Recent Development and Application of “Nanozyme” Artificial Enzymes—A Review
Abstract
:1. Introduction
2. Structure and Properties
3. Classification of Nanozymes
4. Biomedical Applications
4.1. Antioxidant Activity
4.2. Cancer Therapy
4.3. Antibacterial Activity
4.4. Neurodegenerative Disease Therapy
4.5. Injury Therapy
4.6. Biosensor
5. Nanozymes in Biodiversity and Environmental Treatment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tamerler, C.; Sarikaya, M. Molecular Biomimetics: Nanotechnology and Bionanotechnology Using Genetically Engineered Peptides. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1705–1726. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Hunt, J.A. Biomimetic Materials Processing for Tissue-Engineering Processes. J. Mater. Chem. 2007, 17, 3974. [Google Scholar] [CrossRef]
- Huzum, B.; Puha, B.; Necoara, R.M.; Gheorghevici, S.; Puha, G.; Filip, A.; Sirbu, P.D.; Alexa, O. Biocompatibility Assessment of Biomaterials Used in Orthopedic Devices: An Overview (Review). Exp. Ther. Med. 2021, 22, 1315. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhayay, M.; Chatterjee, A. Classification of Foods, Biomaterials, and Microorganisms. In Sterilization and Preservation: Applications of Supercritical Carbon Dioxide; Mukhopadhayay, M., Chatterjee, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 9–42. ISBN 978-3-031-17370-7. [Google Scholar]
- Liu, S.; Yu, J.-M.; Gan, Y.-C.; Qiu, X.-Z.; Gao, Z.-C.; Wang, H.; Chen, S.-X.; Xiong, Y.; Liu, G.-H.; Lin, S.-E.; et al. Biomimetic Natural Biomaterials for Tissue Engineering and Regenerative Medicine: New Biosynthesis Methods, Recent Advances, and Emerging Applications. Mil. Med. Res. 2023, 10, 16. [Google Scholar] [CrossRef]
- Khanna, A.; Zamani, M.; Huang, N.F. Extracellular matrix-based biomaterials for cardiovascular tissue engineering. J. Cardiovasc. Dev. Dis. 2021, 8, 137. [Google Scholar] [CrossRef]
- Xing, H.; Lee, H.; Luo, L.; Kyriakides, T.R. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol. Adv. 2020, 42, 107421. [Google Scholar] [CrossRef]
- Xu, M.; Su, T.; Jin, X.; Li, Y.; Yao, Y.; Liu, K.; He, Y. Inflammation-mediated matrix remodeling of extracellular matrix-mimicking biomaterials in tissue engineering and regenerative medicine. Acta Biomater. 2022, 151, 106–117. [Google Scholar] [CrossRef]
- Tonti, O.R.; Larson, H.; Lipp, S.N.; Luetkemeyer, C.M.; Makam, M.; Vargas, D.; Calve, S. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater. 2021, 132, 83–102. [Google Scholar] [CrossRef]
- Li, H.; Bao, M.; Nie, Y. Extracellular matrix–based biomaterials for cardiac regeneration and repair. Heart Fail. Rev. 2021, 26, 1231–1248. [Google Scholar] [CrossRef]
- Agarwal, T.; Chiesa, I.; Costantini, M.; Lopamarda, A.; Tirelli, M.C.; Borra, O.P.; Varshapally, S.V.S.; Kumar, Y.A.V.; Koteswara Reddy, G.; De Maria, C.; et al. Chitosan and Its Derivatives in 3D/4D (Bio) Printing for Tissue Engineering and Drug Delivery Applications. Int. J. Biol. Macromol. 2023, 246, 125669. [Google Scholar] [CrossRef]
