Review and Proposal for a Classification System of Soft Robots Inspired by Animal Morphology
Abstract
:1. Introduction
2. Soft Robots
3. Morphology Analysis
3.1. Animal Support Structures
3.2. Animal Actuation
3.3. Support Structure with Actuation
4. Soft Robot Classification
4.1. Bio-Inspired Classification
4.2. Prototypes
4.2.1. Endoskeleton Soft Robots
4.2.2. Exoskeleton Soft Robots
4.2.3. Hydrostatic Skeleton Soft Robots
4.2.4. Muscular Hydrostat Soft Robots
4.3. Classification Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Z.; Shi, Q.; Fukuda, T.; Li, C.; Huang, Q. An overview of biomimetic robots with animal behaviors. Neurocomputing 2019, 332, 339–350. [Google Scholar] [CrossRef]
- Kim, S.; Laschi, C.; Trimmer, B. Soft robotics: A bioinspired evolution in robotics. Trends Biotechnol. 2013, 31, 287–294. [Google Scholar] [CrossRef]
- Laschi, C.; Mazzolai, B.; Cianchetti, M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 2016, 1. [Google Scholar] [CrossRef]
- Rossiter, J.; Hauser, H. Soft Robotics—The Next Industrial Revolution? [Industrial Activities]. IEEE Robot. Autom. Mag. 2016, 23, 17–20. [Google Scholar] [CrossRef]
- Tolley, M.T.; Rus, D. Design, fabrication and control of soft robots. Nature 2015, 521, 467. [Google Scholar]
- Bernth, J.E.; Arezzo, A.; Liu, H. A novel robotic meshworm with segment-bending anchoring for colonoscopy. IEEE Robot. Autom. Lett. 2017, 2, 1718–1724. [Google Scholar] [CrossRef]
- Kim, J. Microscale Soft Robotics; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Majidi, C. Soft robotics: A perspective—Current trends and prospects for the future. Soft Robot. 2014, 1, 5–11. [Google Scholar] [CrossRef]
- Wang, L.; Iida, F. Deformation in soft-matter robotics: A categorization and quantitative characterization. IEEE Robot. Autom. Mag. 2015, 22, 125–139. [Google Scholar] [CrossRef]
- Laschi, C.; Cianchetti, M. Soft Robotics: New Perspectives for Robot Bodyware and Control; Frontiers Media SA: Lausanne, Switzerland, 2016. [Google Scholar]
- Chen, A.; Yin, R.; Cao, L.; Yuan, C.; Ding, H.; Zhang, W. Soft robotics: Definition and research issues. In Proceedings of the 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland, New Zealand, 21–23 November 2017. [Google Scholar] [CrossRef]
- Wang, L.; Nurzaman, S.G.; Iida, F. Soft-Material Robotics. Found. Trends Robot. 2017, 5, 191–259. [Google Scholar] [CrossRef]
- Schmitt, F.; Piccin, O.; Barbé, L.; Bayle, B. Soft robots manufacturing: A review. Front. Robot. AI 2018, 5, 84. [Google Scholar] [CrossRef]
- Coyle, S.; Majidi, C.; LeDuc, P.; Hsia, K.J. Bio-inspired soft robotics: Material selection, actuation, and design. Extrem. Mech. Lett. 2018, 22, 51–59. [Google Scholar] [CrossRef]
- Lipson, H. Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robot. 2014, 1, 21–27. [Google Scholar] [CrossRef]
- Minelli, A. The Development of Animal Form; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Pechenik, J. Biology of the Invertebrates; McGraw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Kardong, K. Vertebrates: Comparative Anatomy, Function, Evolution; McGraw-Hill Education: New York, NY, USA, 2018. [Google Scholar]
- Brusca, R.C. Invertebrates; Sinauer Associates is an imprint of Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Matthews, G.G. Cellular Physiology of Nerve and Muscle; Blackwell Pub: New York, NY, USA, 2003. [Google Scholar]
