Multi-Agent Variational Approach for Robotics: A Bio-Inspired Perspective
Abstract
:1. Introduction
1.1. Motivating Problem for the Paper
1.2. Research Contributions
- Hybrid Methodology: We present a hybrid methodology that combines deterministic and swarm-based approaches, harnessing the benefits of each.
- Adaptability: Because of the incorporation of swarm-based methodologies, which demonstrate emergent behavior and decentralized decision-making, our technology is deemed versatile. This versatility allows the robots to adjust to changes in the environment and deal with unexpected impediments or interruptions.
- Robustness: The combination of deterministic and swarm-based approaches improves our approach’s overall robustness, allowing it to effectively navigate through complicated obstacle configurations.
- Exploration Efficiency: By integrating established exploration patterns from deterministic methods with real-time changes and optimization possibilities afforded by swarm-based approaches, we optimize exploration efficiency.
2. Related Studies
Limitations
- Limited Robustness: The behavior of the robots is frequently governed by specified rules and algorithms in deterministic approaches. This method’s capacity to deal with unforeseen circumstances or dynamic changes in the environment may be constrained in an environment that is dense with obstacles. The method might find it difficult to adjust to unforeseen impediments or disturbances, which can result in less-than-ideal or ineffective exploration.
- Lack of Scalability: Deterministic approaches are usually developed for a fixed number of robots and a fixed number of obstacles. It can be difficult to scale up the system or accommodate varying obstacle densities. As the number of robots and obstacles rises, the deterministic nature of these algorithms may result in greater processing complexity and communication overhead.
- Exploration Efficiency: Deterministic approaches frequently rely on specified exploration patterns or robot trajectories. While these patterns may be successful in some situations, they may not be optimized for obstacle avoidance or efficient environment covering. The inability to adjust and make real-time decisions may impede overall exploration efficiency.
- Lack of Determinism: Swarm-based approaches frequently demonstrate emergent behavior that cannot be controlled explicitly. While adaptability might be beneficial, it can also pose difficulties in assuring deterministic and predictable behavior, particularly in complicated, obstacle-cluttered settings. Due to the lack of determinism, it can be difficult to ensure collision-free exploration or adherence to established mission objectives.
- Communication Overhead: To achieve collective decision-making and work distribution, swarm-based approaches often necessitate substantial communication and coordination among the robots. In obstacle-cluttered environments where communication links can be broken or limited, relying on communication can impair overall system performance and scalability.
- Exploration Completeness: Due to their reliance on local interactions and limited sensing capabilities, swarm-based approaches may fail to achieve thorough exploration of the environment. Certain environmental areas or regions may go unexplored or underexplored, resulting in insufficient mapping or data collection.
3. Conceptualization of Parameterized Aquila Optimizer
Aquila Optimizer
- means the positions of all Aquilas.
- T is the value of the maximum iteration, t is the the current iteration,
- rand(x) are random numbers from 0 to 1, and n is t the population of Aquilas.