- Prasathkumar, M.; Sadhasivam, S. Chitosan/Hyaluronic Acid/Alginate and an Assorted Polymers Loaded with Honey, Plant, and Marine Compounds for Progressive Wound Healing—Know-How. Int. J. Biol. Macromol. 2021, 186, 656–685. [Google Scholar] [CrossRef] [PubMed]
- Mamidi, N.; García, R.G.; Martínez, J.D.H.; Briones, C.M.; Martínez Ramos, A.M.; Tamez, M.F.L.; Del Valle, B.G.; Segura, F.J.M. Recent Advances in Designing Fibrous Biomaterials for the Domain of Biomedical, Clinical, and Environmental Applications. ACS Biomater. Sci. Eng. 2022, 8, 3690–3716. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Su, G.; Wu, J.; Song, C.; Lu, Z.; Wu, C.; Wang, Y.; Wang, P.; He, M.; Zhao, Y.; et al. Co3O4/CoFe2O4 Hollow Nanocube Multifunctional Nanozyme with Oxygen Vacancies for Deep-Learning-Assisted Smartphone Biosensing and Organic Pollutant Degradation. ACS Appl. Mater. Interfaces 2023, 15, 11787–11801. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Gao, L. Nanozymology: An Overview. In Nanozymology: Connecting Biology and Nanotechnology; Yan, X., Ed.; Nanostructure Science and Technology; Springer: Singapore, 2020; pp. 3–16. ISBN 9789811514906. [Google Scholar]
- Wang, M.; Zhu, P.; Liu, S.; Chen, Y.; Liang, D.; Liu, Y.; Chen, W.; Du, L.; Wu, C. Application of Nanozymes in Environmental Monitoring, Management, and Protection. Biosensors 2023, 13, 314. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Roy, P.; Karmodak, N.; Jemmis, E.D.; Mugesh, G. Nanoisozymes: Crystal-Facet-Dependent Enzyme-Mimetic Activity of V2O5 Nanomaterials. Angew. Chem. Int. Ed. 2018, 57, 4510–4515. [Google Scholar] [CrossRef]
- Gugleva, V.; Ivanova, N.; Sotirova, Y.; Andonova, V. Dermal Drug Delivery of Phytochemicals with Phenolic Structure via Lipid-Based Nanotechnologies. Pharmaceuticals 2021, 14, 837. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, H.; Fan, K. Structure-Activity Mechanism of Iron Oxide Nanozymes. In ACS Symposium Series; Wang, X., Ed.; American Chemical Society: Washington, DC, USA, 2022; Volume 1422, pp. 1–35. ISBN 978-0-8412-9751-7. [Google Scholar]
- Liu, Q.; Zhang, A.; Wang, R.; Zhang, Q.; Cui, D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. Nano-Micro Lett. 2021, 13, 154. [Google Scholar] [CrossRef]
- He, W.; Zhou, Y.-T.; Wamer, W.G.; Boudreau, M.D.; Yin, J.-J. Mechanisms of the PH Dependent Generation of Hydroxyl Radicals and Oxygen Induced by Ag Nanoparticles. Biomaterials 2012, 33, 7547–7555. [Google Scholar] [CrossRef]
- Filippova, A.D.; Sozarukova, M.M.; Baranchikov, A.E.; Kottsov, S.Y.; Cherednichenko, K.A.; Ivanov, V.K. Peroxidase-like Activity of CeO2 Nanozymes: Particle Size and Chemical Environment Matter. Molecules 2023, 28, 3811. [Google Scholar] [CrossRef]
- Hu, W.; Younis, M.; Zhou, Y.; Xia, X.-H. In Situ Fabrication of Ultrasmall Gold Nanoparticles/2D MOFs Hybrid as Nanozyme for Antibacterial Therapy. Small 2020, 16, 2000553. [Google Scholar] [CrossRef]