- Brainerd, E.L. Pufferfish inflation: Functional morphology of postcranial structures in diodon holocanthus (tetraodontiformes). J. Morphol. 1994, 220, 243–261. [Google Scholar] [CrossRef]
- Chamberlain, J.A., Jr. Jet propulsion of Nautilus: A surviving example of early Paleozoic cephalopod locomotor design. Can. J. Zool. 1990, 68, 806–814. [Google Scholar] [CrossRef]
- Kier, W.M.; Smith, K.K. Tongues, tentacles and trunks: The biomechanics of movement in muscular-hydrostats. Zool. J. Linn. Soc. 2008, 83, 307–324. [Google Scholar] [CrossRef]
- Spong, M. Robot Modeling and Control; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Taghirad, H. Parallel Robots: Mechanics and Control; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2013. [Google Scholar]
- Wit, C. Theory of Robot Control; Springer: London, UK, 1996. [Google Scholar]
- Santos, P. Quadrupedal Locomotion: An Introduction to the Control of Four-Legged Robots; Springer: London, UK, 2006. [Google Scholar]
- Das, A.; Nabi, M. A review on soft robotics: Modeling, control and applications in human-robot interaction. In Proceedings of the 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 18–19 October 2019. [Google Scholar]
- Rus, D.; Tolley, M.T. Design, fabrication and control of origami robots. Nat. Rev. Mater. 2018, 3, 101–112. [Google Scholar] [CrossRef]
- Lee, C.; Kim, M.; Kim, Y.J.; Hong, N.; Ryu, S.; Kim, H.J.; Kim, S. Soft robot review. Int. J. Control. Autom. Syst. 2017, 15, 3–15. [Google Scholar] [CrossRef]
- Hannan, M.W.; Walker, I.D. Kinematics and the implementation of an elephants trunk manipulator and other continuum style robots. J. Robot. Syst. 2003, 20, 45–63. [Google Scholar] [CrossRef]
- She, Y.; Li, C.; Cleary, J.; Su, H.J. Design and fabrication of a soft robotic hand with embedded actuators and sensors. J. Mech. Robot. 2015, 7, 2. [Google Scholar] [CrossRef]
- Wait, K.W.; Jackson, P.J.; Smoot, L.S. Self locomotion of a spherical rolling robot using a novel deformable pneumatic method. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 3757–3762. [Google Scholar]
- Nakamura, T.; Hidaka, Y.; Yokojima, M.; Adachi, K. Development of peristaltic crawling robot with artificial rubber muscles attached to large intestine endoscope. Adv. Robot. 2012, 26, 1161–1182. [Google Scholar] [CrossRef]
- Kim, S.; Clark, J.E.; Cutkosky, M.R. isprawl: Design and tuning for high-speed autonomous open-loop running. Int. J. Robot. Res. 2006, 25, 903–912. [Google Scholar] [CrossRef]
- Kaufhold, T.; Bohm, V.; Zimmermann, K. Design of a miniaturized locomotion system with variable mechanical compliance based on amoeboid movement. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012. [Google Scholar]
- Zhao, L.; Wu, Y.; Blanchet, J.; Perroni-Scharf, M.; Huang, X.; Booth, J.; Kramer-Bottiglio, R.; Balkcom, D. Soft Lattice Modules That Behave Independently and Collectively. IEEE Robot. Autom. Lett. 2022, 7, 5942–5949. [Google Scholar] [CrossRef]
- Ramadoss, V.; Sagar, K.; Ikbal, M.S.; Calles, J.H.L.; Siddaraboina, R.; Zoppi, M. HEDRA: A Bio-Inspired Modular Tensegrity Robot with Polyhedral Parallel Modules. In Proceedings of the 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), Edinburgh, UK, 4–8 April 2022. [Google Scholar] [CrossRef]
