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Abstract: Sand cat swarm optimization algorithm (SCSO) keeps a potent and straightforward meta-
heuristic algorithm derived from the distant sense of hearing of sand cats, which shows excellent
performance in some large-scale optimization problems. However, the SCSO still has several dis-
advantages, including sluggish convergence, lower convergence precision, and the tendency to be
trapped in the topical optimum. To escape these demerits, an adaptive sand cat swarm optimization
algorithm based on Cauchy mutation and optimal neighborhood disturbance strategy (COSCSO)
are provided in this study. First and foremost, the introduction of a nonlinear adaptive parameter
in favor of scaling up the global search helps to retrieve the global optimum from a colossal search
space, preventing it from being caught in a topical optimum. Secondly, the Cauchy mutation operator
perturbs the search step, accelerating the convergence speed and improving the search efficiency. Fi-
nally, the optimal neighborhood disturbance strategy diversifies the population, broadens the search
space, and enhances exploitation. To reveal the performance of COSCSO, it was compared with
alternative algorithms in the CEC2017 and CEC2020 competition suites. Furthermore, COSCSO is
further deployed to solve six engineering optimization problems. The experimental results reveal that
the COSCSO is strongly competitive and capable of being deployed to solve some practical problems.

Keywords: sand cat swarm optimization algorithm; nonlinear adaptive parameter; Cauchy mutation;
optimal neighborhood disturbance; competition suite; engineering optimization problems

1. Introduction

Throughout history, optimization issues have been presented in all dimensions of
people’s lives, such as in finance, science, engineering, etc. Nevertheless, with the develop-
ment of society, optimization issues have become progressively more intricate. Traditional
optimization methods, such as the Lagrange multiplier method, the complex method,
queuing theory, and so on, require explicit descriptions of conditions and can only solve
smaller optimization problems, which cannot be tackled exactly in a limited time. At
the same time, for nonlinear engineering problems with a large quantity of constraints
and decision variables, traditional optimization methods tend to get caught in the local
optimum instead of sourcing the global optimal solution. Therefore, drawing inspiration
from numerous manifestations in nature, researchers have devised a host of powerful and
accessible meta-heuristic algorithms that, it is worth noting, can strike a superior balance
between hopping out of the topical optimum and converging to a single point in order to
arrive at a global optimum and solve sophisticated optimization problems.

The algorithms have been grouped I”to f’ve principal categories based on the inspira-
tion used to create them: (1). Human-based optimization algorithms are designed based
on human brain thinking, systems, organs, and social evolution. An example is the well-
known neural network algorithm (NNA) [1], which tackles problems in ways informed by
the message transmission of neural networks in the human brain. The Harmony Search
(HS) [2,3] algorithm simulates a musician’s ability to achieve a pleasing harmonic state by

Biomimetics 2023, 8, 191. https://doi.org/10.3390/biomimetics8020191 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics8020191
https://doi.org/10.3390/biomimetics8020191
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0001-6130-5789
https://doi.org/10.3390/biomimetics8020191
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics8020191?type=check_update&version=1


Biomimetics 2023, 8, 191 2 of 38

repeatedly adjusting the pitch through recall. (2). Those that emulate natural evolution are
classified as evolutionary-based optimization algorithms. The genetic algorithm (GA) [4] is
the most classical model for simulating evolution, in which chromosomes pass through a cy-
cle of stages to form descendants that leave more adaptive individuals through the laws and
methods of superiority and inferiority. Simultaneously, the differential evolution (DE) [5,6]
algorithm, imperial competition algorithm (ICA) [7], and memetic algorithm (MA) [8]
also belong to the algorithms based on evolutionary mechanisms. (3). Population-based
optimization algorithms are modeled to simulate the reproduction, predation, migration,
and other behaviors of a colony of organisms. In this class of algorithm, the individuals in
the population are conceived as quality-free particles seeking the best position. Ant colony
optimization (ACO) [9,10] exploits the ideology of ants searching for the shortest distance
from the nest to food. Particle swarm optimization (PSO) [11], stemming from the feeding
of birds, is the most broadly accepted swarm intelligence algorithm. The moth-flame opti-
mization (MFO) [12] algorithm serves as a mathematical model that is built by simulating
the special navigation of a moth, which spirals close to a light source until it “flames”. Other
swarm intelligence algorithms include the gray wolf optimization (GWO) [13] algorithm,
manta ray foraging optimization (MRFO) algorithm [14], artificial hummingbird algorithm
(AHA) [15], dwarf mongoose optimization (DMO) [16], and chimpanzee optimization
algorithm (CHOA) [17,18], etc. (4). Plant growth-based optimization algorithms. Such
algorithms are devised inspired by the properties of plants, such as photosynthesis, flower
pollination, and seed dispersal. The dandelion optimization (DO) [19] algorithm is inspired
by its process of rising, falling, and landing in different weather conditions depending
on the wind. The one that simulates the aggressive invasion of weeds, searches for a
suitable living space, and utilizes natural resources for rapidly growing and reproducing
is denoted as invasive weed optimization (IWO) [20]. (5). Physics-based optimization
algorithms are created in accordance with physical phenomena and regulations in nature.
The gravitational search algorithm (GSA) [21], which is derived from gravity, has a robust
global search capability and a fast convergence rate. The artificial raindrop optimization
algorithm (ARA) [22] is designed on the basis of the processes of raindrop formation,
landing, collision, confluence, and finally evaporation as water vapor.

Especially, many algorithms have been implemented for many practical engineering
problems on account of their excellent performance, such as feature selection [23–25],
image segmentation [26,27], signal processing [28], construction of water facilities [29],
path planning for walking robots [30,31], job-shop scheduling problems [32], and piping
and wiring problems in industrial and agricultural production [33]. Unlike gradient-based
optimization algorithms, meta-heuristic algorithms rely on probabilistic search rather than
gradient-based execution. With no centralized control constraints, the failure of individual
individuals does not affect the solution of the whole problem, ensuring a more stable
search process. As a general rule, as a first step, it is necessary to appropriately setup
the essential parameters in the algorithm and produce a stochastic collection of initial
solutions. Next, the search mechanism of the algorithm is applied to help find the optimum
value until the stopping constraint is attained or the optimum value is discovered [34].
Nevertheless, it is evident that there are two different aspects to every algorithm; there
are merits and demerits, and the performance will fluctuate based on the problem being
addressed. No free lunch (NFL) [35] claims that an algorithm is capable of addressing one
or more optimization problems, but there is no scientific foundation for the idea that it
is possible to successfully tackle other optimization problems. Therefore, facing several
special problems, it is sensible to propose a variety of strategies to enhance the efficiency of
the algorithm.

The sand cat swarm optimization algorithm is a recently published, completely new
swarm intelligence algorithm. In [36], SCSO is tested with some other popular algorithms
(such as PSO and GWO) on different test functions, and better results or at least com-
parable results are achieved, but they can still be further improved. As a result, this
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paper provides an enhancement to tackle the optimization problem with the following
primary contributions:

(1) The COSCSO with better performance is designed by adding three strategies to SCSO.

In the first place, the nonlinear adaptive parameters replace the original linear param-
eters to increase the global search and prevent it from being caught in a topical optimum.

In second place, the Cauchy mutation operator strategy expedites the convergence speed.
In the end, optimal neighborhood disturbance enriches population diversity.

(2) The enhanced algorithm is instrumented on test suites of different dimensions and on
real engineering optimization problems.

Analyzing the balance of COSCSO exploration and exploitation on the 30-dimensional
CEC2019 test suite.

Comparing with other competitive algorithms on the CEC2017 test suite and the
CEC2020 test suite of 30 and 50 dimensions.

The improved algorithm is deployed on six engineering optimization problems in
conjunction with nine other algorithms.

The remaining details of the paper are described below. The second part describes the
relevant work on SCSO, with the third part consisting of a summary review of the original
algorithm for sand cat swarm search for attacking prey. The fourth part elaborates on the
three improvement strategies in detail. The fifth part presents an analysis of the compara-
tive data of COSCSO, SCSO, and other optimization algorithms, while the superiority of
COSCSO is illustrated. In the sixth part, six engineering examples are collected to verify
the capabilities of COSCSO with other algorithms in addressing real-world problems. The
final part is the conclusion.

2. Related Works

Since the emergence of the sand cat swarm optimization algorithm, considerable
attention has been paid to it by researchers due to its excellence. Vahid Tavakol Aghaei,
Amir SeyyedAbbasi et al. [37] applied COSCSO to address three diverse nonlinear control
systems for inverted pendulum, Furuta pendulum, and Acrobat robotic arm. It has been
shown through simulation experiments that SCSO is simple and accessible and can be a
viable candidate for real-world control and engineering problems. In addition, several
researchers have optimized the SCSO for greater performance. Firstly, Li et al. [38] designed
an elite collaboration strategy with stochastic variation to select the top three sand cats in
the population for adaptation, and the three elites assigned different weights cooperated to
form a new sand cat position to guide the search process, avoiding the dilemma of being
entangled in a local optimum. Secondly, Amir Seyyedabbasi et al. [39] combined SCSO
with reinforcement learning techniques to better balance the exploration and exploitation
processes and further solve the mobile node localization problem in wireless sensor net-
works. Finally, the ISCSO proposed by Lu et al. [40] effectively boosts the fault diagnosis
performance of power transformers.

3. The Sand Cat Swarm Optimization

The sand cat swarm optimization (SCSO) algorithm is a remarkably new meta-heuristic
optimization algorithm proposed by Amir Seyyedabbasi et al. in 2022. Sand cats live in
very barren deserts and mountainous areas. Gerbils, hares, snakes, and insects are their
dominant sources of food. In appearance, sand cats are similar to domestic cats, but one
big difference is that their hearing is very sensitive and they can detect low-frequency noise
below 2 kHz. Therefore, they can use this special skill to find and attack their prey very
quickly. The process from discovery to prey capture is shown in Figure 1. We can compare
the sand cat’s predation to the process of finding the optimal value, which is the inspiration
of the algorithm.
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Figure 1. Sand cat capturing prey diagram.

3.1. Initialization

Originally, it is initialized in a randomized manner so that the sand cats are evenly
distributed in the exploration area:

X0 = lb + rand(0, 1) · (ub− lb) (1)

where lb and ub are the upper and lower bounds of the variable, and rand is a random
number between 0 and 1.