4. Integrated MAE-Parameterized Aquila Optimizer
4.1. Multi-Agent Exploration
Utility Value
4.2. Parametrized Adaptable Aquila Optimizer
4.3. Integrated MAE-Parametrized Adaptable Aquila Optimizer
Algorithm 1 Hybridized MAE-Parametrized Aquila Optimizer |
|
5. Discussion of Simulation Results
6. MAE-PAO Algorithm Compared to the Latest CME-AO and Whale Algorithms
6.1. Summarized Results
6.2. Statistics-Based Performance Evaluation
6.3. CME-AO Test on Additional Map
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, R.; Zhao, Y.; Li, Z.; Zhu, S.; Liang, Z.; Gao, Y. Hierarchical multi-agent planning for flexible assembly of large-scale lunar facilities. Adv. Eng. Inform. 2023, 55, 101861. [Google Scholar] [CrossRef]
- Dahiya, A.; Aroyo, A.M.; Dautenhahn, K.; Smith, S.L. A survey of multi-agent Human–Robot Interaction systems. Robot. Auton. Syst. 2023, 161, 104335. [Google Scholar] [CrossRef]
- Din, A.F.U.; Akhtar, S.; Maqsood, A.; Habib, M.; Mir, I. Modified model free dynamic programming: An augmented approach for unmanned aerial vehicle. Appl. Intell. 2022, 53, 3048–3068. [Google Scholar] [CrossRef]
- Din, A.F.U.; Mir, I.; Gul, F.; Nasar, A.; Rustom, M.; Abualigah, L. Reinforced Learning-Based Robust Control Design for Unmanned Aerial Vehicle. Arab. J. Sci. Eng. 2022, 48, 1221–1236. [Google Scholar] [CrossRef]
- Mir, I.; Gul, F.; Mir, S.; Khan, M.A.; Saeed, N.; Abualigah, L.; Abuhaija, B.; Gandomi, A.H. A Survey of Trajectory Planning Techniques for Autonomous Systems. Electronics 2022, 11, 2801. [Google Scholar] [CrossRef]
- Gul, F.; Mir, I.; Mir, S. Efficient Environment Exploration for Multi Agents: A Novel Framework. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 1088. [Google Scholar]
- Din, A.F.; Mir, I.; Gul, F.; Mir, S. Non-linear Intelligent Control Design for Unconventional Unmanned Aerial Vehicle. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 1071. [Google Scholar]
- Din, A.F.; Mir, I.; Gul, F.; Akhtar, S.; Mir, S. Development of Intelligent Control Strategy for an Unconventional UAV: A Novel Approach. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 1074. [Google Scholar]
- Gul, F.; Mir, I.; Mir, S. Reinforced Whale Optimizer for Ground Robotics: A Hybrid Framework. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 1601. [Google Scholar]
- Fatima, K.; Abbas, S.M.; Mir, I.; Gul, F. Data Based Dynamic Modeling and Model Prediction of Unmanned Aerial Vehicle: A Parametric Sweep of Input Conditions. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 1682. [Google Scholar]
- Abbas, A.; Mir, I.; Abbas, S.M.; Gul, F. Design, Performance-Based Optimization (PBO), and Actual Development of Unmanned High-Speed Aerial Vehicle. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 1626. [Google Scholar]
- Fatima, S.K.; Abbas, S.M.; Mir, I.; Gul, F.; Forestiero, A. Flight Dynamics Modeling with Multi-Model Estimation Techniques: A Consolidated Framework. J. Electr. Eng. Technol. 2023, 18, 2371–2381. [Google Scholar] [CrossRef]
- Fatima, S.K.; Abbas, M.; Mir, I.; Gul, F.; Mir, S.; Saeed, N.; Alotaibi, A.A.; Althobaiti, T.; Abualigah, L. Data Driven Model Estimation for Aerial Vehicles: A Perspective Analysis. Processes 2022, 10, 1236. [Google Scholar] [CrossRef]
- Mir, I.; Eisa, S.; Taha, H.E.; Gul, F. On the Stability of Dynamic Soaring: Floquet-based Investigation. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 0882. [Google Scholar]
- Mir, I.; Eisa, S.; Maqsood, A.; Gul, F. Contraction Analysis of Dynamic Soaring. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 0881. [Google Scholar]