- Jiang, D.; Ni, D.; Rosenkrans, Z.T.; Huang, P.; Yan, X.; Cai, W. Nanozyme: New Horizons for Responsive Biomedical Applications. Chem. Soc. Rev. 2019, 48, 3683–3704. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yu, D.; Qiu, Y.; Chu, L.; Lin, Y. The Role of Nanomaterials in Modulating the Structure and Function of Biomimetic Catalysts. Front. Chem. 2020, 8, 764. [Google Scholar] [CrossRef] [PubMed]
- Songca, S.P. Applications of Nanozymology in the Detection and Identification of Viral, Bacterial and Fungal Pathogens. Int. J. Mol. Sci. 2022, 23, 4638. [Google Scholar] [CrossRef] [PubMed]
- Talebi, M.; Dashtian, K.; Zare-Dorabei, R.; Ghafuri, H.; Mahdavi, M.; Amourizi, F. Photo-Responsive Oxidase-like Nanozyme Based on a Vanadium-Docked Porphyrinic Covalent Organic Framework for Colorimetric L-Arginine Sensing. Anal. Chim. Acta 2023, 1247, 340924. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Zhu, H.; Feng, L.; Zhu, Y.; Liu, B.; Yu, C.; Gai, S.; Yang, P. 2D Piezoelectric BiVO4 Artificial Nanozyme with Adjustable Vanadium Vacancy for Ultrasound Enhanced Piezoelectric/Sonodynamic Therapy. Small 2023, 19, 2301349. [Google Scholar] [CrossRef]
- Sun, X.; He, X.; Zhu, Y.; Obeng, E.; Zeng, B.; Deng, H.; Shen, J.; Hu, R. Valence-Switchable and Biocatalytic Vanadium-Based MXene Nanoplatform with Photothermal-Enhanced Dual Enzyme-like Activities for Anti-Infective Therapy. Chem. Eng. J. 2023, 451, 138985. [Google Scholar] [CrossRef]
- Biswas, R.; Ghosh, D.; Dasgupta, S.; Bhaduri, S.N.; Banerjee, R.; Datta, P.; Biswas, P. Vanadium-Incorporated Mesoporous Silica as Oxidase Mimic for Colorimetric Dopamine Detection and Anticancer Activity. ChemistrySelect 2023, 8, e202204989. [Google Scholar] [CrossRef]
- Sharifnezhad, A.H.; Dashtian, K.; Amourizi, F.; Zare-Dorabei, R. Development of Peptide Impregnated V/Fe Bimetal Prussian Blue Analogue as Robust Nanozyme for Colorimetric Fish Freshness Assessment. Anal. Chim. Acta 2023, 1237, 340555. [Google Scholar] [CrossRef]
- Li, H.; Zhao, S.; Wang, Z.; Li, F. Controllable Preparation of 2D V2O5 Peroxidase-Mimetic Nanozyme to Develop Portable Paper-Based Analytical Device for Intelligent Pesticide Assay. Small 2023, 19, 2206465. [Google Scholar] [CrossRef]
- Zou, L.; Li, X.; Huang, Y.; Wang, C.; Fang, Y.; Zhao, J.; Jin, Q.; Ji, J. Raspberry-like Gold Nanozyme-Hybrid Liposomes for Hypoxia-Enhanced Biofilm Eradication. Nano Today 2023, 50, 101828. [Google Scholar] [CrossRef]
- Garehbaghi, S.; Ashrafi, A.M.; Adam, V.; Richtera, L. Surface Modification Strategies and the Functional Mechanisms of Gold Nanozyme in Biosensing and Bioassay. Mater. Today Bio 2023, 20, 100656. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhou, R.; Wu, K.; Zhu, G. Colorimetric Method Transforms into Highly Sensitive Homogeneous Voltammetric Sensing Strategy for Mercury Ion Based on Mercury-Stimulated Ti3C2Tx MXene Nanoribbons@gold Nanozyme Activity. Anal. Chim. Acta 2023, 1250, 340975. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xiang, J.; Su, W.; Guo, J.; Deng, J.; Tang, L.; Li, G.; Liang, Y.; Zheng, L.; He, M.; et al. Modulating Pt Nanozyme by Using Isolated Cobalt Atoms to Enhance Catalytic Activity for Alleviating Osteoarthritis. Nano Today 2023, 49, 101809. [Google Scholar] [CrossRef]