The resulting initial matrix is shown below:

Cat =


x1,1 x1,2 · · · x1,M
x2,1 x2,2 · · · x2,M

...
... · · ·

...
xN,1 xN,2 · · · xN,M

 (2)

where xi,j denotes the jth dimension of the ith individual, and there are a total of N
individuals and M variables. Meanwhile, the matrix of the fitness function is shown below:

Fitness =


f (x1,1; x1,2; · · · x1,M)
f (x2,1; x2,2; · · · x2,M)

...
f (xN,1; xN,2; · · · xN,M)

 (3)

After comparing all fitness values, the minimum value is found, and the individual
corresponding to it is the current optimal one.

3.2. Searching for Prey (Exploration)

The sand cat searches for prey mainly using its very sharp sense of hearing, which can
detect low-frequency noise below 2 kHz. Then its mathematical model in the prey-finding
stage is shown as follows:

Se = SM − (SM ×
t
T
) (4)

re = Se × rand (0, 1) (5)

X(t + 1) = re · (Xa(t)− rand (0, 1) · X(t)) (6)

where SM = 2, Se denotes the general sensitivity range of the sand cats, whose value
decreases linearly from 2 to 0, and re is the sensitivity range of a particular sand cat in the
sand cat swarm. t is the immediate count of the iteration, and T depicts the utmost count
of iterations for the entire search process. Xa(t) is any one of the populations, and X(t) is
the immediate position of the sand cat. Notably, when Se = 0, re = 0, the latest position of
the sand cat will also be assigned to 0 according to Equation (6), also in the search space.
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Furthermore, in order to guarantee a steady state between the exploration and exploitation
phases, Re is put forward, and Re ∈ [0, 2], its value is given by Equation (7).

Re = 2× Se × rand (0, 1)− Se (7)

3.3. Grabbing Prey (Exploitation)

As the search process progresses and the sand cat attacks the prey found in the
previous stage, its mathematical modeling of the prey attack phase is as follows:

dist = |rand (0, 1) · Xbest(t)− X(t)| (8)

X(t + 1) = X(t)− dist · cos(θ) · re (9)

where dist is the distance between the best and the current individual. θ is a random angle
from 0 to 360.

3.4. Bridging Phase

The conversion of SCSO from the exploration phase to exploitation is closely associated
with the parameter Re. When |Re| < 1, the sand cat gets in close and captures the prey,
which is in the exploitation phase; when |Re| > 1, it continues to search different spaces to
find the location of the prey, which is in the exploration phase. The pseudo-code of SCSO is
seen in [36]. The mathematical modeling at this time is:

X(t + 1) =
{

Xbest(t)− dist · cos(θ) · re,
re · (Xa(t)− rand(0, 1) · X(t)),

|Re ≤ 1| ; exploitation
|Re ≥ 1| ; exploration

(10)

4. Improved Sand Cat Swarm Optimization

In SCSO, the sand cat uses its powerful ability to recognize lower-profile noise below
2 kHz to capture prey, although the algorithm is straightforward and accessible to imple-
ment and allows for iterating quickly until the best position is found. However, there are
some shortcomings, such as the tendency to be stuck in the topical optimum and excessive
premature convergence. So now this algorithm is optimized and improved. In this paper,
three strategies will be taken, namely: nonlinear adaptive parameter, Cauchy mutation
strategy, and optimal neighborhood disturbance strategy.

4.1. Nonlinear Adaptive Parameters

In SCSO, the parameter Se plays a very prominent role; firstly, it indicates the sensitivity
range of the sand cat hearing. Secondly, it influences the size of the parameter Re, which
is in turn accountable for equilibrating the global search and local exploitation phases
of the iterative process, and thus Se is also a parameter that coordinates the exploration
and exploitation phases. Finally, it is also a crucial component of the convergence factor
re, which affects the speed of convergence during the iteration. Whereas in the original
algorithm, Se decreases linearly from 2 to 0. This idealized law is not representative of
the actual sand cat’s predation ability, so a nonlinear adaptive parameter strategy is now
utilized with the formula as in Equation (11).

Se = 2|qt|

1− (
t
T
)

2
−

1− (
t
T
)

1
4
+ 2

[
1− (

t
T
)

1
4

]
(11)

Here, qt = 1− 2(qt−1)
2, and qt ∈ [0, 1], qt 6= 0.5.

The variation curves before and after the improvement of parameter Se are displayed
in Figure 2. Comparing the two curves, we can see that the modified Se has a larger
value in the preliminary portion of the optimization process, focusing on the global search;
moreover, due to the perturbation of qt, the value of Se sometimes becomes smaller in the
optimization process, which can cater for the local search at this time, forming a faster
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convergence speed and enabling a more precise search accuracy. In the posterior part of
the optimization process, the value is on the lower side, focusing on the local search, and
due to the perturbation of qt, the value of Se sometimes becomes larger in the optimization
process, which ensures that the algorithm avoids becoming bogged down in local optima.

Figure 2. The curve of the variation of parameter Se.

4.2. Cauchy Mutation Strategy

The Cauchy distribution is distinguished by long tails at both ends and a larger peak at
the central origin. The introduction of the Cauchy mutation operator [41–43] as a mutational
step provides each sand cat with a greater likelihood of skipping to a better place. Once
obtaining the local optimal solution, the Cauchy mutation operator perturbs the step size,
making the step size larger, which in turn causes the sand cat to jump away from the local
optimal position. Conversely, this operator makes the step size smaller and speeds up the
convergence when the individual is pursuing the global optimum. The Cauchy mutation
has been integrated with many algorithms, such as MFO and CSO. The Cauchy distribution
function and the probability density function of the Cauchy distribution are described
as follows:

F(x) =
1
π

arctan(
x− x0

γ
) +

1
2

(12)

f (x) =
1
π

[
γ

(x− x0)
2 + γ2

]
(13)

where x0 is referred to as the position parameter at the maximum and γ is the size parameter
of half the distance at half the width of the peak. Here x0 = 0, γ = 1, the standard Cauchy
distribution is obtained, and its probability density function is as in Equation (14), and
Figure 3 is the probability density function curve of the standard Cauchy distribution.

f (x) =
1

π(1 + x2)
(14)
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Figure 3. Curve of the probability density function of the Cauchy distribution.

To diminish the probability of dropping into the local optimum of SCSO, this paper
uses the Cauchy mutation operator to promote the global optimization-seeking ability of
the algorithm, expedite the convergence speed, and increase the population diversity. Well,
at this point, the individual renewal changes to

X(t + 1) = X(t)− C(0, 1) · re · dist · cos(θ) (15)

where C(0, 1) is a stochastic number that submits to the standard Cauchy distribution.

4.3. Optimal Neighborhood Disturbance Strategy

When a sand cat swarm is feeding, all individuals move towards the location of prey, a
circumstance that may account for the homogeneity of the population but is not conducive
to the fluidity of the global search phase. Therefore, an optimal neighborhood disturbance
strategy [44] is now utilized. When the global optimum is updated, a further search is
performed around it. With this, population diversity can be enriched to obviate the need
for a local optimum. The optimal neighborhood disturbance is shown as follows:

X∗best(t) =
{

Xbest(t) + 0.5 · r1 · Xbest(t),
Xbest(t),

r2 < 0.5
r2 ≥ 0.5

(16)

where X∗best(t) is the new individual generated after disturbance, r1, r2 ∈ [0, 1].
After the optimal neighborhood search, the greedy strategy is adopted to opt for

judgment. The specific formula is as follows:

Xbest(t) =
{

X∗best(t),
Xbest(t),

f (X∗best(t)) < f (Xbest(t))
f (Xbest(t)) ≤ f (X∗best(t))

(17)

4.4. COSCSO Steps

In this work, a nonlinear adaptive parameter, a Cauchy mutation strategy, and an
optimal neighborhood disturbance strategy are combined to modify the standard SCSO al-
gorithm to form the COSCSO algorithm. The fundamental steps of COSCSO are as follows:

Step 1. Initialization, identifying the population magnitude N, the maximum number
of iterations T, and the parameters needed.

Step 2. Computing and comparing the fitness value of each sand cat and getting the
existing best position.

Step 3. Update the nonlinear parameters Se and the parameters re, Re by means of
Equations (11), (5) and (7).

Step 4. Generate the Cauchy mutation operator.
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Step 5. Update the individual position of the sand cat if |Re| > 1, using Equation (6);
otherwise, use Equation (15).

Step 6. Compare the fitness values of the existing individual, and if the former is
better, renew the best individual position.

Step 7. Generate new individuals by perturbing the existing best individual according
to the optimal neighborhood disturbance strategy using Equation (16).

Step 8. A comparison of the fitness values of the freshly engendered individual and
the best individual in accordance with the greedy strategy, and upgrading the position of
the best individual if the former is preferable.

Step 9. Revert to Step 3 if the maximum count of iteration T has not been achieved;
otherwise, continue with Step 10.

Step 10. Output the global best position and the corresponding fitness value.
For a more concise description of the procedures of the COSCSO algorithm, the

pseudo-code of the algorithm is given in Table 1 and the flowchart in Figure 4.

Table 1. Pseudo-code of COSCSO algorithm.

Algorithm: The COSCSO algorithm.

Initialize individuals Xi (I = 1,2,\,N)
Calculate the fitness values for all individuals.
1: While (t < T)
2: Update the parameters like Se, re, Re;
3: For each individual
4: Get a random angle based on Roulette Wheel Selection (0◦ ≤ θ ≤ 360◦);
5: If (|Re| ≤ 1 )
6: Update the individual position in conformity with Equation (15);
7: Else
8: Update the individual position in conformity with Equation (6);
9: End
10: Calculate the fitness values of individuals, Produce the Xbest(t);
11: Produce the X*

best(t) in conformity with Equation (16);
12: Calculate the fitness, Update the Xbest(t);
13: End
14: t = t ++
15: End

Figure 4. Flow chart of the COSCSO algorithm.
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4.5. Computational Complexity of COSCSO Algorithm

The computational complexity of an algorithm is defined as the volume of resources it
consumes during implementation. When the COSCSO algorithm program is performed,
the complexity of each D-dimensional individual in the population is O(D). Then, for a
population size of N individuals, its computational complexity is O(N × D), and in the
process of finding the best, it needs to be executed T times to get the final result, and the
final is O(T × N × D). In the following section, we will test the capability of COSCSO by
exploiting different test suites and concrete engineering problems.

5. Numerical Experiments and Analysis

In this chapter, the balance between the COSCSO exploration and development pro-
cesses is first discussed. Then, the more challenging CEC2017 test suite and the CEC2020
test suite were selected to test the final performance of COSCSO. COSCSO is evaluated with
standard SCSO as well as with an extensive variety of meta-heuristic algorithms, and the
values of the required parameters for all algorithms are specified in Table 2. All statistical
experiments are conducted on the same computer. In addition, all algorithms are imple-
mented in 20 independent executions of each function, taking N = 50 and T = 1000. And
the optimization results are compared by analyzing the average and standard deviation of
the best solutions.