- Mir, I.; Taha, H.; Eisa, S.A.; Maqsood, A. A controllability perspective of dynamic soaring. Nonlinear Dyn. 2018, 94, 2347–2362. [Google Scholar] [CrossRef]
- Mir, I.; Maqsood, A.; Eisa, S.A.; Taha, H.; Akhtar, S. Optimal morphing–augmented dynamic soaring maneuvers for unmanned air vehicle capable of span and sweep morphologies. Aerosp. Sci. Technol. 2018, 79, 17–36. [Google Scholar] [CrossRef]
- Mir, I.; Maqsood, A.; Akhtar, S. Optimization of dynamic soaring maneuvers to enhance endurance of a versatile UAV. IOP Conf. Ser. Mater. Sci. Eng. 2017, 211, 012010. [Google Scholar] [CrossRef]
- Mir, I.; Akhtar, S.; Eisa, S.; Maqsood, A. Guidance and control of standoff air-to-surface carrier vehicle. Aeronaut. J. 2019, 123, 283–309. [Google Scholar] [CrossRef]
- Mir, I.; Maqsood, A.; Taha, H.E.; Eisa, S.A. Soaring Energetics for a Nature Inspired Unmanned Aerial Vehicle. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 1622. [Google Scholar]
- Mir, I.; Eisa, S.A.; Maqsood, A. Review of dynamic soaring: Technical aspects, nonlinear modeling perspectives and future directions. Nonlinear Dyn. 2018, 94, 3117–3144. [Google Scholar] [CrossRef]
- Mir, I.; Maqsood, A.; Akhtar, S. Biologically inspired dynamic soaring maneuvers for an unmanned air vehicle capable of sweep morphing. Int. J. Aeronaut. Space Sci. 2018, 19, 1006–1016. [Google Scholar] [CrossRef]
- Mir, I.; Maqsood, A.; Akhtar, S. Dynamic modeling & stability analysis of a generic UAV in glide phase. In Proceedings of the MATEC Web of Conferences, Beijing, China, 14 May 2017; EDP Sciences: Les Ulis, France, 2017; Volume 114, p. 01007. [Google Scholar]
- Mir, I.; Eisa, S.A.; Taha, H.; Maqsood, A.; Akhtar, S.; Islam, T.U. A stability perspective of bioinspired unmanned aerial vehicles performing optimal dynamic soaring. Bioinspir. Biomim. 2021, 16, 066010. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Hussain, I.; Mir, I.; Afzal, W.; Anjum, U.; Channa, B.A. Target Parameter Estimation in Reduced Dimension STAP for Airborne Phased Array Radar. In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 5–7 November 2020; pp. 1–6. [Google Scholar]
- Hussain, A.; Anjum, U.; Channa, B.A.; Afzal, W.; Hussain, I.; Mir, I. Displaced Phase Center Antenna Processing For Airborne Phased Array Radar. In Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), Islamabad, Pakistan, 12–16 January 2021; pp. 988–992. [Google Scholar]
- Din, A.F.U.; Mir, I.; Gul, F.; Akhtar, S. Development of reinforced learning based non-linear controller for unmanned aerial vehicle. J. Ambient. Intell. Humaniz. Comput. 2022, 14, 4005–4022. [Google Scholar] [CrossRef]
- Kunpal, S.K.; Abbas, S.M.; Mir, I.; Gul, F.; Mir, S. A Comprehensive Flight Data Based Model Prediction: Perspective Analysis and Comparison. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023; p. 2237. [Google Scholar]
- Farinelli, A.; Iocchi, L.; Nardi, D. Multirobot systems: A classification focused on coordination. IEEE Trans. Syst. Man, Cybern. Part (Cybern.) 2004, 34, 2015–2028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gul, F.; Mir, I.; Abualigah, L.; Sumari, P.; Forestiero, A. A Consolidated Review of Path Planning and Optimization Techniques: Technical Perspectives and Future Directions. Electronics 2021, 10, 2250. [Google Scholar] [CrossRef]
- Gul, F.; Mir, I.; Abualigah, L.; Mir, S.; Altalhi, M. Cooperative multi-function approach: A new strategy for autonomous ground robotics. Future Gener. Comput. Syst. 2022, 134, 361–373. [Google Scholar] [CrossRef]