- Gao, P.; Wei, R.; Chen, Y.; Li, X.; Pan, W.; Li, N.; Tang, B. Pt Nanozyme-Bridged Covalent Organic Framework-Aptamer Nanoplatform for Tumor Targeted Self-Strengthening Photocatalytic Therapy. Biomaterials 2023, 297, 122109. [Google Scholar] [CrossRef]
- Lee, H.B.; Son, S.E.; Gupta, P.K.; Venkatesan, J.; Hur, W.; Park, J.; Nyeon Kim, S.; Hun Seong, G. Mesoporous Platinum Nanozyme-Based Competitive Immunoassay for Sensitive Detection of 25-Hydroxyvitamin D. Mater. Lett. 2023, 330, 133286. [Google Scholar] [CrossRef]
- Zhu, D.; Wu, H.; Jiang, K.; Xu, Y.; Miao, Z.; Wang, H.; Ma, Y. Zero-Valence Selenium-Enriched Prussian Blue Nanozymes Reconstruct Intestinal Barrier against Inflammatory Bowel Disease via Inhibiting Ferroptosis and T Cells Differentiation. Adv. Healthc. Mater. 2023, 12, 2203160. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, A.; Xu, Z.; Tian, R.; Hou, C.; Luo, Q.; Sun, H.; Xu, J.; Yu, S.; Wang, T.; et al. Engineering Biomimetic ATP-Responsive Se-Containing Core-Shell Cascade Nanozyme for Efficient Tumor Combination Therapy. Chem. Eng. J. 2023, 454, 140165. [Google Scholar] [CrossRef]
- Li, W.; Bei, Y.; Pan, X.; Zhu, J.; Zhang, Z.; Zhang, T.; Liu, J.; Wu, D.; Li, M.; Wu, Y.; et al. Selenide-Linked Polydopamine-Reinforced Hybrid Hydrogels with on-Demand Degradation and Light-Triggered Nanozyme Release for Diabetic Wound Healing. Biomater. Res. 2023, 27, 49. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Tan, W.; Jin, P.; Zhang, P.; Li, K. Bioinspired Coassembly of Copper Ions and Nicotinamide Adenine Dinucleotides for Single-Site Nanozyme with Dual Catalytic Functions. Anal. Chem. 2023, 95, 2865–2873. [Google Scholar] [CrossRef]
- Luo, B.; Cai, J.; Xiong, Y.; Ding, X.; Li, X.; Li, S.; Xu, C.; Vasil’kov, A.Y.; Bai, Y.; Wang, X. Quaternized Chitosan Coated Copper Sulfide Nanozyme with Peroxidase-like Activity for Synergistic Antibacteria and Promoting Infected Wound Healing. Int. J. Biol. Macromol. 2023, 246, 125651. [Google Scholar] [CrossRef]
- Yang, D.; Huo, J.; Zhang, Z.; An, Z.; Dong, H.; Wang, Y.; Duan, W.; Chen, L.; He, M.; Gao, S.; et al. Citric Acid Modified Ultrasmall Copper Peroxide Nanozyme for in Situ Remediation of Environmental Sulfonylurea Herbicide Contamination. J. Hazard. Mater. 2023, 443, 130265. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.; Zeng, W.; Liu, J.; Zhang, L.; Cao, Y.; Li, P.; Ran, H.; Wang, Z. Engineered Biomimetic Copper Sulfide Nanozyme Mediates “Don’t Eat Me” Signaling for Photothermal and Chemodynamic Precision Therapies of Breast Cancer. ACS Appl. Mater. Interfaces 2023, 15, 24071–24083. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Lee, H.B.; Son, S.E.; Gupta, P.K.; Park, Y.; Hur, W.; Seong, G.H. Determination of Lysophosphatidylcholine Using Peroxidase-Mimic PVP/PtRu Nanozyme. Anal. Bioanal. Chem. 2023, 415, 1865–1876. [Google Scholar] [CrossRef]