Table 2. Parameters setting in traditional classical algorithms.

Algorithms Parameters Name Parameters Values

PSO
Self-learning factor o1

Group learning factor o2
Inertia weight ω

0.5
0.5
0.8

RSA Sensitive parameter α
Control parameter β

0.1
0.05

BWO Balance factor Bf (0, 1)
DO Adaptive parameter α [0, 1]

AOA Control parameter σ
Sensitive parameter v

0.499
0.5

HHO Initial energy E0 [−1, 1]
ATOA Sensitive parameter α 5

NCHHO Control parameter c
Control parameter a1

[0, 2]
4

WOA Control parameter m
Constant n

Linearly decreases from 2 to 0
1

CHOA parameter f Linearly decreases from 2 to 0

5.1. Exploration and Exploitation Analysis

Exploration and exploitation play an integral role in the optimization process. There-
fore, when evaluating algorithm performance, it is vital to discuss not only the ultimate
consequences of the algorithm but also the nature of the balance between exploration and
exploitation [45]. Figure 5 gives a diagram of the exploration and exploitation of COSCSO
on the 30-dimensional CEC2020 test suite.

As we can observe from the figure, the algorithm progressively transitions from the
exploration phase to the exploitation phase. On the simpler basic functions F2 and F4
and the most complex composition function F9, COSCSO moves to the exploitation phase
around the 10th iteration and rapidly reaches the top of the exploitation phase, illustrating
the greatly enhanced convergence accuracy of COSCSO. On the hybrid functions F5, F6,
and F7, COSCSO also preserves a strong exploration ability in the middle and late stages,
effectively refraining from plunging into a local optimum.
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Figure 5. Diagram of COSCSO exploration and exploitation.

5.2. Comparison and Analysis on the CEC2017 Test Suite

Firstly, a running test is performed on the 30-dimensional CEC2017 test suite. The
specific formulas for these functions are given in [46]. Then, COSCSO is compared
and analyzed with SCSO and eight other competitive optimization algorithms, which
include: PSO, RSA [47], BWO [48], DO, AOA [49], HHO [50,51], NCHHO [52], and
ATOA [53].

The results obtained by running COSCSO 20 times with other competing algorithms
are given in Table 3. There are 24 test functions ranked first in COSCSO, accounting for
about 82.76% of all test functions. At first, on single-peak test functions, COSCSO has
a distinct superiority over others in regard to the mean value and can achieve a smaller
standard deviation. Next, on the multi-peak test function, although COSCSO is at a weak
point compared to PSO in F5 and F6, it is more competitive with the other nine algorithms.
Furthermore, on the hybrid functions, except for F15 and F19, COSCSO is obviously superior
to other algorithms, especially on F12–F14, F16, and F18, where COSCSO is on the leading edge
with respect to mean and standard deviation. Finally, on the synthetic functions, COSCSO
is far ahead on F22, F28, and F30, but on F21, it is marginally weaker than PSO and SCSO.
The last row of the table shows the average ranking of the ten algorithms. The rankings
are: COSCSO > HHO > SCSO > PSO > DO > ATOA > AOA > NCHHO = BWO > RSA. In
summary, the COSCSO algorithm has superior merit-seeking ability on the CEC2017 test suite;
this fully demonstrates that the three strategies effectively boost convergence accuracy and
efficiency and greatly reduce the defects of the initial algorithm.

Table 3 depicts the Wilcoxon rank-sum test p-values [54] derived from solving the
30-dimensional CEC2017 problem for 20 runs of other meta-heuristic algorithms at the
95% significance level (α = 0.05), using COSCSO as a benchmark. The last row shows the
statistical results, “+” indicates the number of algorithms that outperform the COSCSO,
and “=” indicates that there is no appreciable variation among the two algorithms, at
this point α = 0.05. “-” indicates the number of times COSCSO outperformed other algo-
rithms. Combining the ranking of each algorithm, we get that COSCSO is significantly
superior to RSA, BWO, DO, AOA, NCHHO, and ATOA on all test functions, worse than
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PSO on F6 and F21, and apparently preferred to PSO on 14 test functions. So, all together,
COSCSO has by far better competence compared to other algorithms and is a wise choice
for solving the CEC2017 problem.

Table 3. Comparison results on functions of CEC2017 (Bold type is the optimal value).

F Results
Algorithms

PSO RSA BWO DO AOA HHO NCHHO ATOA SCSO COSCSO

F1

Mean 8.08E+09 4.64E+10 4.76E+10 1.67E+09 4.86E+10 1.55E+07 4.37E+10 2.20E+10 3.88E+09 3.48E+05
Std 6.54E+09 6.30E+09 5.54E+09 9.53E+08 1.10E+10 3.75E+06 9.77E+09 8.28E+09 1.74E+09 7.03E+05

Rank 5 8 9 3 10 2 7 6 4 1
p 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08

F3

Mean 5.84E+04 7.86E+04 7.69E+04 8.56E+04 7.68E+04 2.13E+04 8.96E+04 8.14E+04 4.37E+04 1.11E+04
Std 2.57E+04 5.33E+03 4.27E+03 5.64E+03 7.18E+03 5.48E+03 4.00E+03 9.29E+03 7.06E+03 3.26E+03

Rank 4 7 5 9 6 2 10 8 3 1
p 9.17E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 1.38E-06 6.80E-08 6.80E-08 6.80E-08

F4

Mean 1.35E+03 8.84E+03 1.15E+04 6.91E+02 1.28E+04 5.41E+02 1.14E+04 2.43E+03 7.47E+02 5.05E+02
Std 9.28E+02 2.22E+03 1.12E+02 1.02E+02 3.34E+03 2.74E+01 3.18E+03 1.40E+03 3.01E+02 1.96E+01

Rank 5 7 9 3 10 2 8 6 4 1
p 6.80E-08 6.80E-08 6.80E-08 1.23E-07 6.80E-08 1.04E-04 6.80E-08 6.80E-08 2.56E-07

F5

Mean 6.99E+02 9.14E+02 9.11E+02 7.84E+02 8.92E+02 7.39E+02 8.93E+02 8.38E+02 7.32E+02 7.24E+02
Std 4.04E+01 2.62E+01 2.12E+01 4.84E+01 2.80E+01 2.45E+01 4.40E+01 3.27E+01 5.03E+01 4.88E+01

Rank 1 10 9 5 7 4 8 6 3 2
p 1.08E-01 6.80E-08 6.80E-08 9.21E-04 6.80E-08 1.33E-01 1.23E-07 3.94E-07 5.79E-01

F6

Mean 6.49E+02 6.87E+02 6.86E+02 6.68E+02 6.74E+02 6.64E+02 6.83E+02 6.65E+02 6.60E+02 6.59E+02
Std 8.98E+00 6.15E+00 3.79E+00 4.16E+00 5.69E+00 5.90E+00 7.64E+00 9.24E+00 9.60E+00 8.97E+00

Rank 1 10 9 6 7 4 8 5 3 2
p 1.79E-04 6.80E-08 6.80E-08 1.16E-04 7.95E-07 1.08E-01 7.90E-08 2.56E-02 9.46E-01

F7

Mean 1.15E+03 1.38E+03 1.36E+03 1.25E+03 1.33E+03 1.29E+03 1.35E+03 1.24E+03 1.13E+03 1.12E+03
Std 1.58E+02 3.95E+01 4.66E+01 1.03E+02 6.59E+01 7.03E+01 7.41E+01 6.09E+01 9.85E+01 1.14E+02

Rank 3 10 9 5 7 6 8 4 2 1
p 6.17E-01 6.80E-08 9.17E-08 3.38E-04 9.13E-07 2.60E-05 5.23E-07 3.05E-04 7.35E-01

F8

Mean 9.81E+02 1.13E+03 1.13E+03 1.01E+03 1.10E+03 9.72E+02 1.13E+03 1.09E+03 9.91E+02 9.71E+02
Std 4.46E+01 2.16E+01 1.19E+01 2.50E+01 2.29E+01 2.76E+01 3.60E+01 3.31E+01 3.16E+01 3.56E+01

Rank 3 9 8 5 7 2 10 6 4 1
p 5.43E-01 6.80E-08 6.80E-08 3.05E-04 6.80E-08 8.82E-01 6.80E-08 7.90E-08 6.79E-02

F9

Mean 5.62E+03 1.01E+04 1.06E+04 6.90E+03 6.95E+03 6.88E+03 8.88E+03 1.24E+04 5.58E+03 5.11E+03
Std 2.29E+03 9.13E+02 6.65E+02 6.96E+02 1.12E+03 8.05E+02 1.54E+03 3.16E+03 8.87E+02 3.22E+02

Rank 3 8 9 5 6 4 7 10 2 1
p 6.17E-01 6.80E-08 6.80E-08 6.80E-08 1.10E-05 7.95E-07 6.80E-08 6.80E-08 6.87E-04

F10

Mean 5.48E+03 8.25E+03 8.55E+03 5.75E+03 7.44E+03 5.71E+03 8.26E+03 7.40E+03 5.88E+03 5.33E+03
Std 6.40E+02 3.65E+02 3.58E+02 4.41E+02 5.05E+02 5.50E+02 6.11E+02 5.96E+02 7.38E+02 8.03E+02

Rank 2 8 10 4 7 3 9 6 5 1
p 5.25E-01 6.80E-08 6.80E-08 2.75E-02 2.22E-07 9.09E-02 9.17E-08 6.01E-07 2.75E-02

F11

Mean 1.55E+03 8.06E+03 6.60E+03 2.52E+03 7.76E+03 1.28E+03 9.79E+03 7.20E+03 1.73E+03 1.27E+03
Std 1.88E+02 2.79E+03 6.51E+02 6.82E+02 2.19E+03 4.84E+01 2.43E+03 4.81E+03 3.10E+02 6.12E+01

Rank 3 9 6 5 8 2 10 7 4 1
p 2.96E-07 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.95E-01 6.80E-08 6.80E-08 9.17E-08

F12

Mean 6.49E+08 1.38E+10 9.76E+09 8.43E+07 1.16E+10 1.98E+07 1.76E+07 7.35E+09 1.40E+08 6.89E+06
Std 6.66E+08 3.54E+09 2.11E+09 7.05E+07 2.96E+09 1.48E+07 1.32E+07 2.93E+09 1.77E+08 8.68E+06

Rank 6 10 8 4 9 3 2 7 5 1
p 1.66E-07 6.80E-08 6.80E-08 1.92E-07 6.80E-08 5.63E-04 6.80E-08 6.80E-08 1.06E-07

F13

Mean 4.21E+08 1.08E+10 5.55E+09 1.29E+06 7.67E+09 4.45E+05 4.30E+09 3.00E+08 1.44E+07 1.38E+05
Std 9.20E+08 4.05E+09 1.62E+09 4.16E+06 4.65E+09 1.42E+05 2.08E+09 3.34E+08 2.67E+07 1.03E+05

Rank 6 10 8 3 9 2 7 5 4 1
p 1.44E-04 6.80E-08 6.80E-08 3.97E-03 6.80E-08 1.05E-06 6.80E-08 6.80E-08 2.07E-02

F14

Mean 1.25E+05 7.35E+06 2.27E+06 1.58E+06 1.15E+06 2.85E+05 6.36E+06 1.67E+06 4.34E+05 4.44E+04
Std 1.89E+05 9.53E+06 1.02E+06 9.04E+05 1.33E+06 2.30E+05 5.46E+06 1.57E+06 7.20E+05 3.31E+04

Rank 2 10 8 6 5 3 9 7 4 1
p 1.23E-02 6.80E-08 6.80E-08 6.80E-08 2.36E-06 5.90E-05 6.80E-08 7.58E-06 1.35E-03
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Table 3. Cont.

