An Adaptive Sand Cat Swarm Algorithm Based on Cauchy Mutation and Optimal Neighborhood Disturbance Strategy
Abstract
:1. Introduction
- (1)
- The COSCSO with better performance is designed by adding three strategies to SCSO.
- (2)
- The enhanced algorithm is instrumented on test suites of different dimensions and on real engineering optimization problems.
2. Related Works
3. The Sand Cat Swarm Optimization
3.1. Initialization
3.2. Searching for Prey (Exploration)
3.3. Grabbing Prey (Exploitation)
3.4. Bridging Phase
4. Improved Sand Cat Swarm Optimization
4.1. Nonlinear Adaptive Parameters
4.2. Cauchy Mutation Strategy
4.3. Optimal Neighborhood Disturbance Strategy
4.4. COSCSO Steps
4.5. Computational Complexity of COSCSO Algorithm
5. Numerical Experiments and Analysis
5.1. Exploration and Exploitation Analysis
5.2. Comparison and Analysis on the CEC2017 Test Suite
5.3. Comparison and Analysis on the CEC2020 Test Suite
6. Engineering Problems
6.1. Welded Beam Design
6.2. Pressure Vessel Design
6.3. Gas Transmission Compressor Design Problem
6.4. Heat Exchanger Design
6.5. Tubular Column Design
6.6. Piston Lever Design
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sadollah, A.; Sayyaadi, H.; Yadav, A. A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm. Appl. Soft Comput. 2018, 71, 747–782. [Google Scholar] [CrossRef]
- Qin, F.; Zain, A.M.; Zhou, K.-Q. Harmony search algorithm and related variants: A systematic review. Swarm Evol. Comput. 2022, 74, 101126. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Geem, Z.W. A Comprehensive Survey of the Harmony Search Algorithm in Clustering Applications. Appl. Sci. 2020, 10, 3827. [Google Scholar] [CrossRef]
- Rajeev, S.; Krishnamoorthy, C.S. Discrete optimization of structures using genetic algorithms. J. Struct. Eng. 1992, 118, 1233–1250. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Houssein, E.H.; Rezk, H.; Fathy, A.; Mahdy, M.A.; Nassef, A.M. A modified adaptive guided differential evolution algorithm applied to engineering applications. Eng. Appl. Artif. Intell. 2022, 113, 104920. [Google Scholar] [CrossRef]
- Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 4661–4667. [Google Scholar]
- Priya, R.D.; Sivaraj, R.; Anitha, N.; Devisurya, V. Tri-staged feature selection in multi-class heterogeneous datasets using memetic algorithm and cuckoo search optimization. Expert Syst. Appl. 2022, 209, 118286. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization-Artificial ants as a computational intelligence technique. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Zhao, D.; Lei, L.; Yu, F.; Heidari, A.A.; Wang, M.; Oliva, D.; Muhammad, K.; Chen, H. Ant colony optimization with horizontal and vertical crossover search: Fundamental visions for multi-threshold image segmentation. Expert. Syst. Appl. 2021, 167, 114122. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Ma, M.; Wu, J.; Shi, Y.; Yue, L.; Yang, C.; Chen, X. Chaotic Random Opposition-Based Learning and Cauchy Mutation Improved Moth-Flame Optimization Algorithm for Intelligent Route Planning of Multiple UAVs. IEEE Access 2022, 10, 49385–49397. [Google Scholar] [CrossRef]
- Yu, X.; Wu, X. Ensemble grey wolf Optimizer and its application for image segmentation. Expert Syst. Appl. 2022, 209, 118267. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Z.; Wang, L. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Eng. Appl. Artif. Intell. 2020, 87, 103300. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Mirjalili, S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Comput. Methods Appl. Mech. Eng. 2022, 388, 114194. [Google Scholar] [CrossRef]
- Agushaka, J.O.; Ezugwu, A.E.; Abualigah, L. Dwarf Mongoose Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2022, 391, 114570. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. Artificialgorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 2021, 36, 5887–5958. [Google Scholar] [CrossRef]
- Houssein, E.H.; Saad, M.R.; Ali, A.A.; Shaban, H. An efficient multi-objective gorilla troops optimizer for minimizing energy consumption of large-scale wireless sensor networks. Expert Syst. Appl. 2023, 212, 118827. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Eng. Appl. Artif. Intell. 2022, 114, 105075. [Google Scholar] [CrossRef]
- Beşkirli, M. A novel Invasive Weed Optimization with levy flight for optimization problems: The case of forecasting energy demand. Energy Rep. 2022, 8 (Suppl. S1), 1102–1111. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, L.; Lin, Y.; Hei, X.; Yu, G.; Lu, X. An efficient multi-objective artificial raindrop algorithm and its application to dynamic optimization problems in chemical processes. Appl. Soft Comput. 2017, 58, 354–377. [Google Scholar] [CrossRef]
- Houssein, E.H.; Hosney, M.E.; Mohamed, W.M.; Ali, A.A.; Younis, E.M.G. Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data. Neural Comput. Appl. 2022, 35, 5251–5275. [Google Scholar] [CrossRef] [PubMed]
- Houssein, E.H.; Oliva, D.; Çelik, E.; Emam, M.M.; Ghoniem, R.M. Boosted sooty tern optimization algorithm for global optimization and feature selection. Expert Syst. Appl. 2023, 113, 119015. [Google Scholar] [CrossRef]
- Hu, G.; Du, B.; Wang, X.; Wei, G. An enhanced black widow optimization algorithm for feature selection. Knowl.-Based Syst. 2022, 235, 107638. [Google Scholar] [CrossRef]
- Abualigah, L.; Almotairi, K.H.; Elaziz, M.A. Multilevel thresholding image segmentation using meta-heuristic optimization algorithms: Comparative analysis, open challenges and new trends. Appl. Intell. 2022, 52, 1–51. [Google Scholar] [CrossRef]
