.350551 | 5.290332 | 3014.45 |
GWO | 3.500662 | 0.7 | 17 | 7.305312 | 7.8 | 3.364398 | 5.28888 | 3001.683 |
hPT1 | 3.501176 | 0.700321 | 17.46705 | 7.397422 | 7.849971 | 3.382102 | 5.297636 | 2.33E+10 |
hPT2 | 3.50256 | 0.700562 | 17.62741 | 7.461131 | 7.866856 | 3.397713 | 5.307414 | 3.86E+10 |
ITLBO | 3.511587 | 0.700826 | 18.92588 | 7.46553 | 7.871304 | 3.414912 | 5.297564 | 3466.045 |
IPSO | 3.521574 | 0.700022 | 17.33948 | 7.52107 | 7.91627 | 3.530869 | 5.345062 | 3161.188 |
TLBO | 3.557936 | 0.704128 | 26.62939 | 8.12765 | 8.156521 | 3.673703 | 5.341085 | 5344.833 |
PSO | 3.508452 | 0.700074 | 18.13159 | 7.402286 | 7.870261 | 3.603493 | 5.345904 | 3312.579 |
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
hPSO-TLBO | 2996.348165 | 2996.348165 | 2996.348165 | 1.03E-12 | 2996.348165 | 1 |
WSO | 2996.640981 | 2996.348305 | 2998.87965 | 0.665661946 | 2996.364895 | 3 |
AVOA | 3001.003783 | 2996.348187 | 3011.558199 | 4.516285408 | 3000.900984 | 4 |
RSA | 3285.981388 | 3188.946352 | 3346.202854 | 65.46309514 | 3301.347252 | 7 |
MPA | 2996.348168 | 2996.348165 | 2996.348178 | 3.62E-06 | 2996.348166 | 2 |
TSA | 3033.306292 | 3014.450491 | 3047.487651 | 11.54079978 | 3035.152884 | 6 |
GWO | 3004.8929 | 3001.683252 | 3011.053403 | 2.85373292 | 3004.357996 | 5 |
hPT1 | 1.60763E+13 | 2,328,270,4326 | 7.95377E+13 | 2.14493E+13 | 8.15597E+12 | 9 |
hPT2 | 2.4969E+13 | 38,611,102,157 | 1.07078E+14 | 3.07571E+13 | 1.42599E+13 | 10 |
ITLBO | 1.44E+13 | 3466.045209 | 1.04E+14 | 2.64E+13 | 5.63E+12 | 8 |
IPSO | 3.18058E+13 | 3161.188406 | 1.6112E+14 | 4.23337E+13 | 2.2749E+13 | 11 |
TLBO | 7.18E+13 | 5344.833366 | 5.20E+14 | 1.32E+14 | 2.81E+13 | 12 |
PSO | 1.06E+14 | 3312.579176 | 5.37E+14 | 1.41E+14 | 7.58E+13 | 13 |
Algorithm | Optimum Variables | Optimum Cost | |||
---|---|---|---|---|---|
h | l | t | b | ||
hPSO-TLBO | 0.20573 | 3.470489 | 9.036624 | 0.20573 | 1.724852 |
WSO | 0.20573 | 3.470489 | 9.036624 | 0.20573 | 1.724852 |
AVOA | 0.20494 | 3.487615 | 9.036514 | 0.205735 | 1.725954 |
RSA | 0.196401 | 3.53676 | 9.953681 | 0.218189 | 1.983572 |
MPA | 0.20573 | 3.470489 | 9.036624 | 0.20573 | 1.724852 |
TSA | 0.204146 | 3.496185 | 9.065083 | 0.20617 | 1.734136 |
GWO | 0.205588 | 3.473748 | 9.036228 | 0.205801 | 1.725545 |
hPT1 | 0.237138 | 3.829949 | 8.522555 | 0.262167 | 2.139874 |
hPT2 | 0.243247 | 3.783904 | 9.178428 | 0.263847 | 2.384718 |
ITLBO | 0.227451 | 3.687204 | 8.574407 | 0.25102 | 1.994317 |
IPSO | 0.268698 | 3.523407 | 8.892821 | 0.293392 | 2.53362 |
TLBO | 0.318796 | 4.452332 | 6.725274 | 0.432185 | 3.065577 |
PSO | 0.377926 | 3.423201 | 7.289954 | 0.585841 | 4.097012 |
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
hPSO-TLBO | 1.724679823 | 1.724679823 | 1.724679823 | 2.51E-16 | 1.724679823 | 1 |
WSO | 1.724844362 | 1.724844016 | 1.724849731 | 1.42E-06 | 1.724844016 | 3 |
AVOA | 1.762377344 | 1.725945958 | 1.846469707 | 0.041484186 | 1.748038057 | 6 |
RSA | 2.19632836 | 1.983563906 | 2.555158029 | 0.163966432 | 2.170484224 | 7 |
MPA | 1.724844021 | 1.724844017 | 1.724844028 | 3.81E-09 | 1.724844021 | 2 |
TSA | 1.743730267 | 1.734127479 | 1.753218931 | 0.006376703 | 1.743829634 | 5 |
GWO | 1.727321573 | 1.725537072 | 1.731495767 | 0.001550229 | 1.727068458 | 4 |