F Results
Algorithms

PSO RSA BWO DO AOA HHO NCHHO ATOA SCSO COSCSO

F15

Mean 7.03E+04 6.22E+08 2.15E+08 6.75E+04 2.31E+06 5.44E+04 1.27E+08 1.41E+04 2.29E+05 4.53E+04
Std 4.11E+04 3.12E+08 1.08E+08 7.62E+04 1.02E+07 3.43E+04 2.27E+08 1.07E+04 5.94E+05 3.22E+04

Rank 5 10 9 4 7 3 8 1 6 2
p 1.55E-02 6.80E-08 6.80E-08 3.23E-01 3.06E-03 3.79E-01 6.80E-08 9.75E-06 1.81E-01

F16

Mean 3.15E+03 5.64E+03 5.24E+03 3.50E+03 4.78E+03 3.17E+03 5.00E+03 3.54E+03 3.12E+03 3.08E+03
Std 3.54E+02 1.47E+03 5.18E+02 4.37E+02 7.45E+02 3.86E+02 6.24E+02 3.41E+02 3.66E+02 3.36E+02

Rank 3 10 9 5 7 4 8 6 2 1
p 3.79E-01 6.80E-08 6.80E-08 3.64E-03 1.06E-07 4.90E-01 6.80E-08 5.09E-04 5.08E-01

F17

Mean 2.53E+03 5.34E+03 3.74E+03 2.56E+03 3.31E+03 2.55E+03 3.08E+03 2.69E+03 2.47E+03 2.44E+03
Std 2.74E+02 3.62E+03 3.82E+02 3.21E+02 5.48E+02 3.57E+02 5.03E+02 1.44E+02 2.82E+02 2.86E+02

Rank 3 10 9 5 8 4 7 6 2 1
p 5.61E-01 6.80E-08 7.90E-08 2.98E-01 9.13E-07 4.41E-01 3.29E-05 2.14E-03 7.15E-01

F18

Mean 2.34E+06 3.35E+07 2.70E+07 6.72E+06 1.19E+07 1.86E+06 5.49E+07 4.21E+06 1.20E+06 9.94E+05
Std 6.10E+06 2.73E+07 1.40E+07 5.32E+06 8.24E+06 1.76E+06 4.93E+07 3.08E+06 1.11E+06 1.01E+06

Rank 4 9 8 6 7 3 10 5 2 1
p 9.03E-01 6.80E-08 6.80E-08 8.60E-06 1.92E-07 7.64E-02 2.96E-07 1.25E-05 2.85E-01

F19

Mean 1.62E+07 6.19E+08 3.07E+08 1.14E+06 1.79E+06 3.46E+05 2.20E+08 3.41E+04 4.23E+06 2.44E+05
Std 4.56E+07 2.77E+08 1.30E+08 9.55E+05 7.77E+04 2.09E+05 2.70E+08 4.54E+04 9.10E+06 4.08E+05

Rank 7 10 9 4 5 3 8 1 6 2
p 7.35E-01 6.80E-08 6.80E-08 3.75E-04 9.13E-07 9.05E-03 6.80E-08 7.58E-06 8.29E-05

F20

Mean 2.72E+03 2.95E+03 2.91E+03 2.99E+03 2.78E+03 2.72E+03 2.99E+03 2.89E+03 2.69E+03 2.66E+03
Std 2.65E+02 1.31E+02 1.03E+02 2.56E+02 2.17E+02 1.96E+02 2.19E+02 1.91E+02 1.83E+02 1.62E+02

Rank 4 8 7 10 5 3 9 6 2 1
p 4.90E-01 5.87E-06 2.69E-06 7.41E-05 6.79E-02 2.73E-01 2.92E-05 6.87E-04 7.35E-01

F21

Mean 2.49E+03 2.69E+03 2.71E+03 2.55E+03 2.65E+03 2.55E+03 2.70E+03 2.62E+03 2.51E+03 2.54E+03
Std 4.39E+01 4.15E+01 3.47E+01 1.05E+02 4.79E+01 5.16E+01 5.23E+01 4.29E+01 3.48E+01 4.51E+01

Rank 1 8 10 5 7 4 9 6 2 3
p 4.16E-04 6.80E-08 6.80E-08 2.18E-01 2.06E-06 9.89E-01 1.66E-07 7.41E-05 1.93E-02

F22

Mean 6.20E+03 8.35E+03 8.30E+03 5.30E+03 8.25E+03 5.74E+03 9.38E+03 7.63E+03 3.49E+03 3.02E+03
Std 1.79E+03 1.06E+03 6.84E+02 2.65E+03 1.08E+03 2.06E+03 1.04E+03 2.21E+03 1.30E+03 1.77E+03

Rank 5 8 7 3 9 4 10 6 2 1
p 1.41E-05 3.42E-07 1.66E-07 9.75E-06 3.42E-07 2.30E-05 1.43E-07 1.38E-06 1.29E-04

F23

Mean 2.97E+03 3.25E+03 3.28E+03 3.07E+03 3.51E+03 3.13E+03 3.67E+03 3.07E+03 2.93E+03 2.92E+03
Std 8.40E+01 7.39E+01 6.25E+01 1.48E+02 1.45E+02 1.40E+02 1.39E+02 6.62E+01 4.15E+01 6.87E+01

Rank 3 7 8 5 9 6 10 4 2 1
p 8.59E-02 6.80E-08 6.80E-08 2.47E-04 6.80E-08 3.07E-06 6.80E-08 1.05E-06 8.39E-01

F24

Mean 3.16E+03 3.47E+03 3.52E+03 3.19E+03 3.80E+03 3.11E+03 3.80E+03 3.28E+03 3.09E+03 3.08E+03
Std 7.63E+01 1.59E+02 7.24E+01 7.65E+01 2.48E+02 1.84E+01 2.38E+02 6.80E+01 6.91E+01 6.44E+01

Rank 4 7 8 5 10 3 9 6 2 1
p 4.32E-03 6.80E-08 6.80E-08 2.60E-05 6.80E-08 1.99E-01 6.80E-08 1.06E-07 6.95E-01

F25

Mean 3.17E+03 4.85E+03 4.31E+03 3.03E+03 5.28E+03 2.92E+03 4.60E+03 3.43E+03 3.09E+03 2.93E+03
Std 3.42E+02 6.52E+02 1.63E+02 5.05E+01 8.73E+02 2.30E+01 4.43E+02 2.85E+02 7.83E+01 2.17E+01

Rank 5 9 7 3 10 2 8 6 4 1
p 9.17E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.55E-01 6.80E-08 6.80E-08 7.90E-08

F26

Mean 6.73E+03 9.68E+03 1.03E+04 6.96E+03 1.04E+04 7.56E+03 1.05E+04 8.28E+03 6.63E+03 6.52E+03
Std 8.80E+02 8.20E+02 3.43E+02 1.76E+03 1.02E+03 1.30E+03 1.11E+03 1.13E+03 1.41E+03 1.86E+03

Rank 3 7 8 4 9 5 10 6 2 1
p 9.46E-01 3.94E-07 6.80E-08 2.73E-01 1.06E-07 4.68E-02 1.06E-07 1.23E-03 9.89E-01

F27

Mean 3.33E+03 3.89E+03 3.90E+03 3.39E+03 4.39E+03 3.42E+03 4.53E+03 3.42E+03 3.36E+03 3.32E+03
Std 7.58E+01 5.05E+02 1.34E+02 7.83E+01 3.28E+02 1.14E+02 5.01E+02 8.17E+01 7.70E+01 8.83E+01

Rank 2 7 8 5 9 4 10 6 3 1
p 3.94E-01 3.42E-07 6.80E-08 2.22E-04 6.80E-08 1.61E-04 7.90E-08 3.71E-05 2.23E-02

F28

Mean 4.26E+03 5.89E+03 6.20E+03 3.47E+03 6.89E+03 3.29E+03 6.31E+03 4.23E+03 3.53E+03 3.26E+03
Std 8.73E+02 9.02E+02 2.92E+02 5.79E+01 9.24E+02 1.77E+01 8.83E+02 4.62E+02 1.37E+02 2.50E+01

Rank 6 7 8 3 10 2 9 5 4 1
p 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 1.44E-04 6.80E-08 6.80E-08 6.80E-08
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Table 3. Cont.