- Ranzani, T.; Gerboni, G.; Cianchetti, M.; Menciassi, A. A bioinspired soft manipulator for minimally invasive surgery. Bioinspiration Biomimetics 2015, 10, 3. [Google Scholar] [CrossRef]
- Amend, J.R.; Brown, E.; Rodenberg, N.; Jaeger, H.M.; Lipson, H. A positive pressure universal gripper based on the jamming of granular material. IEEE Trans. Robot. 2012, 28, 341–350. [Google Scholar] [CrossRef]
- Steltz, E.; Mozeika, A.; Rodenberg, N.; Brown, E.; Jaeger, H.M. JSEL: Jamming skin enabled locomotion. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009. [Google Scholar]
- Cianchetti, M.; Ranzani, T.; Gerboni, G.; Falco, I.D.; Laschi, C.; Menciassi, A. STIFF-FLOP surgical manipulator: Mechanical design and experimental characterization of the single module. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013. [Google Scholar]
- Li, S.; Vogt, D.M.; Rus, D.; Wood, R.J. Fluid-driven origami-inspired artificial muscles. Proc. Natl. Acad. Sci. USA 2017, 114, 13132–13137. [Google Scholar] [CrossRef]
- Gollob, S.D.; Poss, J.; Memoli, G.; Roche, E.T. A Multi-Material, Anthropomorphic Metacarpophalangeal Joint with Abduction and Adduction Actuated by Soft Artificial Muscles. IEEE Robot. Autom. Lett. 2022, 7, 5882–5887. [Google Scholar] [CrossRef]
- Nilles, A.; Ceron, S.; Napp, N.; Petersen, K. Strain-Based Consensus in Soft, Inflatable Robots. In Proceedings of the 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), Edinburgh, UK, 4–8 April 2022. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Kan, Z.; Zeng, J.; Wang, M.Y. Hybrid Jamming for Bioinspired Soft Robotic Fingers. Soft Robot. 2020, 7, 292–308. [Google Scholar] [CrossRef]
- der Maur, P.A.; Djambazi, B.; Haberthur, Y.; Hormann, P.; Kubler, A.; Lustenberger, M.; Sigrist, S.; Vigen, O.; Forster, J.; Achermann, F.; et al. RoBoa: Construction and Evaluation of a Steerable Vine Robot for Search and Rescue Applications. In Proceedings of the 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 12–16 April 2021. [Google Scholar] [CrossRef]
- Niiyama, R.; Sun, X.; Sung, C.; An, B.; Rus, D.; Kim, S. Pouch motors: Printable soft actuators integrated with computational design. Soft Robot. 2015, 2, 59–70. [Google Scholar] [CrossRef]
- Jayaram, K.; Full, R.J. Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot. Proc. Natl. Acad. Sci. 2016, 113, E950–E957. [Google Scholar] [CrossRef]
- Kim, S.R.; Lee, D.Y.; Koh, J.S.; Cho, K.J. Fast, compact, and lightweight shape-shifting system composed of distributed self-folding origami modules. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016. [Google Scholar]
- Cham, J.G.; Bailey, S.A.; Clark, J.E.; Full, R.J.; Cutkosky, M.R. Fast and robust: Hexapedal robots via shape deposition manufacturing. Int. J. Robot. Res. 2002, 21, 869–882. [Google Scholar] [CrossRef]
- Lee, D.Y.; Kim, S.R.; Kim, J.S.; Park, J.J.; Cho, K.J. Origami wheel transformer: A variable-diameter wheel drive robot using an origami structure. Soft Robot. 2017, 4, 163–180. [Google Scholar] [CrossRef]
- Suzuki, K.; Shimoyama, I.; Miura, H. Insect-model based microrobot with elastic hinges. J. Microelectromech. Syst. 1994, 3, 4–9. [Google Scholar] [CrossRef]
- Ge, Q.; Dunn, C.K.; Qi, H.J.; Dunn, M.L. Active origami by 4d printing. Smart Mater. Struct. 2014, 23, 9. [Google Scholar] [CrossRef]