- Houssein, E.H.; Hussain, K.; Abualigah, L.; Elaziz, M.A.; Alomoush, W.; Dhiman, G.; Djenouri, Y.; Cuevas, E. An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation. Knowl.-Based Syst. 2021, 229, 107348. [Google Scholar] [CrossRef]
- Sharma, P.; Dinkar, S.K. A Linearly Adaptive Sine–Cosine Algorithm with Application in Deep Neural Network for Feature Optimization in Arrhythmia Classification using ECG Signals. Knowl. Based Syst. 2022, 242, 108411. [Google Scholar] [CrossRef]
- Guo, Y.; Tian, X.; Fang, G.; Xu, Y.-P. Many-objective optimization with improved shuffled frog leaping algorithm for inter-basin water transfers. Adv. Water Resour. 2020, 138, 103531. [Google Scholar] [CrossRef]
- Das, P.K.; Behera, H.S.; Panigrahi, B.K. A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning. Swarm Evol. Comput. 2016, 28, 14–28. [Google Scholar] [CrossRef]
- Yu, X.; Jiang, N.; Wang, X.; Li, M. A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path planning. Expert Syst. Appl. 2022, 215, 119327. [Google Scholar] [CrossRef]
- Gao, D.; Wang, G.-G.; Pedrycz, W. Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection mechanism. IEEE Trans. Fuzzy Syst. 2020, 28, 3265–3275. [Google Scholar] [CrossRef]
- Dong, Z.R.; Bian, X.Y.; Zhao, S. Ship pipe route design using improved multi-objective ant colony optimization. Ocean. Eng. 2022, 258, 111789. [Google Scholar] [CrossRef]
- Hu, G.; Wang, J.; Li, M.; Hussien, A.G.; Abbas, M. EJS: Multi-strategy enhanced jellyfish search algorithm for engineering applications. Mathematics 2023, 11, 851. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Seyyedabbasi, A.; Kiani, F. Sand cat swarm optimization: A nature-inspired algorithm to solve global optimization problems. Eng. Comput. 2022, 38, 1–15. [Google Scholar] [CrossRef]
- Aghaei, V.T.; SeyyedAbbasi, A.; Rasheed, J.; Abu-Mahfouz, A.M. Sand cat swarm optimization-based feedback controller design for nonlinear systems. Heliyon 2023, 9, e13885. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G. Sand cat swarm optimization based on stochastic variation with elite collaboration. IEEE Access 2022, 10, 89989–90003. [Google Scholar] [CrossRef]
- Seyyedabbasi, A. A reinforcement learning-based metaheuristic algorithm for solving global optimization problems. Adv. Eng. Softw. 2023, 178, 103411. [Google Scholar] [CrossRef]
- Lu, W.; Shi, C.; Fu, H.; Xu, Y. A Power Transformer Fault Diagnosis Method Based on Improved Sand Cat Swarm Optimization Algorithm and Bidirectional Gated Recurrent Unit. Electronics 2023, 12, 672. [Google Scholar] [CrossRef]
- Zhao, X.; Fang, Y.; Liu, L.; Xu, M.; Li, Q. A covariance-based Moth–flame optimization algorithm with Cauchy mutation for solving numerical optimization problems. Soft Comput. 2022, 119, 108538. [Google Scholar] [CrossRef]
- Wang, W.C.; Xu, L.; Chau, K.W.; Xu, D.M. Yin-Yang firefly algorithm based on dimensionally Cauchy mutation. Expert Syst. Appl. 2020, 150, 113216. [Google Scholar] [CrossRef]
- Ou, X.; Wu, M.; Pu, Y.; Tu, B.; Zhang, G.; Xu, Z. Cuckoo search algorithm with fuzzy logic and Gauss–Cauchy for minimizing localization error of WSN. Soft Comput. 2022, 125, 109211. [Google Scholar] [CrossRef]
- Hu, G.; Zhong, J.; Du, B.; Wei, G. An enhanced hybrid arithmetic optimization algorithm for engineering applications. Comput. Methods Appl. Mech. Eng. 2022, 394, 114901. [Google Scholar] [CrossRef]
- Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y. On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput. Appl. 2019, 31, 7665–7683. [Google Scholar] [CrossRef]
- Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P.; Definitions, P. Evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technol. Rep. 2016. [Google Scholar]
- Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [Google Scholar] [CrossRef]
- Zhong, C.; Li, G.; Meng, Z. Beluga whale optimization: A novel nature-inspired metaheuristic algorithm. Knowl. Based Syst. 2022, 251, 109215. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Svetinovic, D.; Elaziz, M.A. Boosted Harris Hawks gravitational force algorithm for global optimization and industrial engineering problems. J. Intell. Manuf. 2022, 34, 1–13. [Google Scholar] [CrossRef]
- Dehkordi, A.A.; Sadiq, A.S.; Mirjalili, S.; Ghafoor, K.Z. Nonlinear-based Chaotic Harris Hawks Optimizer: Algorithm and Internet of Vehicles application. Appl. Soft Comput. 2021, 109, 107574. [Google Scholar] [CrossRef]
- Arun Mozhi Devan, P.; Hussin, F.A.; Ibrahim, R.B.; Bingi, K.; Nagarajapandian, M.; Assaad, M. An Arithmetic-Trigonometric Optimization Algorithm with Application for Control of Real-Time Pressure Process Plant. Sensors 2022, 22, 617. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Zhu, X.; Wei, G.; Chang, C.T. An improved marine predators algorithm for shape optimization of developable Ball surfaces. Eng. Appl. Artif. Intell. 2021, 105, 104417. [Google Scholar] [CrossRef]
- Mohamed, A.W.; Hadi, A.A.; Awad, N.H. Evaluating the performance of adaptive Gaining Sharing knowledge based algorithm on CEC 2020 benchmark problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020. [Google Scholar]
- Liang, J.; Qu, B.; Suganthan, P. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. Tech. Rep., Comput. Intell. Lab.Zhengzhou Univ. Zhengzhou China Nanyang Technol. Univ. Singap., 2013,635.S. Mirjalili, A. Lewis, The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, Z. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl. Based Sys. 2018, 163, 283–304. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, Z. Artificial ecosystem-based optimization: A novel nature-inspired meta-heuristic algorithm. Neural Comput. Appl. 2020, 32, 9383–9425. [Google Scholar] [CrossRef]
- Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Seyyedabbasi, A. WOASCALF: A new hybrid whale optimization algorithm based on sine cosine algorithm and levy flight to solve global optimization problems. Adv. Eng. Softw. 2022, 173, 103272. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Han, X.; Zhou, W. A novel adaptive density-based spatial clustering of application with noise based on bird swarm optimization algorithm. Comput. Commun. 2021, 174, 205–214. [Google Scholar] [CrossRef]
- Kumar, N.; Mahato, S.K.; Bhunia, A.K. Design of an efficient hybridized CS-PSO algorithm and its applications for solving constrained and bound constrained structural engineering design problems. Results Control. Optim. 2021, 5, 100064. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl. Based Syst. 2019, 165, 169–196. [Google Scholar] [CrossRef]
- Jaberipour, M.; Khorram, E. Two improved harmony search algorithms for solving engineering optimization problems. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3316–3331. [Google Scholar] [CrossRef]
- Hu, G.; Yang, R.; Qin, X.; Wei, G. MCSA: Multi-strategy boosted chameleon-inspired optimization algorithm for engineering applications. Comput. Methods Appl. Mech. Eng. 2023, 403, 115676. [Google Scholar] [CrossRef]
- Ong, K.M.; Ong, P.; Sia, C.K. A new flower pollination algorithm with improved convergence and its application to engineering optimization. Decis. Anal. J. 2022, 5, 100144. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-Verse Optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
Algorithm: The COSCSO algorithm. |
Initialize individuals Xi (I = 1,2,∖,N) |
Calculate the fitness values for all individuals. |
1: While (t < T) |
2: Update the parameters like Se, re, Re; |
3: For each individual |
4: Get a random angle based on Roulette Wheel Selection (0° ≤ θ ≤ 360°); |
5: If ) |
6: Update the individual position in conformity with Equation (15); |
7: Else |
8: Update the individual position in conformity with Equation (6); |
9: End |
10: Calculate the fitness values of individuals, Produce the Xbest(t); |
11: Produce the X*best(t) in conformity with Equation (16); |
12: Calculate the fitness, Update the Xbest(t); |
13: End |
14: |
15: End |
Algorithms | Parameters Name | Parameters Values |
---|---|---|
PSO | Self-learning factor o1 Group learning factor o2 Inertia weight | 0.5 0.5 0.8 |
RSA | Sensitive parameter α Control parameter β | 0.1 0.05 |
BWO | Balance factor Bf | (0, 1) |
DO | Adaptive parameter α | [0, 1] |
AOA | Control parameter σ Sensitive parameter v | 0.499 0.5 |
HHO | Initial energy E0 | [−1, 1] |
ATOA | Sensitive parameter α | 5 |
NCHHO | Control parameter c Control parameter a1 | [0, 2] 4 |
WOA | Control parameter m Constant n | Linearly decreases from 2 to 0 1 |
CHOA | parameter f | Linearly decreases from 2 to 0 |
F | Results | Algorithms | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSO | RSA | BWO | DO | AOA | HHO | NCHHO | ATOA | SCSO | COSCSO | ||
F1 | Mean | 8.08E+09 | 4.64E+10 | 4.76E+10 | 1.67E+09 | 4.86E+10 | 1.55E+07 | 4.37E+10 | 2.20E+10 | 3.88E+09 | 3.48E+05 |
Std | 6.54E+09 | 6.30E+09 | 5.54E+09 | 9.53E+08 | 1.10E+10 | 3.75E+06 | 9.77E+09 | 8.28E+09 | 1.74E+09 | 7.03E+05 | |
Rank | 5 | 8 | 9 | 3 | 10 | 2 | 7 | 6 | 4 | 1 | |
p | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | ||
F3 | Mean | 5.84E+04 | 7.86E+04 | 7.69E+04 | 8.56E+04 | 7.68E+04 | 2.13E+04 | 8.96E+04 | 8.14E+04 | 4.37E+04 | 1.11E+04 |
Std | 2.57E+04 | 5.33E+03 | 4.27E+03 | 5.64E+03 | 7.18E+03 | 5.48E+03 | 4.00E+03 | 9.29E+03 | 7.06E+03 | 3.26E+03 | |
Rank | 4 | 7 | 5 | 9 | 6 | 2 | 10 | 8 | 3 | 1 | |
p | 9.17E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 1.38E-06 | 6.80E-08 | 6.80E-08 | 6.80E-08 | ||
F4 | Mean | 1.35E+03 | 8.84E+03 | 1.15E+04 | 6.91E+02 | 1.28E+04 | 5.41E+02 | 1.14E+04 | 2.43E+03 | 7.47E+02 | 5.05E+02 |
Std | 9.28E+02 | 2.22E+03 | 1.12E+02 | 1.02E+02 | 3.34E+03 | 2.74E+01 | 3.18E+03 | 1.40E+03 | 3.01E+02 | 1.96E+01 | |
Rank | 5 | 7 | 9 | 3 | 10 | 2 | 8 | 6 | 4 | 1 | |
p | 6.80E-08 | 6.80E-08 | 6.80E-08 | 1.23E-07 | 6.80E-08 | 1.04E-04 | 6.80E-08 | 6.80E-08 | 2.56E-07 | ||
F5 | Mean | 6.99E+02 | 9.14E+02 | 9.11E+02 | 7.84E+02 | 8.92E+02 | 7.39E+02 | 8.93E+02 | 8.38E+02 | 7.32E+02 | 7.24E+02 |
Std | 4.04E+01 | 2.62E+01 | 2.12E+01 | 4.84E+01 | 2.80E+01 | 2.45E+01 | 4.40E+01 | 3.27E+01 | 5.03E+01 | 4.88E+01 | |
Rank | 1 | 10 | 9 | 5 | 7 | 4 | 8 | 6 | 3 | 2 | |
p | 1.08E-01 | 6.80E-08 | 6.80E-08 | 9.21E-04 | 6.80E-08 | 1.33E-01 | 1.23E-07 | 3.94E-07 | 5.79E-01 | ||
F6 | Mean | 6.49E+02 | 6.87E+02 | 6.86E+02 | 6.68E+02 | 6.74E+02 | 6.64E+02 | 6.83E+02 | 6.65E+02 | 6.60E+02 | 6.59E+02 |
Std | 8.98E+00 | 6.15E+00 | 3.79E+00 | 4.16E+00 | 5.69E+00 | 5.90E+00 | 7.64E+00 | 9.24E+00 | 9.60E+00 | 8.97E+00 | |
Rank | 1 | 10 | 9 | 6 | 7 | 4 | 8 | 5 | 3 | 2 | |
p | 1.79E-04 | 6.80E-08 | 6.80E-08 | 1.16E-04 | 7.95E-07 | 1.08E-01 | 7.90E-08 | 2.56E-02 | 9.46E-01 | ||
F7 | Mean | 1.15E+03 | 1.38E+03 | 1.36E+03 | 1.25E+03 | 1.33E+03 | 1.29E+03 | 1.35E+03 | 1.24E+03 | 1.13E+03 | 1.12E+03 |
Std | 1.58E+02 | 3.95E+01 | 4.66E+01 | 1.03E+02 | 6.59E+01 | 7.03E+01 | 7.41E+01 | 6.09E+01 | 9.85E+01 | 1.14E+02 | |
Rank | 3 | 10 | 9 | 5 | 7 | 6 | 8 | 4 | 2 | 1 | |
p | 6.17E-01 | 6.80E-08 | 9.17E-08 | 3.38E-04 | 9.13E-07 | 2.60E-05 | 5.23E-07 | 3.05E-04 | 7.35E-01 | ||
F8 | Mean | 9.81E+02 | 1.13E+03 | 1.13E+03 | 1.01E+03 | 1.10E+03 | 9.72E+02 | 1.13E+03 | 1.09E+03 | 9.91E+02 | 9.71E+02 |
