Implementation of Chaotic Reverse Slime Mould Algorithm Based on the Dandelion Optimizer
Abstract
:1. Introduction
2. Background
2.1. Slime Mould Algorithm (SMA)
2.1.1. Approaching the Food Stage
2.1.2. Stage of Wrapping Food
2.2. Dandelion Optimizer
2.2.1. Ascending Phase
Situation 1: Sunny Day
Situation 2: Rainy Days
2.2.2. Decline Stage
2.2.3. Landing Phase
3. Methods
3.1. Chaotic Mapping
3.2. Optimization of Location Update Mechanism
3.3. Specular Reflection Learning (SRL)
Algorithm 1. Pseudocode of BDSSMA |
1: Start |
2: Initialize BDSSMA related parameters, such as population size N, maximum number of iterations T, variable dimension Dim, search for upper and lower bounds UB, LB. |
3: Generate Bernoulli map to initialize the population. |
4: While t < T |
5: Calculate the initial fitness and select the best and worst individual. |
6: Update inertia weight W according to Equation (4) |
7: For i = 1 to N |
8: if rand < z |
9: Calculate the population position by Equation (32) |
10: else |
11: if r < |
12: Calculate the population position by Equation (20) |
13: if < r < |
14: Calculate population location by Equation (21) |
15: end if |
16: Generate random reverse solutions by Equation (29) |
17: end for |
18: t = t + 1 |
19: end while |
20: Return the best fitness value and the best individual |
4. Experimental Results and Analysis
4.1. Experimental Environment
4.2. Chaotic Mapping Selection
4.3. Benchmark Function and Comparison Algorithm
4.3.1. Test Function Experiment Results and Analysis
4.3.2. Wilcoxon Rank Sum Test
5. Practical Application Test of the Improved Algorithm
5.1. Introduction to the Principle of Extreme Learning Machine (ELM)
5.2. Algorithm Performance Evaluation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shijie, Z.; Tianran, Z.; Shilin, M.; Miao, C. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Eng. Appl. Artif. Intell. 2022, 114, 105075. [Google Scholar]
- Kennedy, J.; Eberhart, R. Paeticle Swarm Optimization. In Proceedings of the ICNN′95-Internation Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 8, pp. 1942–1948. [Google Scholar]
- Marco, D.; Christian, B. Ant colony optimization theory: A survey. Theor. Comput. Sci. 2005, 344, 243–278. [Google Scholar]
- Seyedali, M.; Andrew, L. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar]
- Afshin, F.; Mohammad, H.; Seyedali, M.; Amir, H.G. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar]
- Benyamin, A.; Farhad, S.G.; Seyedali, M. Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 2021, 36, 5385–6155. [Google Scholar]
- Fatma, A.H.; Abdelazim, G.H. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 2022, 242, 108320. [Google Scholar]
- Mohamed, A.B.; Reda, M.; Mohammed, J.; Mohamed, A. Nutcracker optimizer: A novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems. Knowl.-Based Syst. 2023, 262, 110248. [Google Scholar]
- Scott, K. Optimization by Simulated Annealing: Quantitative studies. Stat. Phys. 1984, 34, 975–986. [Google Scholar]
- Seyedali, M.; Seyes, M.M.; Abdolreza, H. Multi-Verse Optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar]
- Seyadali, M. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar]
- Mohamed, A.B.; Reda, M.; Shaimaa, A.A.; Mohammed, J.; Mohamed, A. Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler’s laws of planetary motion. Knowl.-Based Syst. 2023, 268, 110454. [Google Scholar]
- Booker, L.B.; Goldberg, D.E.; Holland, J.H. Classifier Systems and Genetic Algorithms. Artif. Intell. 1989, 40, 35–282. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Rechenberg, I. Evolutions strategien. Simul. Method En Der Med. Und Biol. 1978, 8, 83–114. [Google Scholar]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-Learning-Based Optimization: An Optimization method for continuous non-linear large scale problems. Inf. Sci. 2012, 183, 303–315. [Google Scholar] [CrossRef]
- Kashan, A.H. League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships. Appl. Soft Comput. 2014, 16, 171–200. [Google Scholar] [CrossRef]