- Juliá, M.; Gil, A.; Reinoso, O. A comparison of path planning strategies for autonomous exploration and mapping of unknown environments. Auton. Robot. 2012, 33, 427–444. [Google Scholar] [CrossRef]
- Birk, A.; Carpin, S. Merging occupancy grid maps from multiple robots. Proc. IEEE 2006, 94, 1384–1397. [Google Scholar] [CrossRef]
- Yamauchi, B. A frontier-based approach for autonomous exploration. In Proceedings of the Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97. ‘Towards New Computational Principles for Robotics and Automation’, Monterey, CA, USA, 10–11 July 1997; pp. 146–151. [Google Scholar]
- Burgard, W.; Moors, M.; Stachniss, C.; Schneider, F.E. Coordinated multi-robot exploration. IEEE Trans. Robot. 2005, 21, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ran, M.; Xie, L. Efficient trajectory planning for multiple non-holonomic mobile robots via prioritized trajectory optimization. IEEE Robot. Autom. Lett. 2020, 6, 405–412. [Google Scholar] [CrossRef]
- Kwon, Y.; Kim, D.; An, I.; Yoon, S.e. Super rays and culling region for real-time updates on grid-based occupancy maps. IEEE Trans. Robot. 2019, 35, 482–497. [Google Scholar] [CrossRef]
- Hu, G.; Zheng, Y.; Abualigah, L.; Hussien, A.G. DETDO: An adaptive hybrid dandelion optimizer for engineering optimization. Adv. Eng. Inform. 2023, 57, 102004. [Google Scholar] [CrossRef]
- Hussien, A.G.; Khurma, R.A.; Alzaqebah, A.; Amin, M.; Hashim, F.A. Novel memetic of beluga whale optimization with self-adaptive exploration–exploitation balance for global optimization and engineering problems. Soft Comput. 2023, 1, 1–39. [Google Scholar] [CrossRef]
- Izci, D.; Ekinci, S.; Hussien, A.G. Effective PID controller design using a novel hybrid algorithm for high order systems. PLoS ONE 2023, 18, e0286060. [Google Scholar] [CrossRef] [PubMed]
- Hashim, F.A.; Khurma, R.A.; Albashish, D.; Amin, M.; Hussien, A.G. Novel hybrid of AOA-BSA with double adaptive and random spare for global optimization and engineering problems. Alex. Eng. J. 2023, 73, 543–577. [Google Scholar] [CrossRef]
- Sasmal, B.; Hussien, A.G.; Das, A.; Dhal, K.G. A Comprehensive Survey on Aquila Optimizer. Arch. Comput. Methods Eng. 2023, 1–28. [Google Scholar] [CrossRef]
- Gul, F.; Mir, I.; Abualigah, L.; Sumari, P. Multi-Robot Space Exploration: An Augmented Arithmetic Approach. IEEE Access 2021, 9, 107738–107750. [Google Scholar] [CrossRef]
- Gul, F.; Mir, S.; Mir, I. Coordinated Multi-Robot Exploration: Hybrid Stochastic Optimization Approach. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 1414. [Google Scholar]
- Gul, F.; Rahiman, W.; Nazli Alhady, S.S. A comprehensive study for robot navigation techniques. Cogent Eng. 2019, 6, 1632046. [Google Scholar] [CrossRef]
- Gul, F.; Mir, I.; Rahiman, W.; Islam, T.U. Novel Implementation of Multi-Robot Space Exploration Utilizing Coordinated Multi-Robot Exploration and Frequency Modified Whale Optimization Algorithm. IEEE Access 2021, 9, 22774–22787. [Google Scholar] [CrossRef]
- Al-qaness, M.A.; Ewees, A.A.; Fan, H.; AlRassas, A.M.; Abd Elaziz, M. Modified aquila optimizer for forecasting oil production. Geo-Spat. Inf. Sci. 2022, 25, 519–535. [Google Scholar] [CrossRef]
- Liu, I.J.; Jain, U.; Yeh, R.A.; Schwing, A. Cooperative exploration for multi-agent deep reinforcement learning. In Proceedings of the 38 th International Conference on Machine Learning, PMLR 139, Virtual Event, 18–24 July 2021; pp. 1–21. [Google Scholar]
- Gul, F.; Mir, I.; Mir, S. Aquila Optimizer with parallel computing strategy for efficient environment exploration. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 4175–4190. [Google Scholar] [CrossRef]