Std | 4.46E+01 | 2.16E+01 | 1.19E+01 | 2.50E+01 | 2.29E+01 | 2.76E+01 | 3.60E+01 | 3.31E+01 | 3.16E+01 | 3.56E+01 | |
Rank | 3 | 9 | 8 | 5 | 7 | 2 | 10 | 6 | 4 | 1 | |
p | 5.43E-01 | 6.80E-08 | 6.80E-08 | 3.05E-04 | 6.80E-08 | 8.82E-01 | 6.80E-08 | 7.90E-08 | 6.79E-02 | ||
F9 | Mean | 5.62E+03 | 1.01E+04 | 1.06E+04 | 6.90E+03 | 6.95E+03 | 6.88E+03 | 8.88E+03 | 1.24E+04 | 5.58E+03 | 5.11E+03 |
Std | 2.29E+03 | 9.13E+02 | 6.65E+02 | 6.96E+02 | 1.12E+03 | 8.05E+02 | 1.54E+03 | 3.16E+03 | 8.87E+02 | 3.22E+02 | |
Rank | 3 | 8 | 9 | 5 | 6 | 4 | 7 | 10 | 2 | 1 | |
p | 6.17E-01 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 1.10E-05 | 7.95E-07 | 6.80E-08 | 6.80E-08 | 6.87E-04 | ||
F10 | Mean | 5.48E+03 | 8.25E+03 | 8.55E+03 | 5.75E+03 | 7.44E+03 | 5.71E+03 | 8.26E+03 | 7.40E+03 | 5.88E+03 | 5.33E+03 |
Std | 6.40E+02 | 3.65E+02 | 3.58E+02 | 4.41E+02 | 5.05E+02 | 5.50E+02 | 6.11E+02 | 5.96E+02 | 7.38E+02 | 8.03E+02 | |
Rank | 2 | 8 | 10 | 4 | 7 | 3 | 9 | 6 | 5 | 1 | |
p | 5.25E-01 | 6.80E-08 | 6.80E-08 | 2.75E-02 | 2.22E-07 | 9.09E-02 | 9.17E-08 | 6.01E-07 | 2.75E-02 | ||
F11 | Mean | 1.55E+03 | 8.06E+03 | 6.60E+03 | 2.52E+03 | 7.76E+03 | 1.28E+03 | 9.79E+03 | 7.20E+03 | 1.73E+03 | 1.27E+03 |
Std | 1.88E+02 | 2.79E+03 | 6.51E+02 | 6.82E+02 | 2.19E+03 | 4.84E+01 | 2.43E+03 | 4.81E+03 | 3.10E+02 | 6.12E+01 | |
Rank | 3 | 9 | 6 | 5 | 8 | 2 | 10 | 7 | 4 | 1 | |
p | 2.96E-07 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.95E-01 | 6.80E-08 | 6.80E-08 | 9.17E-08 | ||
F12 | Mean | 6.49E+08 | 1.38E+10 | 9.76E+09 | 8.43E+07 | 1.16E+10 | 1.98E+07 | 1.76E+07 | 7.35E+09 | 1.40E+08 | 6.89E+06 |
Std | 6.66E+08 | 3.54E+09 | 2.11E+09 | 7.05E+07 | 2.96E+09 | 1.48E+07 | 1.32E+07 | 2.93E+09 | 1.77E+08 | 8.68E+06 | |
Rank | 6 | 10 | 8 | 4 | 9 | 3 | 2 | 7 | 5 | 1 | |
p | 1.66E-07 | 6.80E-08 | 6.80E-08 | 1.92E-07 | 6.80E-08 | 5.63E-04 | 6.80E-08 | 6.80E-08 | 1.06E-07 | ||
F13 | Mean | 4.21E+08 | 1.08E+10 | 5.55E+09 | 1.29E+06 | 7.67E+09 | 4.45E+05 | 4.30E+09 | 3.00E+08 | 1.44E+07 | 1.38E+05 |
Std | 9.20E+08 | 4.05E+09 | 1.62E+09 | 4.16E+06 | 4.65E+09 | 1.42E+05 | 2.08E+09 | 3.34E+08 | 2.67E+07 | 1.03E+05 | |
Rank | 6 | 10 | 8 | 3 | 9 | 2 | 7 | 5 | 4 | 1 | |
p | 1.44E-04 | 6.80E-08 | 6.80E-08 | 3.97E-03 | 6.80E-08 | 1.05E-06 | 6.80E-08 | 6.80E-08 | 2.07E-02 | ||
F14 | Mean | 1.25E+05 | 7.35E+06 | 2.27E+06 | 1.58E+06 | 1.15E+06 | 2.85E+05 | 6.36E+06 | 1.67E+06 | 4.34E+05 | 4.44E+04 |
Std | 1.89E+05 | 9.53E+06 | 1.02E+06 | 9.04E+05 | 1.33E+06 | 2.30E+05 | 5.46E+06 | 1.57E+06 | 7.20E+05 | 3.31E+04 | |
Rank | 2 | 10 | 8 | 6 | 5 | 3 | 9 | 7 | 4 | 1 | |
p | 1.23E-02 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 2.36E-06 | 5.90E-05 | 6.80E-08 | 7.58E-06 | 1.35E-03 | ||
F15 | Mean | 7.03E+04 | 6.22E+08 | 2.15E+08 | 6.75E+04 | 2.31E+06 | 5.44E+04 | 1.27E+08 | 1.41E+04 | 2.29E+05 | 4.53E+04 |
Std | 4.11E+04 | 3.12E+08 | 1.08E+08 | 7.62E+04 | 1.02E+07 | 3.43E+04 | 2.27E+08 | 1.07E+04 | 5.94E+05 | 3.22E+04 | |
Rank | 5 | 10 | 9 | 4 | 7 | 3 | 8 | 1 | 6 | 2 | |
p | 1.55E-02 | 6.80E-08 | 6.80E-08 | 3.23E-01 | 3.06E-03 | 3.79E-01 | 6.80E-08 | 9.75E-06 | 1.81E-01 | ||
F16 | Mean | 3.15E+03 | 5.64E+03 | 5.24E+03 | 3.50E+03 | 4.78E+03 | 3.17E+03 | 5.00E+03 | 3.54E+03 | 3.12E+03 | 3.08E+03 |
Std | 3.54E+02 | 1.47E+03 | 5.18E+02 | 4.37E+02 | 7.45E+02 | 3.86E+02 | 6.24E+02 | 3.41E+02 | 3.66E+02 | 3.36E+02 | |
Rank | 3 | 10 | 9 | 5 | 7 | 4 | 8 | 6 | 2 | 1 | |
p | 3.79E-01 | 6.80E-08 | 6.80E-08 | 3.64E-03 | 1.06E-07 | 4.90E-01 | 6.80E-08 | 5.09E-04 | 5.08E-01 | ||
F17 | Mean | 2.53E+03 | 5.34E+03 | 3.74E+03 | 2.56E+03 | 3.31E+03 | 2.55E+03 | 3.08E+03 | 2.69E+03 | 2.47E+03 | 2.44E+03 |
Std | 2.74E+02 | 3.62E+03 | 3.82E+02 | 3.21E+02 | 5.48E+02 | 3.57E+02 | 5.03E+02 | 1.44E+02 | 2.82E+02 | 2.86E+02 | |
Rank | 3 | 10 | 9 | 5 | 8 | 4 | 7 | 6 | 2 | 1 | |
p | 5.61E-01 | 6.80E-08 | 7.90E-08 | 2.98E-01 | 9.13E-07 | 4.41E-01 | 3.29E-05 | 2.14E-03 | 7.15E-01 | ||
F18 | Mean | 2.34E+06 | 3.35E+07 | 2.70E+07 | 6.72E+06 | 1.19E+07 | 1.86E+06 | 5.49E+07 | 4.21E+06 | 1.20E+06 | 9.94E+05 |
Std | 6.10E+06 | 2.73E+07 | 1.40E+07 | 5.32E+06 | 8.24E+06 | 1.76E+06 | 4.93E+07 | 3.08E+06 | 1.11E+06 | 1.01E+06 | |
Rank | 4 | 9 | 8 | 6 | 7 | 3 | 10 | 5 | 2 | 1 | |
p | 9.03E-01 | 6.80E-08 | 6.80E-08 | 8.60E-06 | 1.92E-07 | 7.64E-02 | 2.96E-07 | 1.25E-05 | 2.85E-01 | ||
F19 | Mean | 1.62E+07 | 6.19E+08 | 3.07E+08 | 1.14E+06 | 1.79E+06 | 3.46E+05 | 2.20E+08 | 3.41E+04 | 4.23E+06 | 2.44E+05 |
Std | 4.56E+07 | 2.77E+08 | 1.30E+08 | 9.55E+05 | 7.77E+04 | 2.09E+05 | 2.70E+08 | 4.54E+04 | 9.10E+06 | 4.08E+05 | |
Rank | 7 | 10 | 9 | 4 | 5 | 3 | 8 | 1 | 6 | 2 | |
p | 7.35E-01 | 6.80E-08 | 6.80E-08 | 3.75E-04 | 9.13E-07 | 9.05E-03 | 6.80E-08 | 7.58E-06 | 8.29E-05 | ||
F20 | Mean | 2.72E+03 | 2.95E+03 | 2.91E+03 | 2.99E+03 | 2.78E+03 | 2.72E+03 | 2.99E+03 | 2.89E+03 | 2.69E+03 | 2.66E+03 |
Std | 2.65E+02 | 1.31E+02 | 1.03E+02 | 2.56E+02 | 2.17E+02 | 1.96E+02 | 2.19E+02 | 1.91E+02 | 1.83E+02 | 1.62E+02 | |
Rank | 4 | 8 | 7 | 10 | 5 | 3 | 9 | 6 | 2 | 1 | |
p | 4.90E-01 | 5.87E-06 | 2.69E-06 | 7.41E-05 | 6.79E-02 | 2.73E-01 | 2.92E-05 | 6.87E-04 | 7.35E-01 | ||
F21 | Mean | 2.49E+03 | 2.69E+03 | 2.71E+03 | 2.55E+03 | 2.65E+03 | 2.55E+03 | 2.70E+03 | 2.62E+03 | 2.51E+03 | 2.54E+03 |
Std | 4.39E+01 | 4.15E+01 | 3.47E+01 | 1.05E+02 | 4.79E+01 | 5.16E+01 | 5.23E+01 | 4.29E+01 | 3.48E+01 | 4.51E+01 | |
Rank | 1 | 8 | 10 | 5 | 7 | 4 | 9 | 6 | 2 | 3 | |
p | 4.16E-04 | 6.80E-08 | 6.80E-08 | 2.18E-01 | 2.06E-06 | 9.89E-01 | 1.66E-07 | 7.41E-05 | 1.93E-02 | ||
F22 | Mean | 6.20E+03 | 8.35E+03 | 8.30E+03 | 5.30E+03 | 8.25E+03 | 5.74E+03 | 9.38E+03 | 7.63E+03 | 3.49E+03 | 3.02E+03 |