- Lin, L.; Mitsuo, G. Auto-Tuning strategy for evolutionary algorithms: Balancing between exploration and exploitation. Soft Comput. 2009, 13, 157–168. [Google Scholar] [CrossRef]
- Shimin, L.; Huiling, C.; Mingjing, W. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar]
- Kanhua, Y.; Lili, L.; Zhe, C. An Improved Slime Mould Algorithm for Demand Estimation of Urban Water Resources. Mathematics 2021, 9, 13–16. [Google Scholar]
- Manoj, K.N.; Rutuparna, P. Ajith Abraham. Adaptive opposition slime mould algorithm. Soft Comput. 2021, 25, 14297–14313. [Google Scholar]
- Yunyang, Z.; Shiyu, D.; Zhang, Q. Improved Slime Mould Algorithm with Dynamic Quantum Rotation Gate and Opposition-Based Learning for Global Optimization and Engineering Design Problems. Algorithms 2022, 15, 317. [Google Scholar]
- Jiang, Y.; Zhang, D.; Zhu, W.; Wang, L. Multi-Level Thresholding Image Segmentation Based on Improved Slime Mould Algorithm and Symmetric Cross-Entropy. Entropy 2023, 25, 178. [Google Scholar] [CrossRef] [PubMed]
- Jassim, A.; Ali, J.; Mihamamad, G.A. FP-SMA:an adaptive, fluctuant population strategy for slime mould algorithm. Neural Comput. Aoolications 2022, 34, 11163–11175. [Google Scholar]
- Liu, Y.; Heidari, A.A.; Ye, X.; Liang, G.; Chen, H.; He, C. Boosting slime mould algorithm for parameter identification of photovoltaic models. Energy 2021, 234, 121164. [Google Scholar] [CrossRef]
- Qiu, Z.; Miao, H.; Zeng, C. Improved slime mould algorithm based on multi-strategy fusion. J. Comput. Appl. 2022, 5, 812–919. [Google Scholar]
- Mohamed, A.B.; Victor, C.; Reda, M. HSMA WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images. Appl. Soft Comput. J. 2020, 95, 106642. [Google Scholar]
- Houssein, E.H.; Mahdy, M.A.; Blondin, M.J.; Shebl, D.; Mohamed, W.M. Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems. Expert Syst. Appl. 2021, 174, 114689. [Google Scholar] [CrossRef]
- Chen, X.; Huang, H.; Heidari, A.A.; Sun, C.; Lv, Y.; Gui, W.; Liang, G.; Gu, Z.; Chen, H.; Li, C.; et al. An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: A real case with lupus nephritis images. Comput. Biol. Med. 2022, 142, 105179. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yingwen, L.; Mingming, J.; Jiacheng, G. Chaotic Sparrow Search Algorithm with spiral slime mould Algorithm and its application. Comput. Eng. Appl. 2023, 10, 124–133. (In Chinese) [Google Scholar]
- Örnek, B.N.; Aydemir, S.B.; Düzenli, T.; Özak, B. A novel version of slime mould algorithm for global optimization and real-world engineering problems Enhanced slime mould algorithm. Math. Comput. Simul. 2022, 198, 253–288. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Harun, B.; Bilal, A. Chaos based optics inspired optimization algorithms as global solution search approach. Chaos Solitons Fractals 2020, 141, 10434. [Google Scholar]
- Zhang, Y. Backtracking search algorithm with specular reflection learning for global optimization. Knowl.-Based Syst. 2021, 212, 106546. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. Proc. Int. Joint. Conf. Neural. Netw. 2004, 2, 985–990. [Google Scholar]
- Rui, X.; Xun, L.; Jinshan, Q.; Zhiyu, L.; Shusen, Z. Advances anf Trends in Extreme Learning Machine. Chin. J. Comput. 2019, 42, 1640–1670. [Google Scholar]
- Xiaofen, T.; Li, C. A self-adaptive evolutionary weightedd extreme learning machine for binary imbalance learning. Prog. Artif. Intell. 2018, 7, 95–118. [Google Scholar]
- Special Committee on Electrical Mathematics of China Electrical Engineering Society. Title of the 9th “China Electrical Engineering Society Cup” National College Students Electrical Mathematical Contest in Modeling [EB/OL]. 25 April 2016. Available online: http://shumo.nedu.edu.cn (accessed on 10 April 2023).
Variant Name | Chaotic Map Strategy | Range |
---|---|---|
Chebyshev | [−1, 1] | |
Improved Chebyshev | [−1, 1] | |
SPM | (0, 1) | |
Neuron | (0, 1) | |
Bernoulli | (0, 1) | |
Henon | (0, 1) | |
Kent | (0, 1) | |
Fuch | ) | (0, 1) |
Preferred point set | (1, s) |
Variant Name | Ts | Th | R | L | Optimal Cost |
---|---|---|---|---|---|