F Results
Algorithms

PSO RSA BWO DO AOA HHO NCHHO ATOA SCSO COSCSO

F29

Mean 4.63E+03 7.40E+03 6.51E+03 4.88E+03 7.12E+03 4.60E+03 6.63E+03 4.70E+03 4.57E+03 4.55E+03
Std 4.96E+02 3.56E+03 5.43E+02 3.71E+02 1.06E+03 4.09E+02 9.81E+02 3.68E+02 3.61E+02 4.22E+02

Rank 3 10 7 6 9 4 8 5 2 1
p 5.43E-01 1.06E-07 1.06E-07 8.35E-03 6.80E-08 5.25E-01 1.23E-07 2.08E-01 5.25E-01

F30

Mean 6.67E+07 2.76E+09 8.24E+08 1.11E+07 1.14E+09 3.33E+06 6.27E+08 5.55E+07 8.36E+07 1.95E+06
Std 2.56E+08 9.66E+08 3.24E+08 5.53E+06 1.01E+09 2.02E+06 4.99E+08 5.30E+07 9.62E+06 1.41E+06

Rank 5 10 8 3 9 2 7 4 6 1
p 3.97E-03 6.80E-08 6.80E-08 2.22E-07 6.80E-08 2.39E-02 6.80E-08 3.42E-07 1.58E-06

Mean rank 3.6897 8.3793 8.4828 4.7931 7.8621 3.2759 8.3793 5.8276 3.3103 1.2414
Result 4 8 9 5 7 2 8 6 3 1
+/=/− 2/13/14 0/0/29 0/0/29 0/4/25 0/1/28 0/13/16 0/0/29 1/1/27 0/12/17

Figure 6 illustrates the convergence curves of COSCSO with other algorithms on the
CEC2017 test functions. Observing the curves, we can see that COSCSO is a dramatic
enhancement over SCSO. Although for F5, F6, and F21, COSCSO is at a disadvantage
compared to PSO and inferior to the ATOA on F15 and F19, COSCSO is still more superior
than the other algorithms. On the remaining functions, COSCSO obviously converges faster
and with higher convergence accuracy than SCSO. These advantages are attributed to the
improvement of three major strategies of adaptive parameters, Cauchy mutation operator
and optimal neighborhood disturbance, which hinder the algorithm from dropping into
local optimum and excessive premature convergence.

Figure 6. Cont.
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Figure 6. Convergence curves of COSCSO with other algorithms (CEC2017).

Figure 7 depicts the box plots of COSCSO with other algorithms on the CEC2017 test
functions. The height of the box mirrors the level of swing in the data, and a narrower
box plot represents more concentrated data and a more stable algorithm. If there are
abnormal points in the data that are beyond the normal range of the data, these points
are signaled by a “+”. From the figure, we can see that on F1, F3, F4, F11, F12, F14, F15,
F17, F18, F27, F28, and F30, the box plot width of the COSCSO is significantly narrower
than other algorithms. In addition, except for F22, the COSCSO has almost no outliers.
This implies that its operation is more stable and has good robustness in solving the
CEC2017 test functions.

Radar maps, also known as spider web maps, map the amount of data in multiple
dimensions onto the axes and can give an indication of how high or low the weights of
each variable are. Figure 8 shows the radar maps of COSCSO with other algorithms, which
are plotted based on the ranking of the ten meta-heuristic algorithms on the CEC2017 test
function. From the figure, it can be observed that COSCSO constitutes the smallest shaded
area, which further sufficiently illustrates the capacity of COSCSO ahead of the other nine
comparative algorithms. The shaded area of HHO ranks second, which indicates that HHO
has some competition for COSCSO.
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Figure 7. Cont.
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Figure 7. Box plots of COSCSO with other algorithms (CEC2017).



Biomimetics 2023, 8, 191 18 of 38

Figure 8. Radar maps of COSCSO with other algorithms (CEC2017).
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5.3. Comparison and Analysis on the CEC2020 Test Suite

In order to further test the COSCSO’s optimization-seeking ability, this paper is also
tested on the 30-dimensional and 50-dimensional CEC2020 test suites, respectively. The
CEC2020 test suite [55] is composed of some of the CEC2014 test suite [56] and the CEC2017
test suite. The algorithms compared with it are eight other optimization algorithms besides
SCSO, which include WOA [57], RSA, PSO, CHOA, AOA, HHO, NCHHO, and ATOA. All
parameter definitions remain identical except for the number of dimensions.

The experimental results of each algorithm on the 30-dimensional CEC2020 test
suite are given in Table 4. From the data, it can be seen that COSCSO is ahead of SCSO
and other comparative algorithms on nine test functions. And on F6, the HHO ranks
first and the COSCSO ranks second, which is better than the other eight algorithms. The
smallest standard deviation on F1, F5, and F7 indicates that COSCSO is more steady
on these test functions. The table shows that the overall ranking is COSCSO > HHO
> SCSO > PSO > WOA > ATOA > CHOA > AOA > RSA > NCHHO. The average rank
of COSCSO is 1.1, which is the first overall rank, and the average rank of HHO is 2.8,
which is the second overall rank, which shows that COSCSO is consistently first among
all algorithms many times.

Table 4. Comparison results on functions of 30-dimensional CEC2020.

F Results
Algorithms

WOA RSA PSO CHOA AOA HHO NCHHO ATOA SCSO COSCSO

F1

Mean 5.27E+08 5.14E+10 6.81E+09 2.83E+10 4.80E+10 1.72E+07 4.31E+10 2.26E+10 4.65E+09 6.08E+05
Std 3.25E+08 8.10E+09 5.60E+09 5.05E+09 7.81E+09 4.11E+06 8.72E+09 7.55E+09 3.17E+09 8.65E+05

Rank 3 10 5 7 9 2 8 6 4 1
p 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08

F2

Mean 6.46E+03 7.65E+03 5.48E+03 8.01E+03 7.20E+03 5.44E+03 8.44E+03 7.32E+03 6.15E+03 5.22E+03
Std 8.01E+02 4.01E+02 6.19E+02 6.76E+02 5.69E+02 6.31E+02 6.41E+02 5.48E+02 7.64E+02 6.89E+02

Rank 5 8 3 9 6 2 10 7 4 1
p 9.75E-06 6.80E-08 3.10E-01 1.06E-07 2.22E-07 3.65E-01 2.36E-06 1.43E-07 5.63E-04

F3

Mean 1.27E+03 1.38E+03 1.14E+03 1.26E+03 1.36E+03 1.27E+03 1.33E+03 1.26E+03 1.15E+03 1.14E+03
Std 9.35E+01 2.98E+01 1.58E+02 1.83E+01 6.55E+01 8.55E+01 7.13E+01 6.16E+01 6.24E+01 1.01E+02

Rank 7 10 2 5 9 6 8 4 3 1
p 4.60E-04 7.90E-08 2.85E-01 1.04E-04 7.90E-08 1.63E-03 5.23E-07 2.39E-02 7.35E-01

F4

Mean 1.90E+03 1.90E+03 1.95E+03 1.90E+03 1.90E+03 1.90E+03 1.90E+03 1.91E+03 1.90E+03 1.90E+03
Std 0.00E+00 0.00E+00 3.04E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.47E+00 0.00E+00 0.00E+00

Rank 1 1 3 1 1 1 1 2 1 1
p NaN NaN 8.01E-09 NaN NaN NaN NaN 8.01E-09 NaN

F5

Mean 9.80E+06 6.41E+07 4.72E+06 2.53E+07 7.13E+07 2.47E+06 8.03E+07 9.09E+06 2.96E+06 1.26E+06
Std 6.58E+06 4.36E+07 6.21E+06 1.76E+07 4.66E+07 1.62E+06 4.61E+07 6.31E+06 3.64E+06 1.00E+06

Rank 6 8 4 7 9 2 10 5 3 1
p 6.01E-07 6.80E-08 2.80E-03 6.80E-08 6.80E-08 1.14E-02 6.80E-08 6.80E-08 1.90E-01

F6

Mean 3.43E+03 4.49E+03 2.94E+03 3.43E+03 3.99E+03 2.59E+03 4.57E+03 2.78E+03 2.70E+03 2.67E+03
Std 5.77E+02 6.81E+02 3.37E+02 3.51E+02 1.25E+03 3.41E+02 8.14E+02 2.95E+02 3.61E+02 3.09E+02

Rank 7 9 5 6 8 1 10 4 3 2
p 5.17E-06 6.80E-08 1.93E-02 2.06E-06 3.99E-06 2.85E-01 6.80E-08 2.98E-01 9.89E-01

F7

Mean 5.60E+06 4.32E+07 8.30E+05 7.52E+06 2.25E+07 6.40E+05 3.22E+07 2.99E+06 2.44E+06 3.42E+05
Std 3.92E+06 2.21E+07 6.16E+05 4.42E+06 1.57E+07 4.88E+05 2.16E+07 2.12E+06 3.40E+06 3.36E+05

Rank 6 10 3 7 8 2 9 5 4 1
p 2.22E-07 6.80E-08 1.95E-03 1.66E-07 6.80E-08 9.79E-03 6.80E-08 2.96E-07 1.48E-03

F8

Mean 7.11E+03 8.74E+03 6.36E+03 8.19E+03 8.69E+03 5.61E+03 8.94E+03 8.83E+03 4.12E+03 3.26E+03
Std 1.56E+03 8.15E+02 1.74E+03 1.32E+03 1.12E+03 2.29E+03 1.37E+03 1.00E+03 2.02E+03 2.00E+03

Rank 5 8 4 6 7 3 10 9 2 1
p 7.58E-06 1.92E-07 1.60E-05 1.20E-06 3.94E-07 5.26E-05 3.42E-07 2.22E-07 3.75E-04

F9

Mean 3.24E+03 3.48E+03 3.12E+03 3.31E+03 3.78E+03 3.41E+03 3.91E+03 3.31E+03 3.09E+03 3.07E+03
Std 8.48E+01 2.20E+02 1.56E+01 3.24E+01 1.75E+02 1.29E+02 2.66E+02 1.04E+02 5.90E+01 9.11E+01

Rank 4 8 3 6 9 7 10 5 2 1
p 5.17E-06 6.80E-08 2.34E-03 1.66E-07 6.80E-08 1.43E-07 6.80E-08 7.95E-07 2.08E-01

F10

Mean 3.06E+03 4.72E+03 3.24E+03 4.54E+03 5.06E+03 2.94E+03 4.50E+03 3.56E+03 3.09E+03 2.93E+03
Std 5.77E+01 5.67E+02 2.41E+02 4.58E+02 7.40E+02 2.29E+01 6.05E+02 3.13E+02 9.65E+01 2.41E+01

Rank 3 9 5 8 10 2 7 6 4 1
p 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 2.50E-01 6.80E-08 6.80E-08 7.90E-08

Mean rank 4.7 8.1 3.7 6.2 7.6 2.8 8.3 5.3 3.0 1.1
Result 5 9 4 7 8 2 10 6 3 1
+/=/− 0/1/9 0/1/9 0/2/8 0/1/9 0/1/9 0/3/7 0/1/9 0/1/9 0/4/6
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In addition, Table 4 lists the p-value magnitude of each algorithm, from which it can
be seen that COSCSO as a whole outperforms all compared algorithms, especially for
the WOA, RSA, PSO, CHOA, AOA, NCHHO, and ATOA, the COSCSO algorithms far
ahead. For the HHO and SCSO, there is no major difference in a few test functions. This
reveals that COSCSO is extremely feasible for solving the CEC2020 function problem in
30 dimensions.