hPT1 | 7.51754E+12 | 2.139816676 | 4.96972E+13 | 1.39052E+13 | 1.47507E+11 | 9 |
hPT2 | 1.16016E+13 | 2.384677086 | 6.62629E+13 | 1.94524E+13 | 2.95014E+11 | 10 |
ITLBO | 6.87E+12 | 1.994259593 | 6.63E+13 | 1.85E+13 | 2.548744746 | 8 |
IPSO | 1.4204E+13 | 2.533578588 | 8.59849E+13 | 2.98947E+13 | 3.397180524 | 11 |
TLBO | 3.43E+13 | 3.065568295 | 3.31E+14 | 9.23E+13 | 5.819237012 | 12 |
PSO | 4.73E+13 | 4.097004136 | 2.87E+14 | 9.96E+13 | 6.891186011 | 13 |
Algorithm | Optimum Variables | Optimum Cost | ||
---|---|---|---|---|
d | D | P | ||
hPSO-TLBO | 0.051689 | 0.356718 | 11.28897 | 0.012665 |
WSO | 0.051687 | 0.356669 | 11.29185 | 0.012665 |
AVOA | 0.051176 | 0.344499 | 12.04499 | 0.01267 |
RSA | 0.050081 | 0.312796 | 14.82157 | 0.013174 |
MPA | 0.051691 | 0.35676 | 11.28651 | 0.012665 |
TSA | 0.050966 | 0.339564 | 12.38189 | 0.012682 |
GWO | 0.051965 | 0.363368 | 10.91381 | 0.012671 |
hPT1 | 0.055007 | 0.46737 | 9.513398 | 0.013657 |
hPT2 | 0.056665 | 0.522698 | 8.628156 | 0.014153 |
ITLBO | 0.054843 | 0.4635 | 9.776336 | 0.013664 |
IPSO | 0.056312 | 0.512716 | 9.339243 | 0.014227 |
TLBO | 0.068247 | 0.908916 | 2.446611 | 0.017633 |
PSO | 0.068162 | 0.905704 | 2.446611 | 0.017528 |
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
hPSO-TLBO | 0.012601907 | 0.012601907 | 0.012601907 | 7.58E-18 | 0.012601907 | 1 |
WSO | 0.012673576 | 0.012662188 | 0.012826009 | 4.02E-05 | 0.012662617 | 3 |
AVOA | 0.013352445 | 0.012667288 | 0.014177381 | 0.000625752 | 0.013282895 | 7 |
RSA | 0.013254044 | 0.013170803 | 0.013400678 | 7.79E-05 | 0.013232604 | 6 |
MPA | 0.012662191 | 0.012662188 | 0.0126622 | 3.20E-09 | 0.01266219 | 2 |
TSA | 0.012964934 | 0.012679454 | 0.013539129 | 0.000271138 | 0.012889919 | 5 |
GWO | 0.012720992 | 0.012667804 | 0.012948444 | 6.20725E-05 | 0.012718442 | 4 |
hPT1 | 1.06544E+12 | 0.013636157 | 1.89059E+13 | 4.66181E+12 | 0.013724578 | 10 |
hPT2 | 2.13088E+12 | 0.014137489 | 3.78117E+13 | 9.32E+12 | 0.014252841 | 11 |
ITLBO | 0.013814906 | 0.013642726 | 0.013994358 | 0.000119693 | 0.013805438 | 8 |
IPSO | 6.39263E+12 | 0.014211676 | 1.13435E+14 | 2.79708E+13 | 0.014234198 | 12 |
TLBO | 1.82E-02 | 0.017629673 | 1.88E-02 | 4.02E-04 | 0.018126014 | 9 |
PSO | 2.13E+13 | 0.017524526 | 3.78E+14 | 9.32E+13 | 0.017524526 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubálovský, Š.; Hubálovská, M.; Matoušová, I. A New Hybrid Particle Swarm Optimization–Teaching–Learning-Based Optimization for Solving Optimization Problems. Biomimetics 2024, 9, 8. https://doi.org/10.3390/biomimetics9010008
Hubálovský Š, Hubálovská M, Matoušová I. A New Hybrid Particle Swarm Optimization–Teaching–Learning-Based Optimization for Solving Optimization Problems. Biomimetics. 2024; 9(1):8. https://doi.org/10.3390/biomimetics9010008
Chicago/Turabian StyleHubálovský, Štěpán, Marie Hubálovská, and Ivana Matoušová. 2024. "A New Hybrid Particle Swarm Optimization–Teaching–Learning-Based Optimization for Solving Optimization Problems" Biomimetics 9, no. 1: 8. https://doi.org/10.3390/biomimetics9010008
APA StyleHubálovský, Š., Hubálovská, M., & Matoušová, I. (2024). A New Hybrid Particle Swarm Optimization–Teaching–Learning-Based Optimization for Solving Optimization Problems. Biomimetics, 9(1), 8. https://doi.org/10.3390/biomimetics9010008