SMA | 0.8581984 | 0.4254994 | 44.4648 | 149.368 | 6050.9863 |
ChebyshevSMA | 0.8135765 | 0.4025301 | 42.15186 | 175.9837 | 5950.3339 |
Improved ChebyshevSMA | 0.7792018 | 0.38527 | 40.37239 | 199.2677 | 5887.5434 |
SPMSMA | 0.8162131 | 0.4035017 | 42.29017 | 174.2755 | 5953.8328 |
NeuronSMA | 0.8268668 | 0.4087785 | 42.84112 | 167.6462 | 5974.2974 |
BernoulliSMA | 0.7782284 | 0.3850124 | 40.32229 | 199.9883 | 5887.0029 |
HenonSMA | 0.7931507 | 0.3920965 | 41.09537 | 189.479 | 5911.7051 |
KentSMA | 0.8639112 | 0.4273306 | 44.76207 | 146.2083 | 6049.7537 |
FuchSMA | 0.7989452 | 0.3951562 | 41.39605 | 185.5404 | 5922.5633 |
GoodsetSMA | 0.8309936 | 0.4107689 | 43.05643 | 165.1172 | 5981.9675 |
Functions | Dim | Range | |
---|---|---|---|
30 | [−100, 100] | 0 | |
30 | [−10, 10] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−30, 30] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−128, 128] | 0 | |
30 | [−500, 500] | −2094.9145 | |
30 | [−5.12, 5.12] | 0 | |
+20+ | 30 | [−32, 32] | 0 |
30 | [−600, 600] | 0 | |
u | 30 | [−50, 50] | 0 |
30 | [−50, 50] | 0 | |
2 | [−65.536, −65.536] | 1 | |
4 | [−5, 5] | 0.0003 | |
2 | [−5, 5] | −1.0316 | |
2 | [−5, 5] | 0.398 | |
2 | [−2, 2] | 3 | |
3 | [1, 3] | −3.86 | |
6 | [0, 1] | −3.32 | |
4 | [0, 10] | −10.5363 | |
4 | [0, 10] | −10.4028 | |
4 | [0, 10] | −10.5363 |
Algorithms | Parameters |
---|---|
SMA | Z = 0.03, N = 30 |
CEMSA | Z = 0.03, N = 30 |
MPA | FADs = 0.2, P = 0.5 |
DO | α = [0, 1], k = [0, 1], N = 30 |
SCA | a = 2, r1 = r2, r4 = [0, 1] |
SO | N = 30, T = 0.25, T1 = 0.6 C1 = 0.5, C2 = 0.05, C3 = 2 |
Functions | BDSSMA | SMA | CESMA | MPA | DO | SCA | SO | |
---|---|---|---|---|---|---|---|---|
F1 | Avg | |||||||
Std | ||||||||
F2 | Avg | |||||||
Std | ||||||||
F3 | Avg | |||||||
Std | ||||||||
F4 | Avg | |||||||
Std | ||||||||
F5 | Avg | |||||||
Std | ||||||||
F6 | Avg | |||||||
Std | ||||||||
F7 | Avg | |||||||
Std | ||||||||
F8 | Avg | |||||||
Std | ||||||||
F9 | Avg | 17.9632 | ||||||
Std | ||||||||
F10 | Avg | |||||||
Std | ||||||||
F11 | Avg | |||||||
Std | ||||||||
F12 | Avg | |||||||
Std | ||||||||
F13 | Avg | |||||||
Std | ||||||||
F14 | Avg | |||||||
Std | ||||||||
F15 | Avg | |||||||
Std | ||||||||
F16 | Avg | |||||||
Std | ||||||||
F17 | Avg | |||||||
Std | ||||||||
F18 | Avg | |||||||
Std | ||||||||
F19 | Avg | |||||||
Std | ||||||||
F20 | Avg | |||||||
Std | ||||||||
F21 | Avg | |||||||
Std | ||||||||
F22 | Avg | |||||||
Std | ||||||||
F23 | Avg | |||||||
Std |
Functions | SMA | CESMA | MPA | DO | SCA | SO |
---|---|---|---|---|---|---|
F1 | ||||||
F2 | ||||||
F3 | ||||||
F4 | ||||||
F5 | ||||||
F6 | ||||||
F7 | ||||||
F8 | ||||||
F9 | ||||||
F10 | ||||||
F11 | ||||||
F12 | ||||||
F13 | ||||||
F14 | ||||||
F15 | ||||||
F16 | ||||||
F17 | ||||||
F18 | ||||||
F19 | ||||||
F20 | ||||||
F21 | ||||||
F22 | ||||||
F23 | ||||||
+/-/= | 17/0/6 | 16/2/5 | 21/0/2 | 21/2/0 | 23/0/0 | 19/4/0 |
Prediction Model | /KW | /KW | /% |
---|---|---|---|
ELM | 95.701 | 103.875 | 11.4127% |
BDSSMA-ELM | 81.648 | 90.184 | 9.7658% |
SMA-ELM | 90.183 | 96.038 | 10.8011% |
CESMA-ELM | 88.534 | 94.881 | 10.5995% |
MPA-ELM | 91.815 | 99.391 | 10.9917% |
DO-ELM | 92.778 | 98.901 | 11.0731% |
SO-ELM | 91.815 | 99.391 | 10.9917% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, Y.; Zhao, Y.; Wang, X. Implementation of Chaotic Reverse Slime Mould Algorithm Based on the Dandelion Optimizer. Biomimetics 2023, 8, 482. https://doi.org/10.3390/biomimetics8060482
Zhang Y, Liu Y, Zhao Y, Wang X. Implementation of Chaotic Reverse Slime Mould Algorithm Based on the Dandelion Optimizer. Biomimetics. 2023; 8(6):482. https://doi.org/10.3390/biomimetics8060482
Chicago/Turabian StyleZhang, Yi, Yang Liu, Yue Zhao, and Xu Wang. 2023. "Implementation of Chaotic Reverse Slime Mould Algorithm Based on the Dandelion Optimizer" Biomimetics 8, no. 6: 482. https://doi.org/10.3390/biomimetics8060482
APA StyleZhang, Y., Liu, Y., Zhao, Y., & Wang, X. (2023). Implementation of Chaotic Reverse Slime Mould Algorithm Based on the Dandelion Optimizer. Biomimetics, 8(6), 482. https://doi.org/10.3390/biomimetics8060482