- Chen, S.; LI, Q.; Cheng, C.; Su, B. #5050 Antioxidant porphyrin-based nanozyme with single ruthenium for treatment of acute kidney injury. Nephrol. Dial. Transplant. 2023, 38, gfad063c_5050. [Google Scholar] [CrossRef]
- Singh, A.K.; Bijalwan, K.; Kaushal, N.; Kumari, A.; Saha, A.; Indra, A. Oxidase-like Nanozyme Activity of Manganese Metal–Organic Framework Nanosheets for Colorimetric and Fluorescence Sensing of l-Cysteine. ACS Appl. Nano Mater. 2023, 6, 8036–8045. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Xiaohalati, X.; Su, Q.; Liu, J.; Cai, B.; Yang, W.; Wang, Z.; Wang, L. A Bioinspired Manganese-Organic Framework Ameliorates Ischemic Stroke through Its Intrinsic Nanozyme Activity and Upregulating Endogenous Antioxidant Enzymes. Adv. Sci. 2023, 10, 2206854. [Google Scholar] [CrossRef]
- Wang, Y.; Cho, A.; Jia, G.; Cui, X.; Shin, J.; Nam, I.; Noh, K.-J.; Park, B.J.; Huang, R.; Han, J.W. Tuning Local Coordination Environments of Manganese Single-Atom Nanozymes with Multi-Enzyme Properties for Selective Colorimetric Biosensing. Angew. Chem. 2023, 135, e202300119. [Google Scholar] [CrossRef]
- Sisakhtnezhad, S.; Rahimi, M.; Mohammadi, S. Biomedical Applications of MnO2 Nanomaterials as Nanozyme-Based Theranostics. Biomed. Pharmacother. 2023, 163, 114833. [Google Scholar] [CrossRef]
- Sun, Y.; Jing, X.; Xu, B.; Liu, H.; Chen, M.; Wu, Q.; Huang, Z.; Zheng, L.; Bi, X.; Nie, Y.; et al. A Single-Atom Iron Nanozyme Reactor for α-Ketoglutarate Synthesis. Chem. Eng. J. 2023, 466, 143269. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Lee, D.H.; Nguyen, P.T.; Le, P.G.; Kim, M.I. Foldable Paper Microfluidic Device Based on Single Iron Site-Containing Hydrogel Nanozyme for Efficient Glucose Biosensing. Chem. Eng. J. 2023, 454, 140541. [Google Scholar] [CrossRef]
- Tanvir, F.; Sardar, N.; Yaqub, A.; Ditta, S.A. Synthesis of Iron Oxide Nanoparticles, Characterization, Uses as Nanozyme and Future Prospects. Bioinspired Biomim. Nanobiomater. 2022, 11, 156–167. [Google Scholar] [CrossRef]
- Zhu, Q.; Huang, Y.; Zhu, X.; Peng, L.; Wang, H.; Gao, S.; Yang, Z.; Zhang, J.; Liu, X. Mannose-Coated Superparamagnetic Iron Oxide Nanozyme for Preventing Postoperative Cognitive Dysfunction. Mater. Today Bio 2023, 19, 100568. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Neal, C.J.; Sakthivel, T.S.; Fu, Y.; Omer, M.; Adhikary, A.; Ward, S.; Ta, K.M.; Moxon, S.; Molinari, M.; et al. A Novel Approach for the Prevention of Ionizing Radiation-Induced Bone Loss Using a Designer Multifunctional Cerium Oxide Nanozyme. Bioact. Mater. 2023, 21, 547–565. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Cheng, K.; Yang, M.; Deng, Z.; Ma, Y.; Yan, X.; Zhang, Y.; Jia, Z.; Wang, J.; Tu, K.; et al. Orally Administration of Cerium Oxide Nanozyme for Computed Tomography Imaging and Anti-Inflammatory/Anti-Fibrotic Therapy of Inflammatory Bowel Disease. J. Nanobiotechnol. 2023, 21, 21. [Google Scholar] [CrossRef]