Std | 1.79E+03 | 1.06E+03 | 6.84E+02 | 2.65E+03 | 1.08E+03 | 2.06E+03 | 1.04E+03 | 2.21E+03 | 1.30E+03 | 1.77E+03 | |
Rank | 5 | 8 | 7 | 3 | 9 | 4 | 10 | 6 | 2 | 1 | |
p | 1.41E-05 | 3.42E-07 | 1.66E-07 | 9.75E-06 | 3.42E-07 | 2.30E-05 | 1.43E-07 | 1.38E-06 | 1.29E-04 | ||
F23 | Mean | 2.97E+03 | 3.25E+03 | 3.28E+03 | 3.07E+03 | 3.51E+03 | 3.13E+03 | 3.67E+03 | 3.07E+03 | 2.93E+03 | 2.92E+03 |
Std | 8.40E+01 | 7.39E+01 | 6.25E+01 | 1.48E+02 | 1.45E+02 | 1.40E+02 | 1.39E+02 | 6.62E+01 | 4.15E+01 | 6.87E+01 | |
Rank | 3 | 7 | 8 | 5 | 9 | 6 | 10 | 4 | 2 | 1 | |
p | 8.59E-02 | 6.80E-08 | 6.80E-08 | 2.47E-04 | 6.80E-08 | 3.07E-06 | 6.80E-08 | 1.05E-06 | 8.39E-01 | ||
F24 | Mean | 3.16E+03 | 3.47E+03 | 3.52E+03 | 3.19E+03 | 3.80E+03 | 3.11E+03 | 3.80E+03 | 3.28E+03 | 3.09E+03 | 3.08E+03 |
Std | 7.63E+01 | 1.59E+02 | 7.24E+01 | 7.65E+01 | 2.48E+02 | 1.84E+01 | 2.38E+02 | 6.80E+01 | 6.91E+01 | 6.44E+01 | |
Rank | 4 | 7 | 8 | 5 | 10 | 3 | 9 | 6 | 2 | 1 | |
p | 4.32E-03 | 6.80E-08 | 6.80E-08 | 2.60E-05 | 6.80E-08 | 1.99E-01 | 6.80E-08 | 1.06E-07 | 6.95E-01 | ||
F25 | Mean | 3.17E+03 | 4.85E+03 | 4.31E+03 | 3.03E+03 | 5.28E+03 | 2.92E+03 | 4.60E+03 | 3.43E+03 | 3.09E+03 | 2.93E+03 |
Std | 3.42E+02 | 6.52E+02 | 1.63E+02 | 5.05E+01 | 8.73E+02 | 2.30E+01 | 4.43E+02 | 2.85E+02 | 7.83E+01 | 2.17E+01 | |
Rank | 5 | 9 | 7 | 3 | 10 | 2 | 8 | 6 | 4 | 1 | |
p | 9.17E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.55E-01 | 6.80E-08 | 6.80E-08 | 7.90E-08 | ||
F26 | Mean | 6.73E+03 | 9.68E+03 | 1.03E+04 | 6.96E+03 | 1.04E+04 | 7.56E+03 | 1.05E+04 | 8.28E+03 | 6.63E+03 | 6.52E+03 |
Std | 8.80E+02 | 8.20E+02 | 3.43E+02 | 1.76E+03 | 1.02E+03 | 1.30E+03 | 1.11E+03 | 1.13E+03 | 1.41E+03 | 1.86E+03 | |
Rank | 3 | 7 | 8 | 4 | 9 | 5 | 10 | 6 | 2 | 1 | |
p | 9.46E-01 | 3.94E-07 | 6.80E-08 | 2.73E-01 | 1.06E-07 | 4.68E-02 | 1.06E-07 | 1.23E-03 | 9.89E-01 | ||
F27 | Mean | 3.33E+03 | 3.89E+03 | 3.90E+03 | 3.39E+03 | 4.39E+03 | 3.42E+03 | 4.53E+03 | 3.42E+03 | 3.36E+03 | 3.32E+03 |
Std | 7.58E+01 | 5.05E+02 | 1.34E+02 | 7.83E+01 | 3.28E+02 | 1.14E+02 | 5.01E+02 | 8.17E+01 | 7.70E+01 | 8.83E+01 | |
Rank | 2 | 7 | 8 | 5 | 9 | 4 | 10 | 6 | 3 | 1 | |
p | 3.94E-01 | 3.42E-07 | 6.80E-08 | 2.22E-04 | 6.80E-08 | 1.61E-04 | 7.90E-08 | 3.71E-05 | 2.23E-02 | ||
F28 | Mean | 4.26E+03 | 5.89E+03 | 6.20E+03 | 3.47E+03 | 6.89E+03 | 3.29E+03 | 6.31E+03 | 4.23E+03 | 3.53E+03 | 3.26E+03 |
Std | 8.73E+02 | 9.02E+02 | 2.92E+02 | 5.79E+01 | 9.24E+02 | 1.77E+01 | 8.83E+02 | 4.62E+02 | 1.37E+02 | 2.50E+01 | |
Rank | 6 | 7 | 8 | 3 | 10 | 2 | 9 | 5 | 4 | 1 | |
p | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 1.44E-04 | 6.80E-08 | 6.80E-08 | 6.80E-08 | ||
F29 | Mean | 4.63E+03 | 7.40E+03 | 6.51E+03 | 4.88E+03 | 7.12E+03 | 4.60E+03 | 6.63E+03 | 4.70E+03 | 4.57E+03 | 4.55E+03 |
Std | 4.96E+02 | 3.56E+03 | 5.43E+02 | 3.71E+02 | 1.06E+03 | 4.09E+02 | 9.81E+02 | 3.68E+02 | 3.61E+02 | 4.22E+02 | |
Rank | 3 | 10 | 7 | 6 | 9 | 4 | 8 | 5 | 2 | 1 | |
p | 5.43E-01 | 1.06E-07 | 1.06E-07 | 8.35E-03 | 6.80E-08 | 5.25E-01 | 1.23E-07 | 2.08E-01 | 5.25E-01 | ||
F30 | Mean | 6.67E+07 | 2.76E+09 | 8.24E+08 | 1.11E+07 | 1.14E+09 | 3.33E+06 | 6.27E+08 | 5.55E+07 | 8.36E+07 | 1.95E+06 |
Std | 2.56E+08 | 9.66E+08 | 3.24E+08 | 5.53E+06 | 1.01E+09 | 2.02E+06 | 4.99E+08 | 5.30E+07 | 9.62E+06 | 1.41E+06 | |
Rank | 5 | 10 | 8 | 3 | 9 | 2 | 7 | 4 | 6 | 1 | |
p | 3.97E-03 | 6.80E-08 | 6.80E-08 | 2.22E-07 | 6.80E-08 | 2.39E-02 | 6.80E-08 | 3.42E-07 | 1.58E-06 | ||
Mean rank | 3.6897 | 8.3793 | 8.4828 | 4.7931 | 7.8621 | 3.2759 | 8.3793 | 5.8276 | 3.3103 | 1.2414 | |
Result | 4 | 8 | 9 | 5 | 7 | 2 | 8 | 6 | 3 | 1 | |
+/=/− | 2/13/14 | 0/0/29 | 0/0/29 | 0/4/25 | 0/1/28 | 0/13/16 | 0/0/29 | 1/1/27 | 0/12/17 |
F | Results | Algorithms | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
WOA | RSA | PSO | CHOA | AOA | HHO | NCHHO | ATOA | SCSO | COSCSO | ||
F1 | Mean | 5.27E+08 | 5.14E+10 | 6.81E+09 | 2.83E+10 | 4.80E+10 | 1.72E+07 | 4.31E+10 | 2.26E+10 | 4.65E+09 | 6.08E+05 |
Std | 3.25E+08 | 8.10E+09 | 5.60E+09 | 5.05E+09 | 7.81E+09 | 4.11E+06 | 8.72E+09 | 7.55E+09 | 3.17E+09 | 8.65E+05 | |
Rank | 3 | 10 | 5 | 7 | 9 | 2 | 8 | 6 | 4 | 1 | |
p | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | ||
F2 | Mean | 6.46E+03 | 7.65E+03 | 5.48E+03 | 8.01E+03 | 7.20E+03 | 5.44E+03 | 8.44E+03 | 7.32E+03 | 6.15E+03 | 5.22E+03 |
Std | 8.01E+02 | 4.01E+02 | 6.19E+02 | 6.76E+02 | 5.69E+02 | 6.31E+02 | 6.41E+02 | 5.48E+02 | 7.64E+02 | 6.89E+02 | |
Rank | 5 | 8 | 3 | 9 | 6 | 2 | 10 | 7 | 4 | 1 | |
p | 9.75E-06 | 6.80E-08 | 3.10E-01 | 1.06E-07 | 2.22E-07 | 3.65E-01 | 2.36E-06 | 1.43E-07 | 5.63E-04 | ||
F3 | Mean | 1.27E+03 | 1.38E+03 | 1.14E+03 | 1.26E+03 | 1.36E+03 | 1.27E+03 | 1.33E+03 | 1.26E+03 | 1.15E+03 | 1.14E+03 |
Std | 9.35E+01 | 2.98E+01 | 1.58E+02 | 1.83E+01 | 6.55E+01 | 8.55E+01 | 7.13E+01 | 6.16E+01 | 6.24E+01 | 1.01E+02 | |
Rank | 7 | 10 | 2 | 5 | 9 | 6 | 8 | 4 | 3 | 1 | |
p | 4.60E-04 | 7.90E-08 | 2.85E-01 | 1.04E-04 | 7.90E-08 | 1.63E-03 | 5.23E-07 | 2.39E-02 | 7.35E-01 | ||
F4 | Mean | 1.90E+03 | 1.90E+03 | 1.95E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.91E+03 | 1.90E+03 | 1.90E+03 |
Std | 0.00E+00 | 0.00E+00 | 3.04E+01 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 5.47E+00 | 0.00E+00 | 0.00E+00 | |
Rank | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | |
p | NaN | NaN | 8.01E-09 | NaN | NaN | NaN | NaN | 8.01E-09 | NaN | ||
F5 | Mean | 9.80E+06 | 6.41E+07 | 4.72E+06 | 2.53E+07 | 7.13E+07 | 2.47E+06 | 8.03E+07 | 9.09E+06 | 2.96E+06 | 1.26E+06 |
Std | 6.58E+06 | 4.36E+07 | 6.21E+06 | 1.76E+07 | 4.66E+07 | 1.62E+06 | 4.61E+07 | 6.31E+06 | 3.64E+06 | 1.00E+06 | |