Figure 9 presents the convergence curves of COSCSO with other algorithms on the
30-dimensional CEC2020 test suite. Combining the data in the table visually illustrates that
COSCSO has faster convergence and more accurate accuracy on F1, F2, F5, F7, and F8. It is
poorer than the HHO on F6.

Figure 9. Convergence curves of COSCSO with other algorithms (30-dimensional CEC2020).
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Figure 10 displays the box plots of COSCSO with other algorithms on the 30-dimensional
CEC2020 test function. Where the COSCSO algorithm has the smallest median on F1, F2, F5,
F7, and F8 compared to the other nine algorithms. In the plots of F1, F5, F7, F8, and F10, the
box plot of COSCSO is narrower, suggesting that the COSCSO algorithm is more stable and
has relatively good robustness on these functions.

Figure 10. Box plots of COSCSO with other algorithms (30-dimensional CEC2020).

Figure 11 presents the radar maps based on the ranking of the COSCSO with the
other nine algorithms in the 30-dimensional CEC2020 test suite. Depending on the area
of the radar maps, it is easy to see that COSCSO ranks at the top in all functions, which
very intuitively shows the superiority of COSCSO and its applicability in solving the
30-dimensional CEC2020 problem.
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Figure 11. Radar maps of COSCSO with other algorithms (30-dimensional CEC2020).
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Table 5 contains the experimental data for each algorithm for each metric on the
50-dimensional CEC2020 test function. In this experiment, COSCSO achieved better
fitness values on the eight test functions. Although inferior to the original algorithm in
F2 and F3, the COSCSO algorithm performed competitively compared to the other eight
algorithms. The third row from the bottom is the average rank of the ten algorithms.
COSCSO has an average rank of 1.4, ranking first. The combined ranking of the algorithms
is: COSCSO > SCSO > HHO > PSO > WOA > ATOA > CHOA > RSA > AOA > NCHHO.
This fully reflects the ability of the COSCSO algorithm to solve the CEC2020 problem.

Table 5. Comparison results on functions of 50-dimensional CEC2020.

F Results
Algorithms

WOA RSA PSO CHOA AOA HHO NCHHO ATOA SCSO COSCSO

F1

Mean 3.63E+09 9.43E+10 3.50E+10 5.87E+10 1.13E+11 8.59E+07 9.44E+10 5.35E+10 1.69E+10 1.11E+07
Std 1.31E+09 8.75E+09 1.62E+10 2.76E+09 6.18E+09 1.88E+07 9.67E+09 7.04E+09 6.50E+09 1.06E+07

Rank 3 8 5 7 10 2 9 6 4 1
p 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08

F2

Mean 1.20E+04 1.44E+04 8.93E+03 1.51E+04 1.37E+04 9.90E+03 1.52E+04 1.42E+04 1.01E+04 9.15E+03
Std 1.15E+03 5.84E+02 1.01E+03 6.70E+02 6.81E+02 1.09E+03 8.54E+02 7.02E+02 8.38E+02 8.92E+02

Rank 5 8 1 9 6 3 10 7 4 2
p 3.42E-07 6.80E-08 3.94E-01 6.80E-08 6.80E-08 3.60E-02 6.80E-08 6.80E-08 3.97E-03

F3

Mean 1.80E+03 1.94E+03 2.28E+03 1.77E+03 1.92E+03 1.82E+03 1.98E+03 1.80E+03 1.57E+03 1.62E+03
Std 8.51E+01 4.61E+01 3.32E+02 5.16E+01 4.70E+01 7.88E+01 7.71E+01 1.23E+02 1.17E+02 1.43E+02

Rank 4 7 10 3 8 6 9 5 1 2
p 3.29E-05 6.80E-08 6.92E-07 1.60E-05 6.80E-08 7.58E-06 6.80E-08 4.60E-04 7.64E-02

F4

Mean 1.90E+03 1.90E+03 3.13E+04 1.90E+03 1.90E+03 1.90E+03 1.90E+03 1.93E+03 1.90E+03 1.90E+03
Std 0.00E+00 0.00E+00 3.83E+04 0.00E+00 8.80E-06 0.00E+00 0.00E+00 1.09E+01 0.00E+00 0.00E+00

Rank 1 1 4 1 2 1 1 3 1 1
p NaN NaN 8.01E-09 NaN 6.68E-05 NaN NaN 8.01E-09 NaN

F5

Mean 1.26E+08 3.85E+08 3.00E+07 6.87E+07 4.35E+08 9.20E+06 3.73E+08 3.81E+07 9.72E+06 2.49E+06
Std 6.57E+07 2.20E+08 3.03E+07 2.41E+07 1.87E+08 5.57E+06 1.41E+08 2.48E+07 5.11E+06 1.55E+06

Rank 7 9 4 6 10 2 8 5 3 1
p 6.80E-08 6.80E-08 7.95E-07 6.80E-08 6.80E-08 2.36E-06 6.80E-08 6.80E-08 3.42E-07

F6

Mean 6.15E+03 7.76E+03 4.43E+03 6.11E+03 7.41E+03 4.44E+03 7.81E+03 5.80E+03 4.69E+03 4.30E+03
Std 7.63E+02 5.94E+02 4.02E+02 4.00E+02 1.44E+03 5.78E+02 1.36E+03 8.39E+02 7.27E+02 7.90E+02

Rank 7 9 2 6 8 3 10 5 4 1
p 1.58E-06 6.80E-08 3.94E-01 1.23E-07 7.90E-08 4.57E-01 6.80E-08 1.10E-05 9.62E-02

F7

Mean 1.59E+07 8.32E+07 8.53E+06 2.35E+07 5.78E+07 5.29E+06 9.07E+07 1.73E+07 4.30E+06 1.40E+06
Std 8.79E+06 5.05E+07 6.39E+06 6.08E+06 3.21E+07 2.80E+06 4.58E+07 9.63E+06 3.82E+06 9.03E+05

Rank 6 9 4 7 8 3 10 5 2 1
p 4.54E-06 6.80E-08 2.06E-06 6.80E-08 6.80E-08 2.36E-06 6.80E-08 1.23E-07 1.12E-03

F8

Mean 1.36E+04 1.71E+04 1.04E+04 1.71E+04 1.56E+04 1.12E+04 1.64E+04 1.59E+04 1.10E+04 1.00E+04
Std 1.02E+03 3.92E+02 8.71E+02 5.94E+02 6.30E+02 7.42E+02 6.67E+02 6.78E+02 2.02E+03 2.06E+03

Rank 5 9 2 10 6 4 8 7 3 1
p 1.43E-07 6.80E-08 9.25E-01 6.80E-08 6.80E-08 1.93E-02 6.80E-08 6.80E-08 3.37E-02

F9

Mean 3.80E+03 4.17E+03 3.65E+03 4.05E+03 4.88E+03 4.25E+03 4.86E+03 3.88E+03 3.44E+03 3.44E+03
Std 1.36E+02 4.42E+02 1.58E+02 4.76E+01 2.48E+02 2.46E+02 4.38E+02 1.66E+02 1.28E+02 1.27E+02

Rank 4 7 3 6 10 8 9 5 2 1
p 5.23E-07 6.80E-08 4.68E-05 6.80E-08 6.80E-08 6.80E-08 6.80E-08 1.06E-07 9.25E-01

F10

Mean 3.72E+03 1.27E+04 6.14E+03 1.04E+04 1.58E+04 3.19E+03 1.39E+04 8.21E+03 4.32E+03 3.12E+03
Std 2.48E+02 1.71E+03 1.93E+03 8.38E+02 1.66E+03 3.95E+01 1.78E+03 1.62E+03 4.74E+02 2.59E+01

Rank 3 8 5 7 10 2 9 6 4 1
p 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 5.23E-07 6.80E-08 6.80E-08 6.80E-08

Mean rank 4.5 7.5 4.0 6.4 7.8 3.4 8.3 5.4 2.8 1.4
Result 5 8 4 7 9 3 10 6 2 1
+/=/− 0/1/9 0/1/9 0/3/6 0/1/9 0/0/10 0/2/8 0/1/9 0/0/10 0/4/6

Rank sum tests are also documented in Table 5. Similarly, the COSCSO was used
as a benchmark, and other meta-heuristic algorithms were run 20 times to solve the
50-dimensional CEC2020 problem at the 95% significance level (α = 0.05). Looking at
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the last row, COSCSO clearly excelled SCSO on the six tested functions; moreover, COSCSO
outperformed the other algorithms on most tested functions.

The convergence plots of each function in Figure 12 more directly show its performance
in solving the CEC2020 problem. COSCSO surpasses all other algorithms except F2, F3,
and F4 and ranks first.

Figure 12. Convergence curves of COSCSO with other algorithms (50-dimensional CEC2020).
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In Figure 13, the median is the same for all algorithms except the PSO algorithm on
F4. The median of COSCSO is lower than the other algorithms except for F3, F6, and F9.
The box plots of COSCSO on F1, F5, F7, and F10 are extremely narrow, indicating its good
stability and robustness.

Figure 13. Box plots of COSCSO with other algorithms (50-dimensional CEC2020).

Figure 14 shows the radar maps of COSCSO with other algorithms. Observing the area
of each graph, it can be detected that the shaded area of COSCSO is the smallest as well as
relatively more rounded, which indicates that COSCSO has more stable and remarkable
capability, and COSCSO can be deployed to solve the 50-dimensional CEC2020 problem.
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Figure 14. Radar maps of COSCSO with other algorithms (50-dimensional CEC2020).
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6. Engineering Problems

This chapter tests the ability of COSCSO to solve practical problems [58]. In the follow-
ing, ten algorithms are devoted to addressing six practical engineering problems: welded
beam, pressure vessel, gas transmission compressor, heat exchanger, tubular column, and
piston lever design problems. In particular, the bounded problems are converted into un-
bounded problems by utilizing penalty functions. In the comparison experiments, N = 30,
T = 500, and running times are set to 20.

6.1. Welded Beam Design

The objective of the problem is to construct a welded beam [59] with minimal expense
under the bounds of shear stress (η), bending stress (λ), buckling load (QC) and end
deflection (µ) of the beam. It considers the weld thickness h, the joint length l, the height t
of the beam, and the thickness b as variants, and the design schematic is shown in Figure 15.
Let K = [k1, k2, k3, k4] = [h, l, t, b], the mathematical model of this problem is shown in
Equation (18).