- Murugan, C.; Park, S. Cerium Ferrite @ Molybdenum Disulfide Nanozyme for Intracellular ROS Generation and Photothermal-Based Cancer Therapy. J. Photochem. Photobiol. A Chem. 2023, 437, 114466. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, X.; Yang, T.; Li, Y.; Liu, X.; Zhang, P.; Feng, B.; Qing, T. Transition Metal-Doped Germanium Oxide Nanozyme with Enhanced Enzyme-like Activity for Rapid Detection of Pesticide Residues in Water Samples. Anal. Chim. Acta 2023, 1245, 340861. [Google Scholar] [CrossRef]
- Zhao, Q.; Zheng, L.; Gao, Y.; Li, J.; Wei, J.; Zhang, M.; Sun, J.; Ouyang, J.; Na, N. Dual Active Centers Linked by a Reversible Electron Station as a Multifunctional Nanozyme to Induce Synergetically Enhanced Cascade Catalysis for Tumor-Specific Therapy. J. Am. Chem. Soc. 2023, 145, 12586–12600. [Google Scholar] [CrossRef]
- Yuan, J.; Duan, H.; Wang, L.; Wang, S.; Li, Y.; Lin, J. A Three-in-One Hybrid Nanozyme for Sensitive Colorimetric Biosensing of Pathogens. Food Chem. 2023, 408, 135212. [Google Scholar] [CrossRef]
- Du, W.; Chen, W.; Wang, J.; Zhang, H.; Song, L.; Hu, Y.; Ma, X. A Dual-Nanozyme-Loaded Black Phosphorus Multifunctional Therapeutic Platform for Combined Photothermal/Photodynamic/Starvation Cancer Therapy. J. Mater. Chem. B 2023, 11, 5185–5194. [Google Scholar] [CrossRef]
- Xue, Y.; Zhong, H.; Liu, B.; Qin, S.; Chen, Z.; Li, K.; Zheng, L.; Zuo, X. Colorimetric Identification of Multiple Terpenoids Based on Bimetallic FeCu/NPCs Nanozymes. Anal. Biochem. 2023, 672, 115160. [Google Scholar] [CrossRef]
- Fu, S.; Li, C.; Yang, W.; Chen, H.; Wang, Y.; Zhu, Y.; Zhu, J.; Zhang, B.; Xia, X.; Zheng, J.C. Insulin-incubated Palladium Clusters Alleviate Alzheimer’s Disease-like Phenotypes in a Preclinical Mouse Model. MedComm 2023, 4, e272. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ding, X.; Li, L.; Li, Q.; Li, Z.; Lin, H. Tri-Element Nanozyme PtCuSe as an Ingenious Cascade Catalytic Machine for the Amelioration of Parkinson’s Disease-like Symptoms. Front. Bioeng. Biotechnol. 2023, 11, 1208693. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, P.; Zhu, Y.; Qian, J.; Huang, X.; Zhang, W.; Zhang, H.; Mo, Q.; Lu, Y.; Zhang, Y. 2D Cobalt Oxyhydroxide Nanozymes Inhibit Inflammation by Targeting the NLRP3 Inflammasome. Adv. Funct. Mater. 2023, 33, 2214693. [Google Scholar] [CrossRef]
- Liu, C.; Fan, W.; Cheng, W.-X.; Gu, Y.; Chen, Y.; Zhou, W.; Yu, X.-F.; Chen, M.; Zhu, M.; Fan, K.; et al. Red Emissive Carbon Dot Superoxide Dismutase Nanozyme for Bioimaging and Ameliorating Acute Lung Injury. Adv. Funct. Mater. 2023, 33, 2213856. [Google Scholar] [CrossRef]
- Li, S.; Shang, L.; Xu, B.; Wang, S.; Gu, K.; Wu, Q.; Sun, Y.; Zhang, Q.; Yang, H.; Zhang, F.; et al. A Nanozyme with Photo-Enhanced Dual Enzyme-Like Activities for Deep Pancreatic Cancer Therapy. Angew. Chem. 2019, 131, 12754–12761. [Google Scholar] [CrossRef]
- Shen, J.; Rees, T.W.; Zhou, Z.; Yang, S.; Ji, L.; Chao, H. A Mitochondria-Targeting Magnetothermogenic Nanozyme for Magnet-Induced Synergistic Cancer Therapy. Biomaterials 2020, 251, 120079. [Google Scholar] [CrossRef]