Rank | 6 | 8 | 4 | 7 | 9 | 2 | 10 | 5 | 3 | 1 | |
p | 6.01E-07 | 6.80E-08 | 2.80E-03 | 6.80E-08 | 6.80E-08 | 1.14E-02 | 6.80E-08 | 6.80E-08 | 1.90E-01 | ||
F6 | Mean | 3.43E+03 | 4.49E+03 | 2.94E+03 | 3.43E+03 | 3.99E+03 | 2.59E+03 | 4.57E+03 | 2.78E+03 | 2.70E+03 | 2.67E+03 |
Std | 5.77E+02 | 6.81E+02 | 3.37E+02 | 3.51E+02 | 1.25E+03 | 3.41E+02 | 8.14E+02 | 2.95E+02 | 3.61E+02 | 3.09E+02 | |
Rank | 7 | 9 | 5 | 6 | 8 | 1 | 10 | 4 | 3 | 2 | |
p | 5.17E-06 | 6.80E-08 | 1.93E-02 | 2.06E-06 | 3.99E-06 | 2.85E-01 | 6.80E-08 | 2.98E-01 | 9.89E-01 | ||
F7 | Mean | 5.60E+06 | 4.32E+07 | 8.30E+05 | 7.52E+06 | 2.25E+07 | 6.40E+05 | 3.22E+07 | 2.99E+06 | 2.44E+06 | 3.42E+05 |
Std | 3.92E+06 | 2.21E+07 | 6.16E+05 | 4.42E+06 | 1.57E+07 | 4.88E+05 | 2.16E+07 | 2.12E+06 | 3.40E+06 | 3.36E+05 | |
Rank | 6 | 10 | 3 | 7 | 8 | 2 | 9 | 5 | 4 | 1 | |
p | 2.22E-07 | 6.80E-08 | 1.95E-03 | 1.66E-07 | 6.80E-08 | 9.79E-03 | 6.80E-08 | 2.96E-07 | 1.48E-03 | ||
F8 | Mean | 7.11E+03 | 8.74E+03 | 6.36E+03 | 8.19E+03 | 8.69E+03 | 5.61E+03 | 8.94E+03 | 8.83E+03 | 4.12E+03 | 3.26E+03 |
Std | 1.56E+03 | 8.15E+02 | 1.74E+03 | 1.32E+03 | 1.12E+03 | 2.29E+03 | 1.37E+03 | 1.00E+03 | 2.02E+03 | 2.00E+03 | |
Rank | 5 | 8 | 4 | 6 | 7 | 3 | 10 | 9 | 2 | 1 | |
p | 7.58E-06 | 1.92E-07 | 1.60E-05 | 1.20E-06 | 3.94E-07 | 5.26E-05 | 3.42E-07 | 2.22E-07 | 3.75E-04 | ||
F9 | Mean | 3.24E+03 | 3.48E+03 | 3.12E+03 | 3.31E+03 | 3.78E+03 | 3.41E+03 | 3.91E+03 | 3.31E+03 | 3.09E+03 | 3.07E+03 |
Std | 8.48E+01 | 2.20E+02 | 1.56E+01 | 3.24E+01 | 1.75E+02 | 1.29E+02 | 2.66E+02 | 1.04E+02 | 5.90E+01 | 9.11E+01 | |
Rank | 4 | 8 | 3 | 6 | 9 | 7 | 10 | 5 | 2 | 1 | |
p | 5.17E-06 | 6.80E-08 | 2.34E-03 | 1.66E-07 | 6.80E-08 | 1.43E-07 | 6.80E-08 | 7.95E-07 | 2.08E-01 | ||
F10 | Mean | 3.06E+03 | 4.72E+03 | 3.24E+03 | 4.54E+03 | 5.06E+03 | 2.94E+03 | 4.50E+03 | 3.56E+03 | 3.09E+03 | 2.93E+03 |
Std | 5.77E+01 | 5.67E+02 | 2.41E+02 | 4.58E+02 | 7.40E+02 | 2.29E+01 | 6.05E+02 | 3.13E+02 | 9.65E+01 | 2.41E+01 | |
Rank | 3 | 9 | 5 | 8 | 10 | 2 | 7 | 6 | 4 | 1 | |
p | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 2.50E-01 | 6.80E-08 | 6.80E-08 | 7.90E-08 | ||
Mean rank | 4.7 | 8.1 | 3.7 | 6.2 | 7.6 | 2.8 | 8.3 | 5.3 | 3.0 | 1.1 | |
Result | 5 | 9 | 4 | 7 | 8 | 2 | 10 | 6 | 3 | 1 | |
+/=/− | 0/1/9 | 0/1/9 | 0/2/8 | 0/1/9 | 0/1/9 | 0/3/7 | 0/1/9 | 0/1/9 | 0/4/6 |
F | Results | Algorithms | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
WOA | RSA | PSO | CHOA | AOA | HHO | NCHHO | ATOA | SCSO | COSCSO | ||
F1 | Mean | 3.63E+09 | 9.43E+10 | 3.50E+10 | 5.87E+10 | 1.13E+11 | 8.59E+07 | 9.44E+10 | 5.35E+10 | 1.69E+10 | 1.11E+07 |
Std | 1.31E+09 | 8.75E+09 | 1.62E+10 | 2.76E+09 | 6.18E+09 | 1.88E+07 | 9.67E+09 | 7.04E+09 | 6.50E+09 | 1.06E+07 | |
Rank | 3 | 8 | 5 | 7 | 10 | 2 | 9 | 6 | 4 | 1 | |
p | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | ||
F2 | Mean | 1.20E+04 | 1.44E+04 | 8.93E+03 | 1.51E+04 | 1.37E+04 | 9.90E+03 | 1.52E+04 | 1.42E+04 | 1.01E+04 | 9.15E+03 |
Std | 1.15E+03 | 5.84E+02 | 1.01E+03 | 6.70E+02 | 6.81E+02 | 1.09E+03 | 8.54E+02 | 7.02E+02 | 8.38E+02 | 8.92E+02 | |
Rank | 5 | 8 | 1 | 9 | 6 | 3 | 10 | 7 | 4 | 2 | |
p | 3.42E-07 | 6.80E-08 | 3.94E-01 | 6.80E-08 | 6.80E-08 | 3.60E-02 | 6.80E-08 | 6.80E-08 | 3.97E-03 | ||
F3 | Mean | 1.80E+03 | 1.94E+03 | 2.28E+03 | 1.77E+03 | 1.92E+03 | 1.82E+03 | 1.98E+03 | 1.80E+03 | 1.57E+03 | 1.62E+03 |
Std | 8.51E+01 | 4.61E+01 | 3.32E+02 | 5.16E+01 | 4.70E+01 | 7.88E+01 | 7.71E+01 | 1.23E+02 | 1.17E+02 | 1.43E+02 | |
Rank | 4 | 7 | 10 | 3 | 8 | 6 | 9 | 5 | 1 | 2 | |
p | 3.29E-05 | 6.80E-08 | 6.92E-07 | 1.60E-05 | 6.80E-08 | 7.58E-06 | 6.80E-08 | 4.60E-04 | 7.64E-02 | ||
F4 | Mean | 1.90E+03 | 1.90E+03 | 3.13E+04 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.90E+03 | 1.93E+03 | 1.90E+03 | 1.90E+03 |
Std | 0.00E+00 | 0.00E+00 | 3.83E+04 | 0.00E+00 | 8.80E-06 | 0.00E+00 | 0.00E+00 | 1.09E+01 | 0.00E+00 | 0.00E+00 | |
Rank | 1 | 1 | 4 | 1 | 2 | 1 | 1 | 3 | 1 | 1 | |
p | NaN | NaN | 8.01E-09 | NaN | 6.68E-05 | NaN | NaN | 8.01E-09 | NaN | ||
F5 | Mean | 1.26E+08 | 3.85E+08 | 3.00E+07 | 6.87E+07 | 4.35E+08 | 9.20E+06 | 3.73E+08 | 3.81E+07 | 9.72E+06 | 2.49E+06 |
Std | 6.57E+07 | 2.20E+08 | 3.03E+07 | 2.41E+07 | 1.87E+08 | 5.57E+06 | 1.41E+08 | 2.48E+07 | 5.11E+06 | 1.55E+06 | |
Rank | 7 | 9 | 4 | 6 | 10 | 2 | 8 | 5 | 3 | 1 | |
p | 6.80E-08 | 6.80E-08 | 7.95E-07 | 6.80E-08 | 6.80E-08 | 2.36E-06 | 6.80E-08 | 6.80E-08 | 3.42E-07 | ||
F6 | Mean | 6.15E+03 | 7.76E+03 | 4.43E+03 | 6.11E+03 | 7.41E+03 | 4.44E+03 | 7.81E+03 | 5.80E+03 | 4.69E+03 | 4.30E+03 |
Std | 7.63E+02 | 5.94E+02 | 4.02E+02 | 4.00E+02 | 1.44E+03 | 5.78E+02 | 1.36E+03 | 8.39E+02 | 7.27E+02 | 7.90E+02 | |
Rank | 7 | 9 | 2 | 6 | 8 | 3 | 10 | 5 | 4 | 1 | |
p | 1.58E-06 | 6.80E-08 | 3.94E-01 | 1.23E-07 | 7.90E-08 | 4.57E-01 | 6.80E-08 | 1.10E-05 | 9.62E-02 | ||
F7 | Mean | 1.59E+07 | 8.32E+07 | 8.53E+06 | 2.35E+07 | 5.78E+07 | 5.29E+06 | 9.07E+07 | 1.73E+07 | 4.30E+06 | 1.40E+06 |
Std | 8.79E+06 | 5.05E+07 | 6.39E+06 | 6.08E+06 | 3.21E+07 | 2.80E+06 | 4.58E+07 | 9.63E+06 | 3.82E+06 | 9.03E+05 | |
Rank | 6 | 9 | 4 | 7 | 8 | 3 | 10 | 5 | 2 | 1 | |
p | 4.54E-06 | 6.80E-08 | 2.06E-06 | 6.80E-08 | 6.80E-08 | 2.36E-06 | 6.80E-08 | 1.23E-07 | 1.12E-03 | ||
F8 | Mean | 1.36E+04 | 1.71E+04 | 1.04E+04 | 1.71E+04 | 1.56E+04 | 1.12E+04 | 1.64E+04 | 1.59E+04 | 1.10E+04 | 1.00E+04 |
Std | 1.02E+03 | 3.92E+02 | 8.71E+02 | 5.94E+02 | 6.30E+02 | 7.42E+02 | 6.67E+02 | 6.78E+02 | 2.02E+03 | 2.06E+03 | |
Rank | 5 | 9 | 2 | 10 | 6 | 4 | 8 | 7 | 3 | 1 | |
p | 1.43E-07 | 6.80E-08 | 9.25E-01 | 6.80E-08 | 6.80E-08 | 1.93E-02 | 6.80E-08 | 6.80E-08 | 3.37E-02 | ||