Figure 15. Welded beam design problem.

min f (K) = 1.10471k2
1k2 + 0.04811k3k4(14.0 + k2), (18)

Subject to:

y1(K) = η(k)− ηmax ≤ 0, y2(K) = β(k)− β ≤max 0, y3(K) = µ(k)− µmax ≤ 0,
y4(K) = k1 − k4 ≤ 0, y5(K) = M−QC(k) ≤ 0, y6(K) = 0.125− k1 ≤ 0,
y7(K) = 1.1047k2

1 + 0.04811k3k4(14.0 + k2)− 5.0 ≤ 0,

Variable range:

0.1 ≤ k1 ≤ 2, 0.1 ≤ k2 ≤ 10, 0.1 ≤ k3 ≤ 10, 0.1 ≤ k4 ≤ 2,

where

η(K) =
√
(η′)2 + 2η′η′′ k2

R + (η′′ )2, η′ = M√
2k1k2

, η′′ = WR
J , W = M(S + k2

2 ),

R =

√
k2

2
4 + ( k1+k2

2 )
2
, J = 2

{√
2k1k2[

k2
2

4 + ( k1+k3
2 )

2
]

}
, β(K) = 6MS

k4k2
3

,

µ(K) = 6ML3

Ek4k2
3
, QC(K) =

4.013D

√
k2
3k6

4
36

S2 (1− k3
2S

√
D
4G ),

M = 6000 lb, S = 14 in, µmax = 0.25 in, D = 30× 16 psi,
G = 12× 106 psi, ξmax = 13, 600 psi, βmax = 30, 000 psi.



Biomimetics 2023, 8, 191 28 of 38

Ten competitive meta-heuristic algorithms are used to solve this problem in this
experiment, which are: COSCSO, SCSO, WOA, AO [60], SCA [61], RSA, HS, BWO, HHO,
and AOA. The optimal cost obtained by solving the welded beam design problem using
each algorithm and the decision variables it corresponds to are given in Table 6. It is
apparent from the table that COSCSO generates the cheapest expenses. Table 7 shows the
statistical results obtained for all algorithms run 20 times. It can be noticed that COSCSO
obtained the best ranking in all indicators. In conclusion, COSCSO is highly competitive in
solving the welded beam design problem.

Table 6. The optimal result of welded beam design.

Algorithms
Optimum Variables

Optimum Cost
k1 k2 k3 k4

WOA 0.176794286 3.891577393 9.255735323 0.204661441 1.764910575
AO 0.202106856 3.319686034 9.081046814 0.212260217 1.755925500
SCA 0.165196847 4.294568905 8.967124254 0.210654365 1.792045440
RSA 0.175670680 3.624398648 9.999449030 0.205952534 1.869756941
HS 0.177543770 4.098912342 8.878245918 0.217531907 1.824393253

BWO 0.218273731 3.015636000 9.273401650 0.220363497 1.831589741
HHO 0.201474520 3.378944473 8.960620234 0.218644819 1.719100771
AOA 0.209983002 3.017257244 10.00000000 0.212237971 1.884562862
SCSO 3.267355241 3.267355241 9.035052358 0.205802427 1.696622053

COSCSO 0.205747115 3.252954257 9.036236158 0.205747352 1.695317058

Table 7. Statistical results of welded beam design.

Algorithms Best Worst Mean Std

WOA 1.764910575 3.268065060 2.360271979 0.437518374
AO 1.755925500 2.621445835 2.074867078 0.197032112
SCA 1.792045440 1.992645879 1.862883723 0.051244352
RSA 1.869756941 27.442208090 3.681496058 5.601754100

HS 1.824393253 3.706355014 2.719342102 0.498207128
BWO 1.831589741 2.952547258 2.251305241 0.284732148
HHO 1.719100771 2.313552829 1.850862237 0.147918368
AOA 1.884562862 2.914716233 2.309549772 0.313092730
SCSO 1.696622053 4.242983833 2.004451488 0.765112742

COSCSO 1.695317058 1.781726391 1.713814493 0.021561647

6.2. Pressure Vessel Design

The main purpose of the problem is to fabricate the pressure vessel [62] with the least
amount of cost under a host of constraints. It treats shell thickness T1, head thickness T2,
inner radius R*, and the length S of the cylindrical part without head as variables, and let
K = [k1, k2, k3, k4] = [T1, T2, R∗, S]. The design schematic is presented in Figure 16. The
mathematical model of the problem is shown in Equation (19).

min f (K) = 0.6224k1k3k4 + 1.7781k2k2
3 + 3.1661k4

1 + 19.84k2
1k3, (19)

Subject to:

y1(K) = −k1 − 0.0193k3 ≤ 0, y2(K) = −k3 + 0.00954k3 ≤ 0,
y3(K) = −πk2

3k4 − 4/3πk3
3 + 1296000 ≤ 0, y4(K) = k4 − 240 ≤ 0,

Variable range:

1× 0.0625 ≤ k1, k2 ≤ 99× 0.0625, 10 ≤ k3, k4 ≤ 200.
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Figure 16. Pressure vessel design problem.

This problem is solved by ten algorithms, which are COSCSO, SCSO, WOA, AO, HS,
RSA, SCA, BWO, BSA [63], and AOA. Table 8 contains the optimal cost of COSCSO and
other compared algorithms and their corresponding decision variables. Four more pieces
of data for each algorithm are included in Table 9. The result of COSCSO is the best among
the ten algorithms and is relatively stable.

Table 8. The optimal result of pressure vessel design.

Algorithms
Optimum Variables

Optimum Cost
k1 k2 k3 k4

WOA 0.795338105 0.654521576 40.86741439 192.5123053 6736.71434
AO 0.801045506 0.418921940 41.48734742 185.7712132 6030.23905
HS 0.978539020 0.500973483 49.50650039 103.1850619 6547.72658

RSA 0.972997715 0.512637098 47.36047546 200 6305.50049
SCA 0.854015786 0.520118487 44.11567303 158.4223506 5885.88792
BWO 0.938950393 0.563152725 48.41429245 115.1168137 5885.33405
BSA 0.778164873 0.493776584 40.31964778 199.9995955 7303.71890
AOA 0.793199905 0.458365929 40.34176154 200 5885.31787
SCSO 0.796043593 0.406047822 41.24545087 187.5713345 5885.32021

COSCSO 0.778539806 0.385198905 40.33914125 199.7284276 5885.31757

Table 9. Statistical results of pressure vessel design.

Algorithms Best Worst Mean Std

WOA 6736.71434 15021.66294 9511.21867 2551.89041
AO 6030.23905 7756.65903 6882.12163 533.52205
HS 6547.72658 12757.34328 8720.20447 1699.11330

RSA 9269.85205 68265.01725 32898.82493 15501.85116
SCA 6518.94915 9160.64385 7511.17067 772.99225
BWO 6772.30663 9518.89193 7538.79379 683.87846

BSA 6200.76520 30037.17906 11444.68588 6484.51516
AOA 6211.62984 18842.91882 11254.75474 3546.15966
SCSO 5956.21327 23310.15051 7614.91057 3715.97323

COSCSO 5887.02011 7318.91872 6569.02774 517.46245

6.3. Gas Transmission Compressor Design Problem

The key target of the problem [64] is to minimize the total expense of carrying
100 million cubic feet per day. There are three design variables in this problem: the distance
between the two compressors (L), the ratio of the first compressor to the second compressor
pressure (δ), and the length of the natural gas pipeline inside the diameter (H). The gas
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transmission compressor is shown in Figure 17. Let K = [k1, k2, k3] = [L, δ, H]. It is modeled
as illustrated in Equation (20).

min f (K) = 3.69× 104k3 + 7.72× 108k−1
1 k0.219

2

−765.43× 106k−1
1 + 8.61× 105 × k−

1
2

1 k2(k2
2 − 1)−

1
2 k−

2
3

3 ,
(20)

Variable range:

10 ≤ k1 ≤ 55, 1.1 ≤ k2 ≤ 2, 10 ≤ k3 ≤ 40.

Figure 17. Gas transmission compressor design problem.

In addition to SCSO, we pick RSA, BWO, SOA [65], WOA, SCA, HS, AO, and AOA
to compare with COSCSO. The best results of different algorithms and the corresponding
decision variables are summarized in Table 10. The best results of COSCSO are substantially
smaller than those of the other algorithms. The statistical results of all algorithms are
collected in Table 11, where their standard deviations are the smallest, indicating a high
stability of COSCSO.

Table 10. The optimal result of gas transmission compressor design.

Algorithms
Optimum Variables

Optimum Cost
k1 k2 k3

RSA 54.99999359 1.194623188 25.00083760 2964527.52459
BWO 55 1.193088691 24.53523919 2964639.69065
SOA 53.65973171 1.190449899 24.74449640 2964378.80113
WOA 53.44872314 1.190109928 24.71816871 2964375.49576
SCA 55 1.195189878 24.73268345 2964474.41040
HS 53.38712267 1.189241767 24.74999745 2964380.11714
AO 53.47061054 1.190026373 24.64034062 2964384.51386

AOA 55 1.200762326 24.62935858 2964730.55260

SCSO 53.45101427 1.190109067 24.71872247 2964375.49653
COSCSO 53.44671239 1.190100716 24.71857897 2964375.49533

Table 11. Statistical results of gas transmission compressor design.

Algorithms Best Worst Mean Std

RSA 2964527.52459 3016290.08652 2978147.32748 14122.03566
BWO 2964639.69065 2985654.73236 2968570.17953 5235.597886
SOA 2964378.80113 2964502.32306 2964430.85626 39.36551384
WOA 2964375.49576 2964376.19841 2964375.57737 0.15661415
SCA 2964474.41040 2965960.51365 2964893.53068 407.6793260
HS 2964380.11714 2972724.66633 2965744.95719 2116.81140
AO 2964384.51386 2974563.67888 2966781.11226 3285.30995

AOA 2964730.55260 2985136.92184 2970250.27062 6037.25127
SCSO 2964375.49653 2987124.04245 2966285.86187 5997.65711

COSCSO 2964375.49533 2964375.49533 2964375.49533 5.32331E-09
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6.4. Heat Exchanger Design

It is a minimization problem for heat exchanger design [66]. There are eight variables
and six inequality constraints in this problem. It is specified as shown in Equation (21).

min f (K) = k1 + k2 + k3, (21)

Subject to:

y1(K) = 0.0025(k4 + k6)− 1 ≤ 0,
y2(K) = 0.0025(k5 + k7 − k4)− 1 ≤ 0,
y3(K) = 1− 0.01(k8 − k5) ≥ 0,
y4(K) = k1k6 − 833.33252k4 − 100k1 + 83, 333.333 ≥ 0,
y5(K) = k2k7 − 1250k5 − k2k4 + 1250k4 ≥ 0,
y6(K) = k3k8 − k3k5 + 2500k5 − 1, 250, 000 ≥ 0,

Variable range:

100 ≤ k1 ≤ 10, 000, 1000 ≤ k2, k3 ≤ 10, 000, 10 ≤ ki ≤ 1000 (i = 4, . . . , 8).