- Albina, K.; Lee, S.G. Hybrid stochastic exploration using grey wolf optimizer and coordinated multi-robot exploration algorithms. IEEE Access 2019, 7, 14246–14255. [Google Scholar] [CrossRef]
- Topiwala, A.; Inani, P.; Kathpal, A. Frontier based exploration for autonomous robot. arXiv 2018, arXiv:1806.03581. [Google Scholar]
- Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic optimization Algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Manchester, Z.; Peck, M. Stochastic space exploration with microscale spacecraft. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Portland, OR, USA, 8–11 August 2011; p. 6648. [Google Scholar]
Map No | CME-Aquila | CME-Whale | MAE-PAO | ||||||
---|---|---|---|---|---|---|---|---|---|
% Area Explored | Failures | Run-Time (s) | % Area Explored | Failures | Run-Time (s) | % Area Explored | Failures | Run-Time (s) | |
Case 1 | 90.721% | 1 | 40.2 | 79.21% | 2 | 31.164 | 97.13% | 1 | 25.12 |
Case 2 | 94.41% | 2 | 45.7 | 81.1804% | 4 | 33.21 | 96.73% | 0 | 27.13 |
Map | Exploration Rate | Exploration Time | Average Mean | Average Time |
---|---|---|---|---|
Map1 | Run1 = 97.56% | Run1 = 25.9 | 97.1510% | 26.41502 |
Run2 = 96.87% | Run2 = 24.9 | |||
Run3 = 97.87% | Run3 = 25.3 | |||
Run4 = 97.54% | Run4 = 25.69 | |||
Run5 = 96.77% | Run5 = 25.7 | |||
Map 2 | Run1 = 97.58% | Run1 = 27.17 | ||
Run2 = 97.12% | Run2 = 26.9 | |||
Run3 = 96.32% | Run3 = 27.19 | |||
Run4 = 96.87% | Run4 = 27.98 | |||
Run5 = 97.01% | Run5 = 27.5 |
Maps | Exploration Rates | Exploration Time | Average Mean | Average Time |
---|---|---|---|---|
Map 1 | Run1= 90.25% | Run1= 40.87 | 92.762% | 43.3250% |
Run2 = 91.13% | Run2 = 41.13 | |||
Run3 = 90.86% | Run3 = 41.98 | |||
Run4 = 91.11% | Run4 = 41.55 | |||
Run5 = 90.5% | Run5 = 40.83 | |||
Map 2 | Run1 = 94.78% | Run1 = 45.32 | ||
Run2 = 93.96% | Run2 = 46.12 | |||
Run3 = 94.74% | Run3 = 45.3 | |||
Run4 = 94.3% | Run4 = 44.9 | |||
Run5 = 95.74% | Run5 = 45.4 |
Maps | Exploration Rates | Exploration Time | Average Mean | Average Time |
---|---|---|---|---|
Case 1 | Run1 = 79.21% | Run1 = 33.65 | 80.452% | 31.164% |
Run2 = 80.62% | Run2 = 32.85 | |||
Run3 = 79.89% | Run3 = 30.87 | |||
Run4 = 80.25% | Run4 = 30.03 | |||
Run5 = 78.65% | Run5 = 28.48 | |||
Case 2 | Run1 = 81.18% | Run1 = 33.21 | ||
Run2 = 78.32% | Run2 = 27.38 | |||
Run3 = 80.24% | Run3 = 32.64 | |||
Run4 = 80.98% | Run4 = 30.87 | |||
Run5 = 81.99% | Run5 = 31.66 |
Algorithm | Total Rate Mean | Total Mean Time |
---|---|---|
MAE-PAO | 97.15% | 26.41% |
CME-Aquila | 92.76 % | 43.32% |
CME-Whale | 80.452% | 31.164% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mir, I.; Gul, F.; Mir, S.; Abualigah, L.; Zitar, R.A.; Hussien, A.G.; Awwad, E.M.; Sharaf, M. Multi-Agent Variational Approach for Robotics: A Bio-Inspired Perspective. Biomimetics 2023, 8, 294. https://doi.org/10.3390/biomimetics8030294
Mir I, Gul F, Mir S, Abualigah L, Zitar RA, Hussien AG, Awwad EM, Sharaf M. Multi-Agent Variational Approach for Robotics: A Bio-Inspired Perspective. Biomimetics. 2023; 8(3):294. https://doi.org/10.3390/biomimetics8030294
Chicago/Turabian StyleMir, Imran, Faiza Gul, Suleman Mir, Laith Abualigah, Raed Abu Zitar, Abdelazim G. Hussien, Emad Mahrous Awwad, and Mohamed Sharaf. 2023. "Multi-Agent Variational Approach for Robotics: A Bio-Inspired Perspective" Biomimetics 8, no. 3: 294. https://doi.org/10.3390/biomimetics8030294
APA StyleMir, I., Gul, F., Mir, S., Abualigah, L., Zitar, R. A., Hussien, A. G., Awwad, E. M., & Sharaf, M. (2023). Multi-Agent Variational Approach for Robotics: A Bio-Inspired Perspective. Biomimetics, 8(3), 294. https://doi.org/10.3390/biomimetics8030294