- Duan, F.; Jia, Q.; Liang, G.; Wang, M.; Zhu, L.; McHugh, K.J.; Jing, L.; Du, M.; Zhang, Z. Schottky Junction Nanozyme Based on Mn-Bridged Co-Phthalocyanines and Ti3C2Tx Nanosheets Boosts Integrative Type I and II Photosensitization for Multimodal Cancer Therapy. ACS Nano 2023, 17, 11290–11308. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.; Xu, G.; Zhang, Z.; Wang, W.; Zhang, C.; Zhao, M.; Qu, Y.; Li, W.; Ji, M.; Liu, Y.; et al. Coupling Doping and Localized Surface Plasmon Resonance toward Acidic PH-Preferential Catalase-like Nanozyme for Oxygen-Dominated Synergistic Cancer Therapy. Chem. Eng. J. 2023, 465, 142961. [Google Scholar] [CrossRef]
- Shi, S.; Jiang, Y.; Yu, Y.; Liang, M.; Bai, Q.; Wang, L.; Yang, D.; Sui, N.; Zhu, Z. Piezo-Augmented and Photocatalytic Nanozyme Integrated Microneedles for Antibacterial and Anti-Inflammatory Combination Therapy. Adv. Funct. Mater. 2023, 33, 2210850. [Google Scholar] [CrossRef]
- Song, N.; Yu, Y.; Zhang, Y.; Wang, Z.; Guo, Z.; Zhang, J.; Zhang, C.; Liang, M. Bioinspired Hierarchical Self-Assembled Nanozyme for Efficient Antibacterial Treatment. Adv. Mater. 2023, 2210455. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Wang, Q.; Dong, W.; Liu, Y.; Hu, Q.; Song, X.; Shuang, S.; Dong, C.; Gong, X. Metal-Free Nitrogen-Doped Carbon Nanodots as an Artificial Nanozyme for Enhanced Antibacterial Activity. J. Clean. Prod. 2023, 411, 137337. [Google Scholar] [CrossRef]
- Kurup, C.P.; Ahmed, M.U. Nanozymes towards Personalized Diagnostics: A Recent Progress in Biosensing. Biosensors 2023, 13, 461. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour-Haratbar, A.; Boraei, S.B.A.; Zare, Y.; Rhee, K.Y.; Park, S.-J. Graphene-Based Electrochemical Biosensors for Breast Cancer Detection. Biosensors 2023, 13, 80. [Google Scholar] [CrossRef] [PubMed]
- Curulli, A. Functional Nanomaterials Enhancing Electrochemical Biosensors as Smart Tools for Detecting Infectious Viral Diseases. Molecules 2023, 28, 3777. [Google Scholar] [CrossRef]
- Zolti, O.; Suganthan, B.; Ramasamy, R.P. Lab-on-a-Chip Electrochemical Biosensors for Foodborne Pathogen Detection: A Review of Common Standards and Recent Progress. Biosensors 2023, 13, 215. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, H.; Yuan, M.; Yu, J.; Wang, Z.; Chen, X. One-Step Laser Synthesis Platinum Nanostructured 3D Porous Graphene: A Flexible Dual-Functional Electrochemical Biosensor for Glucose and PH Detection in Human Perspiration. Talanta 2023, 257, 124362. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Y.; Tan, Y.; Liu, X.; Fu, L.; Qing, W. Ag-Fe3O4 Nanozyme with Peroxidase-like Activity for Colorimetric Detection of Sulfide Ions and Dye Degradation. J. Environ. Chem. Eng. 2023, 11, 109150. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Guan, J. Single-Atom Nanozyme-Based Electrochemical Sensors for Health and Food Safety Monitoring. Food Chem. 2023, 425, 136518. [Google Scholar] [CrossRef]