For this problem, nine algorithms, such as WOA and HHO, are compared with
COSCSO. Table 12 counts the best results of COSCSO and other algorithms and the best
decision variables corresponding to them. The results of each algorithm are listed in
Table 13. Apparently, the COSCSO algorithm obtains better results and is very competitive
among all ten algorithms.

Table 12. The optimal result of heat exchanger design.

Algorithms
Optimum Variables

Optimum Cost
k1 k2 k3 k4 k5 k6 k7 k8

WOA 8.857E+02 4.785E+03 4.419E+03 7.565E+01 3.233E+02 8.793E+01 1.503E+02 4.233E+02 10089.27612
AO 2.657E+03 4.867E+03 6.451E+03 1.227E+02 3.026E+02 1.735E+02 1.903E+02 3.791E+02 13975.23738
HS 2.319E+03 2.737E+03 5.757E+03 2.414E+02 3.254E+02 1.583E+02 3.023E+02 4.252E+02 10812.90588

RSA 1.120E+03 4.272E+03 4.772E+03 7.793E+01 3.003E+02 3.712E+02 1.469E+02 4.051E+02 27223.59476
BSA 2.869E+03 3.093E+03 5.411E+03 1.051E+02 2.840E+02 2.013E+02 1.774E+02 3.838E+02 11372.90767
BWO 4.001E+03 6.410E+03 4.806E+03 1.448E+02 3.183E+02 1.470E+02 1.852E+02 4.132E+02 15217.14817
HHO 1.174E+03 1.000E+03 6.899E+03 1.253E+02 2.241E+02 1.606E+02 2.711E+02 3.241E+02 9073.094947
AOA 5.052E+03 9.071E+03 9.071E+03 3.209E+01 2.132E+02 1.668E+02 2.137E+02 3.069E+02 23194.46529
SCSO 5.119E+02 2.451E+03 4.512E+03 1.640E+02 3.196E+02 2.226E+02 2.442E+02 4.195E+02 7475.073844

COSCSO 1.084E+03 1.103E+03 5.271E+03 1.997E+02 2.891E+02 1.948E+02 3.071E+02 3.891E+02 7458.396002

Table 13. Statistical results of heat exchanger design.

Algorithms Best Worst Mean Std

WOA 10089.27612 196031.898 48225.06524 52285.7206
AO 13975.23738 178736.7572 42861.35149 37560.63068
HS 10812.90588 124467.6644 60095.18323 29532.60344

RSA 27223.59476 315644.1889 147440.3931 61985.48452
BSA 11372.90767 161404.451 48673.30656 37923.7065
BWO 15217.14817 120323.2952 60086.46685 27717.89898
HHO 9073.094947 77151.91678 21087.5583 15916.02815
AOA 23194.46529 155972.8617 49743.46087 29775.26723
SCSO 7475.073844 212854.4675 30578.91536 12694.59629

COSCSO 7458.396002 33159.19512 12647.27427 7803.060165

6.5. Tubular Column Design

The goal of this problem is to minimize the expense of designing a tubular column [67]
to bear compressive loads under six constraints. It contains two decision variables: the av-
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erage diameter of the column (D), and the thickness of the tube (b), let K = [k1, k2] = [D, b].
Its design schematic is depicted in Figure 18. The model of this problem is indicated in
Equation (22).

min f (K) = 9.8k1k2 + 2k1, (22)

Subject to:
y1(K) =

Q
πk1k2δy

− 1, y2(K) =
8QH2

π3Ek1k2(k2
1+k2

2)
− 1,

y3(K) = 2.0
k1
− 1, y4(K) =

k1
14 − 1,

y5(K) = 0.2
k2
− 1, y6(K) =

k2
8 − 1,

Variable range:
2 ≤ k1 ≤ 14, 0.2 ≤ k2 ≤ 0.8,

where
δy = 500, E = 0.84× 106.

Figure 18. Tubular column design problem.

Table 14 shows the optimal costs and variables for COSCSO and the other nine
algorithms. Observing the four indicators in Table 15, COSCSO obtained better values for
all of them.
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Table 14. The optimal result of tubular column design.

Algorithms
Optimum Variables

Optimum Cost
k1 k2

HS 5.445466505 0.293088136 26.531748937
SOA 5.450525166 0.291989004 26.497685800
RSA 5.518677222 0.288200889 26.624133745

WOA 5.450602426 0.291877924 26.492127934
SCA 5.452775183 0.291738699 26.495248656

CHOA 5.449801688 0.292230441 26.507063312
BWO 5.434579699 0.29571633 26.618680219
AOA 5.427423919 0.303376181 26.991049027
SCSO 5.452249069 0.291622918 26.486505805

COSCSO 5.452180739 0.291626429 26.486361480

Table 15. Statistical results of tubular column design.

Algorithms Best Worst Mean Std

HS 26.531748937 29.380491179 27.101286566 0.682159826
SOA 26.497685800 26.651702678 26.546770890 0.043476606
RSA 26.624133745 31.482014142 28.600884307 1.378250449

WOA 26.492127934 28.062545561 27.067123704 0.475587468
SCA 26.495248656 26.911864726 26.663842655 0.103145967

CHOA 26.507063312 26.664362638 26.592798770 0.049578003
BWO 26.618680219 28.701867216 27.247581963 0.524397843
AOA 26.991049027 28.660769408 27.781832446 0.601084705
SCSO 26.486505805 26.488283717 26.487303513 0.000514557

COSCSO 26.486361480 26.486429135 26.486367501 0.000016150

6.6. Piston Lever Design

The primary goal of the problem [68] is to minimize the amount of oil consumed when
the piston lever is tilted from 0◦ to 45◦ under four constraints, thus determining H, B, D,
and K. The schematic is seen in Figure 19. The mathematical expression of the problem is
Equation (23).

min f (K) =
1
4

πk2
3(L2 − L1), (23)

Subject to:
y1(K) = MA cos θ − RF ≤ 0 θ = 45◦,
y2(K) = M(A− k4)− Nmax ≤ 0,
y3(K) = 1.2(A2 − A1)− A1 ≤ 0,
y4(K) = k3/3− k2 ≤ 0,

where
R = |−k4(k4 sin θ+k1)+k1(k2−k4 cos θ)|√

(k4−k2)
2+k2

1

,

F = πCk2
3/4,

A1 =
√
(k4 − k2)

2 + k2
1,

A2 =
√
(k4 sin 45 + k1)

2 + (k2 − k4 cos 45)2

M = 10, 000 lbs, C = 1500 psi,
A = 240 in, Nmax = 1.8× 10 lbs in.

Besides COSCSO and SCSO, SOA, MVO [69], HHO, etc., were also enrolled in the
experiment. By looking at Tables 16 and 17, COSCSO is the best choice within each of these
ten algorithms to solve this problem.
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Figure 19. Piston lever design.

Table 16. The optimal result of piston lever design.

Algorithms
Optimum Variables

Optimum Cost
k1 k2 k3 k4

WOA 0.086602041 2.079956862 4.093800868 119.228613317 8.955469786
SOA 0.050780514 2.044519184 4.083248703 120 8.432800807
MVO 0.05 2.050052620 4.087058119 119.979915073 8.463145662

CHOA 0.073876185 2.081364562 4.095381685 120 8.847198681
SCA 0.05 2.053817149 4.093726603 120 8.505719113
BWO 0.05 2.105295277 4.096763691 120 8.723224918
HHO 0.050019685 2.041900656 4.083032582 119.999227818 8.414435140
AOA 0.271028410 0.271028410 4.162257291 120 57.99492127
SCSO 0.05 2.041589027 4.083079945 120 8.413213831

COSCSO 0.05 2.041513591 4.083027180 120 8.412698328

Table 17. Statistical results of piston lever design.

Algorithms Best Worst Mean Std

WOA 8.955469786 342.7630967 55.49855602 95.85126869
SOA 8.432800807 9.954077528 43.99002860 0.503774548
MVO 8.463145662 314.1339038 9.861960059 88.25491267

CHOA 8.847198681 11.80905189 0.871394022 0.815693522
SCA 8.505719113 10.23160760 9.410095331 0.542224958
BWO 8.723224918 10.37487240 9.479639241 0.535563793
HHO 8.414435140 411.9250502 96.24528231 122.8529460

AOA 57.99492127 577.6401065 343.1464542 160.6837497
SCSO 8.413213831 56.92881071 10.87687234 10.83963680

COSCSO 8.412698328 8.525870642 8.426024955 0.028570619
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7. Conclusions and Future Work

In this paper, SCSO based on adaptive parameters, Cauchy mutation, and an opti-
mal neighborhood disturbance strategy are proposed. The nonlinear adaptive parameter
replaces the linear adaptive parameter and increases the global search, which helps pre-
vent premature convergence and puts exploration and development in a more balanced
state. The introduction of the Cauchy mutation operator perturbs the search step to speed
up convergence and improve search efficiency. The optimal neighborhood disturbance
strategy is used to enrich the species diversity and prevent the algorithm from getting into
the dilemma of the local optimum. COSCSO is evaluated against the standard SCSO and
other challenging swarm intelligence optimization algorithms at CEC2017 and CEC2020
in distinct dimensions. The comparison of average and standard deviation, convergence,
stability, and statistical analysis were performed. It is proven that COSCSO converges
more rapidly, with higher accuracy, and stays more stable. In contrast to other algorithms,
COSCO is more advanced. What is more, COSCSO is deployed to solve six engineering
problems. From the experimental results, it can be visually concluded that COSCSO also
has the potential to solve practical problems.

The COSCSO algorithm has strong exploration ability, which can effectively avoid
falling into local optimums and prevent premature convergence. However, it has weak
exploitation ability and a relatively slow convergence speed. In the future, we can use
more novel strategies to improve the algorithm and further improve its exploration speed,
which can be made available to tackle more high-dimensional optimization problems and
employed in various fields, such as feature selection, path planning, image segmentation,
fuzzy recognition, etc.
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