F9 | Mean | 3.80E+03 | 4.17E+03 | 3.65E+03 | 4.05E+03 | 4.88E+03 | 4.25E+03 | 4.86E+03 | 3.88E+03 | 3.44E+03 | 3.44E+03 |
Std | 1.36E+02 | 4.42E+02 | 1.58E+02 | 4.76E+01 | 2.48E+02 | 2.46E+02 | 4.38E+02 | 1.66E+02 | 1.28E+02 | 1.27E+02 | |
Rank | 4 | 7 | 3 | 6 | 10 | 8 | 9 | 5 | 2 | 1 | |
p | 5.23E-07 | 6.80E-08 | 4.68E-05 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 1.06E-07 | 9.25E-01 | ||
F10 | Mean | 3.72E+03 | 1.27E+04 | 6.14E+03 | 1.04E+04 | 1.58E+04 | 3.19E+03 | 1.39E+04 | 8.21E+03 | 4.32E+03 | 3.12E+03 |
Std | 2.48E+02 | 1.71E+03 | 1.93E+03 | 8.38E+02 | 1.66E+03 | 3.95E+01 | 1.78E+03 | 1.62E+03 | 4.74E+02 | 2.59E+01 | |
Rank | 3 | 8 | 5 | 7 | 10 | 2 | 9 | 6 | 4 | 1 | |
p | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 6.80E-08 | 5.23E-07 | 6.80E-08 | 6.80E-08 | 6.80E-08 | ||
Mean rank | 4.5 | 7.5 | 4.0 | 6.4 | 7.8 | 3.4 | 8.3 | 5.4 | 2.8 | 1.4 | |
Result | 5 | 8 | 4 | 7 | 9 | 3 | 10 | 6 | 2 | 1 | |
+/=/− | 0/1/9 | 0/1/9 | 0/3/6 | 0/1/9 | 0/0/10 | 0/2/8 | 0/1/9 | 0/0/10 | 0/4/6 |
Algorithms | Optimum Variables | Optimum Cost | |||
---|---|---|---|---|---|
k1 | k2 | k3 | k4 | ||
WOA | 0.176794286 | 3.891577393 | 9.255735323 | 0.204661441 | 1.764910575 |
AO | 0.202106856 | 3.319686034 | 9.081046814 | 0.212260217 | 1.755925500 |
SCA | 0.165196847 | 4.294568905 | 8.967124254 | 0.210654365 | 1.792045440 |
RSA | 0.175670680 | 3.624398648 | 9.999449030 | 0.205952534 | 1.869756941 |
HS | 0.177543770 | 4.098912342 | 8.878245918 | 0.217531907 | 1.824393253 |
BWO | 0.218273731 | 3.015636000 | 9.273401650 | 0.220363497 | 1.831589741 |
HHO | 0.201474520 | 3.378944473 | 8.960620234 | 0.218644819 | 1.719100771 |
AOA | 0.209983002 | 3.017257244 | 10.00000000 | 0.212237971 | 1.884562862 |
SCSO | 3.267355241 | 3.267355241 | 9.035052358 | 0.205802427 | 1.696622053 |
COSCSO | 0.205747115 | 3.252954257 | 9.036236158 | 0.205747352 | 1.695317058 |
Algorithms | Best | Worst | Mean | Std |
---|---|---|---|---|
WOA | 1.764910575 | 3.268065060 | 2.360271979 | 0.437518374 |
AO | 1.755925500 | 2.621445835 | 2.074867078 | 0.197032112 |
SCA | 1.792045440 | 1.992645879 | 1.862883723 | 0.051244352 |
RSA | 1.869756941 | 27.442208090 | 3.681496058 | 5.601754100 |
HS | 1.824393253 | 3.706355014 | 2.719342102 | 0.498207128 |
BWO | 1.831589741 | 2.952547258 | 2.251305241 | 0.284732148 |
HHO | 1.719100771 | 2.313552829 | 1.850862237 | 0.147918368 |
AOA | 1.884562862 | 2.914716233 | 2.309549772 | 0.313092730 |
SCSO | 1.696622053 | 4.242983833 | 2.004451488 | 0.765112742 |
COSCSO | 1.695317058 | 1.781726391 | 1.713814493 | 0.021561647 |
Algorithms | Optimum Variables | Optimum Cost | |||
---|---|---|---|---|---|
k1 | k2 | k3 | k4 | ||
WOA | 0.795338105 | 0.654521576 | 40.86741439 | 192.5123053 | 6736.71434 |
AO | 0.801045506 | 0.418921940 | 41.48734742 | 185.7712132 | 6030.23905 |
HS | 0.978539020 | 0.500973483 | 49.50650039 | 103.1850619 | 6547.72658 |
RSA | 0.972997715 | 0.512637098 | 47.36047546 | 200 | 6305.50049 |
SCA | 0.854015786 | 0.520118487 | 44.11567303 | 158.4223506 | 5885.88792 |
BWO | 0.938950393 | 0.563152725 | 48.41429245 | 115.1168137 | 5885.33405 |
BSA | 0.778164873 | 0.493776584 | 40.31964778 | 199.9995955 | 7303.71890 |
AOA | 0.793199905 | 0.458365929 | 40.34176154 | 200 | 5885.31787 |
SCSO | 0.796043593 | 0.406047822 | 41.24545087 | 187.5713345 | 5885.32021 |
COSCSO | 0.778539806 | 0.385198905 | 40.33914125 | 199.7284276 | 5885.31757 |
Algorithms | Best | Worst | Mean | Std |
---|---|---|---|---|
WOA | 6736.71434 | 15021.66294 | 9511.21867 | 2551.89041 |
AO | 6030.23905 | 7756.65903 | 6882.12163 | 533.52205 |
HS | 6547.72658 | 12757.34328 | 8720.20447 | 1699.11330 |
RSA | 9269.85205 | 68265.01725 | 32898.82493 | 15501.85116 |
SCA | 6518.94915 | 9160.64385 | 7511.17067 | 772.99225 |
BWO | 6772.30663 | 9518.89193 | 7538.79379 | 683.87846 |
BSA | 6200.76520 | 30037.17906 | 11444.68588 | 6484.51516 |
AOA | 6211.62984 | 18842.91882 | 11254.75474 | 3546.15966 |
SCSO | 5956.21327 | 23310.15051 | 7614.91057 | 3715.97323 |
COSCSO | 5887.02011 | 7318.91872 | 6569.02774 | 517.46245 |
Algorithms | Optimum Variables | Optimum Cost | ||
---|---|---|---|---|
k1 | k2 | k3 | ||
RSA | 54.99999359 | 1.194623188 | 25.00083760 | 2964527.52459 |
BWO | 55 | 1.193088691 | 24.53523919 | 2964639.69065 |
SOA | 53.65973171 | 1.190449899 | 24.74449640 | 2964378.80113 |
WOA | 53.44872314 | 1.190109928 | 24.71816871 | 2964375.49576 |
SCA | 55 | 1.195189878 | 24.73268345 | 2964474.41040 |
HS | 53.38712267 | 1.189241767 | 24.74999745 | 2964380.11714 |
AO | 53.47061054 | 1.190026373 | 24.64034062 | 2964384.51386 |
AOA | 55 | 1.200762326 | 24.62935858 | 2964730.55260 |
SCSO | 53.45101427 | 1.190109067 | 24.71872247 | 2964375.49653 |
COSCSO | 53.44671239 | 1.190100716 | 24.71857897 | 2964375.49533 |
Algorithms | Best | Worst | Mean | Std |
---|---|---|---|---|
RSA | 2964527.52459 | 3016290.08652 | 2978147.32748 | 14122.03566 |
BWO | 2964639.69065 | 2985654.73236 | 2968570.17953 | 5235.597886 |
SOA | 2964378.80113 | 2964502.32306 | 2964430.85626 | 39.36551384 |
WOA | 2964375.49576 | 2964376.19841 | 2964375.57737 | 0.15661415 |
SCA | 2964474.41040 | 2965960.51365 | 2964893.53068 | 407.6793260 |
HS | 2964380.11714 | 2972724.66633 | 2965744.95719 | 2116.81140 |
AO | 2964384.51386 | 2974563.67888 | 2966781.11226 | 3285.30995 |
AOA | 2964730.55260 | 2985136.92184 | 2970250.27062 | 6037.25127 |
SCSO | 2964375.49653 | 2987124.04245 | 2966285.86187 | 5997.65711 |
COSCSO | 2964375.49533 | 2964375.49533 | 2964375.49533 | 5.32331E-09 |
Algorithms | Optimum Variables | Optimum Cost | |||||||