- Singh, R.; Umapathi, A.; Patel, G.; Patra, C.; Malik, U.; Bhargava, S.K.; Daima, H.K. Nanozyme-Based Pollutant Sensing and Environmental Treatment: Trends, Challenges, and Perspectives. Sci. Total Environ. 2023, 854, 158771. [Google Scholar] [CrossRef]
- Yang, T.; Liu, X.; Zeng, Z.; Wang, X.; Zhang, P.; Feng, B.; Tian, K.; Qing, T. Efficient and Recyclable Degradation of Organic Dye Pollutants by CeO2 @ZIF-8 Nanozyme-Based Non-Photocatalytic System. Environ. Pollut. 2023, 316, 120643. [Google Scholar] [CrossRef]
- Wang, J.; Huang, R.; Qi, W.; Su, R.; Binks, B.P.; He, Z. Construction of a Bioinspired Laccase-Mimicking Nanozyme for the Degradation and Detection of Phenolic Pollutants. Appl. Catal. B Environ. 2019, 254, 452–462. [Google Scholar] [CrossRef]
Metal/Compound— Nanomaterial | Biomimetic Enzyme Activity | Biomedical Application | Reference |
---|---|---|---|
Vanadium (V)
| Photo-responsive oxidase, glutathione peroxidase, catalase, superoxide dismutase, hydroperoxide lyase, POD |
| [27,28,29,30,31,32] |
Gold (Au)
| Glutathione peroxidase, catalase, phosphatase, superoxide dismutase, POD, helicase |
| [33,34,35,36] |
Platinum (Pt)
| Glutathione peroxidase, catalase, polyphenol oxidase (PPO), superoxide dismutase, lipogenesis, POD |
| [37,38,39,40] |
Selenium (Se)
| Glutathione peroxidase, catalase/POD/superoxide dismutase/OXD |
| [41,42,43] |
Copper (Cu)
| Glutathione peroxidase, catalase, superoxide dismutase, POD |
| [44,45,46] |
Ruthenium (Ru)
| Glutathione peroxidase, catalase, superoxide dismutase, POD, photo-responsive oxidoreductase |
| [47,48] |
Manganese (Mn)
| Glutathione peroxidase, catalase, superoxide dismutase, POD, oxidase |
| [49,50,51,52] |
Iron (Fe)
| Oxygen reduction reaction (ORR), glutathione peroxidase, POD, catalase, superoxide dismutase |
| [53,54,55,56] |
Cerium (Ce)
| Glutathione peroxidase, catalase, superoxide dismutase, POD |
| [57,58,59] |
Palladium (Pd)
| Catalase, super oxide dismutase, POD, Oxidase |
| [60,61,62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeyachandran, S.; Srinivasan, R.; Ramesh, T.; Parivallal, A.; Lee, J.; Sathiyamoorthi, E. Recent Development and Application of “Nanozyme” Artificial Enzymes—A Review. Biomimetics 2023, 8, 446. https://doi.org/10.3390/biomimetics8050446
Jeyachandran S, Srinivasan R, Ramesh T, Parivallal A, Lee J, Sathiyamoorthi E. Recent Development and Application of “Nanozyme” Artificial Enzymes—A Review. Biomimetics. 2023; 8(5):446. https://doi.org/10.3390/biomimetics8050446
Chicago/Turabian StyleJeyachandran, Sivakamavalli, Ramachandran Srinivasan, Thiyagarajan Ramesh, Arumugam Parivallal, Jintae Lee, and Ezhaveni Sathiyamoorthi. 2023. "Recent Development and Application of “Nanozyme” Artificial Enzymes—A Review" Biomimetics 8, no. 5: 446. https://doi.org/10.3390/biomimetics8050446
APA StyleJeyachandran, S., Srinivasan, R., Ramesh, T., Parivallal, A., Lee, J., & Sathiyamoorthi, E. (2023). Recent Development and Application of “Nanozyme” Artificial Enzymes—A Review. Biomimetics, 8(5), 446. https://doi.org/10.3390/biomimetics8050446