---|---|---|---|---|---|---|---|---|---|
k1 | k2 | k3 | k4 | k5 | k6 | k7 | k8 | ||
WOA | 8.857E+02 | 4.785E+03 | 4.419E+03 | 7.565E+01 | 3.233E+02 | 8.793E+01 | 1.503E+02 | 4.233E+02 | 10089.27612 |
AO | 2.657E+03 | 4.867E+03 | 6.451E+03 | 1.227E+02 | 3.026E+02 | 1.735E+02 | 1.903E+02 | 3.791E+02 | 13975.23738 |
HS | 2.319E+03 | 2.737E+03 | 5.757E+03 | 2.414E+02 | 3.254E+02 | 1.583E+02 | 3.023E+02 | 4.252E+02 | 10812.90588 |
RSA | 1.120E+03 | 4.272E+03 | 4.772E+03 | 7.793E+01 | 3.003E+02 | 3.712E+02 | 1.469E+02 | 4.051E+02 | 27223.59476 |
BSA | 2.869E+03 | 3.093E+03 | 5.411E+03 | 1.051E+02 | 2.840E+02 | 2.013E+02 | 1.774E+02 | 3.838E+02 | 11372.90767 |
BWO | 4.001E+03 | 6.410E+03 | 4.806E+03 | 1.448E+02 | 3.183E+02 | 1.470E+02 | 1.852E+02 | 4.132E+02 | 15217.14817 |
HHO | 1.174E+03 | 1.000E+03 | 6.899E+03 | 1.253E+02 | 2.241E+02 | 1.606E+02 | 2.711E+02 | 3.241E+02 | 9073.094947 |
AOA | 5.052E+03 | 9.071E+03 | 9.071E+03 | 3.209E+01 | 2.132E+02 | 1.668E+02 | 2.137E+02 | 3.069E+02 | 23194.46529 |
SCSO | 5.119E+02 | 2.451E+03 | 4.512E+03 | 1.640E+02 | 3.196E+02 | 2.226E+02 | 2.442E+02 | 4.195E+02 | 7475.073844 |
COSCSO | 1.084E+03 | 1.103E+03 | 5.271E+03 | 1.997E+02 | 2.891E+02 | 1.948E+02 | 3.071E+02 | 3.891E+02 | 7458.396002 |
Algorithms | Best | Worst | Mean | Std |
---|---|---|---|---|
WOA | 10089.27612 | 196031.898 | 48225.06524 | 52285.7206 |
AO | 13975.23738 | 178736.7572 | 42861.35149 | 37560.63068 |
HS | 10812.90588 | 124467.6644 | 60095.18323 | 29532.60344 |
RSA | 27223.59476 | 315644.1889 | 147440.3931 | 61985.48452 |
BSA | 11372.90767 | 161404.451 | 48673.30656 | 37923.7065 |
BWO | 15217.14817 | 120323.2952 | 60086.46685 | 27717.89898 |
HHO | 9073.094947 | 77151.91678 | 21087.5583 | 15916.02815 |
AOA | 23194.46529 | 155972.8617 | 49743.46087 | 29775.26723 |
SCSO | 7475.073844 | 212854.4675 | 30578.91536 | 12694.59629 |
COSCSO | 7458.396002 | 33159.19512 | 12647.27427 | 7803.060165 |
Algorithms | Optimum Variables | Optimum Cost | |
---|---|---|---|
k1 | k2 | ||
HS | 5.445466505 | 0.293088136 | 26.531748937 |
SOA | 5.450525166 | 0.291989004 | 26.497685800 |
RSA | 5.518677222 | 0.288200889 | 26.624133745 |
WOA | 5.450602426 | 0.291877924 | 26.492127934 |
SCA | 5.452775183 | 0.291738699 | 26.495248656 |
CHOA | 5.449801688 | 0.292230441 | 26.507063312 |
BWO | 5.434579699 | 0.29571633 | 26.618680219 |
AOA | 5.427423919 | 0.303376181 | 26.991049027 |
SCSO | 5.452249069 | 0.291622918 | 26.486505805 |
COSCSO | 5.452180739 | 0.291626429 | 26.486361480 |
Algorithms | Best | Worst | Mean | Std |
---|---|---|---|---|
HS | 26.531748937 | 29.380491179 | 27.101286566 | 0.682159826 |
SOA | 26.497685800 | 26.651702678 | 26.546770890 | 0.043476606 |
RSA | 26.624133745 | 31.482014142 | 28.600884307 | 1.378250449 |
WOA | 26.492127934 | 28.062545561 | 27.067123704 | 0.475587468 |
SCA | 26.495248656 | 26.911864726 | 26.663842655 | 0.103145967 |
CHOA | 26.507063312 | 26.664362638 | 26.592798770 | 0.049578003 |
BWO | 26.618680219 | 28.701867216 | 27.247581963 | 0.524397843 |
AOA | 26.991049027 | 28.660769408 | 27.781832446 | 0.601084705 |
SCSO | 26.486505805 | 26.488283717 | 26.487303513 | 0.000514557 |
COSCSO | 26.486361480 | 26.486429135 | 26.486367501 | 0.000016150 |
Algorithms | Optimum Variables | Optimum Cost | |||
---|---|---|---|---|---|
k1 | k2 | k3 | k4 | ||
WOA | 0.086602041 | 2.079956862 | 4.093800868 | 119.228613317 | 8.955469786 |
SOA | 0.050780514 | 2.044519184 | 4.083248703 | 120 | 8.432800807 |
MVO | 0.05 | 2.050052620 | 4.087058119 | 119.979915073 | 8.463145662 |
CHOA | 0.073876185 | 2.081364562 | 4.095381685 | 120 | 8.847198681 |
SCA | 0.05 | 2.053817149 | 4.093726603 | 120 | 8.505719113 |
BWO | 0.05 | 2.105295277 | 4.096763691 | 120 | 8.723224918 |
HHO | 0.050019685 | 2.041900656 | 4.083032582 | 119.999227818 | 8.414435140 |
AOA | 0.271028410 | 0.271028410 | 4.162257291 | 120 | 57.99492127 |
SCSO | 0.05 | 2.041589027 | 4.083079945 | 120 | 8.413213831 |
COSCSO | 0.05 | 2.041513591 | 4.083027180 | 120 | 8.412698328 |
Algorithms | Best | Worst | Mean | Std |
---|---|---|---|---|
WOA | 8.955469786 | 342.7630967 | 55.49855602 | 95.85126869 |
SOA | 8.432800807 | 9.954077528 | 43.99002860 | 0.503774548 |
MVO | 8.463145662 | 314.1339038 | 9.861960059 | 88.25491267 |
CHOA | 8.847198681 | 11.80905189 | 0.871394022 | 0.815693522 |
SCA | 8.505719113 | 10.23160760 | 9.410095331 | 0.542224958 |
BWO | 8.723224918 | 10.37487240 | 9.479639241 | 0.535563793 |
HHO | 8.414435140 | 411.9250502 | 96.24528231 | 122.8529460 |
AOA | 57.99492127 | 577.6401065 | 343.1464542 | 160.6837497 |
SCSO | 8.413213831 | 56.92881071 | 10.87687234 | 10.83963680 |
COSCSO | 8.412698328 | 8.525870642 | 8.426024955 | 0.028570619 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, Q.; Zhang, L. An Adaptive Sand Cat Swarm Algorithm Based on Cauchy Mutation and Optimal Neighborhood Disturbance Strategy. Biomimetics 2023, 8, 191. https://doi.org/10.3390/biomimetics8020191
Wang X, Liu Q, Zhang L. An Adaptive Sand Cat Swarm Algorithm Based on Cauchy Mutation and Optimal Neighborhood Disturbance Strategy. Biomimetics. 2023; 8(2):191. https://doi.org/10.3390/biomimetics8020191
Chicago/Turabian StyleWang, Xing, Qian Liu, and Li Zhang. 2023. "An Adaptive Sand Cat Swarm Algorithm Based on Cauchy Mutation and Optimal Neighborhood Disturbance Strategy" Biomimetics 8, no. 2: 191. https://doi.org/10.3390/biomimetics8020191
APA StyleWang, X., Liu, Q., & Zhang, L. (2023). An Adaptive Sand Cat Swarm Algorithm Based on Cauchy Mutation and Optimal Neighborhood Disturbance Strategy. Biomimetics, 8(2), 191. https://doi.org/10.3390/biomimetics8020191