- Liu, B.; Hammond, F.L. Modular platform for the exploration of form-function relationships in soft swimming robots. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar]
- Pagano, A.; Yan, T.; Chien, B.; Wissa, A.; Tawfick, S. A crawling robot driven by multi-stable origami. Smart Mater. Struct. 2017, 26, 9. [Google Scholar] [CrossRef]
- Faal, S.G.; Chen, F.; Tao, W.; Agheli, M.; Tasdighikalat, S.; Onal, C.D. Hierarchical kinematic design of foldable hexapedal locomotion platforms. J. Mech. Robot. 2016, 8, 1. [Google Scholar] [CrossRef]
- Felton, S.; Tolley, M.; Demaine, E.; Rus, D.; Wood, R. A method for building self-folding machines. Science 2014, 345, 644–646. [Google Scholar] [CrossRef]
- Firouzeh, A.; Paik, J. Robogami: A fully integrated low-profile robotic origami. J. Mech. Robot. 2015, 7, 2. [Google Scholar] [CrossRef]
- Onal, C.D.; Wood, R.J.; Rus, D. An origami-inspired approach to worm robots. Ieee/Asme Trans. Mechatronics 2012, 18, 430–438. [Google Scholar] [CrossRef]
- Koh, J.S.; Cho, K.J. Omega-shaped inchworm-inspired crawling robot with large-index-and-pitch (LIP) SMA spring actuators. IEEE/ASME Trans. Mechatron. 2012, 18, 419–429. [Google Scholar] [CrossRef]
- Felton, S.M.; Tolley, M.T.; Shin, B.; Onal, C.D.; Demaine, E.D.; Rus, D.; Wood, R.J. Self-folding with shape memory composites. Soft Matter 2013, 9, 7688–7694. [Google Scholar] [CrossRef]
- Bowen, L.; Springsteen, K.; Feldstein, H.; Frecker, M.; Simpson, T.W.; von Lockette, P. Development and validation of a dynamic model of magneto-active elastomer actuation of the origami waterbomb base. J. Mech. Robot. 2015, 7, 1. [Google Scholar] [CrossRef]
- Zhang, K.; Qiu, C.; Dai, J.S. Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators. J. Mech. Robot. 2015, 7, 2. [Google Scholar] [CrossRef]
- Jeong, D.; Lee, K. Design and analysis of an origami-based three-finger manipulator. Robotica 2018, 36, 261–274. [Google Scholar] [CrossRef]
- Gafer, A.; Heymans, D.; Prattichizzo, D.; Salvietti, G. The quad-spatula gripper: A novel soft-rigid gripper for food handling. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar]
- Bern, J.M.; Yanez, L.Z.; Sologuren, E.; Rus, D. Contact-Rich Soft-Rigid Robots Inspired by Push Puppets. In Proceedings of the 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), Edinburgh, UK, 4–8 April 2022. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, Y.; Yang, H.; Walter, L.C.; Santoso, J.; Skorina, E.H.; Onal, C. Salamanderbot: A soft-rigid composite continuum mobile robot to traverse complex environments. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020. [Google Scholar] [CrossRef]
- Bartlett, N.W.; Tolley, M.T.; Overvelde, J.T.B.; Weaver, J.C.; Mosadegh, B.; Bertoldi, K.; Whitesides, G.M.; Wood, R.J. A 3d-printed, functionally graded soft robot powered by combustion. Science 2015, 349, 161–165. [Google Scholar] [CrossRef]
- Zhou, X.; Teng, Y.; Li, X. Development of a new pneumatic-driven earthworm-like soft robot. In Proceedings of the 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China, 28–30 November 2016. [Google Scholar]
- Fras, J.; Althoefer, K. Soft biomimetic prosthetic hand: Design. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018. [Google Scholar]
- Aston, J.P.; Benko, N.; Truong, T.; Zaki, A.; Olsen, N.; Eshete, E.; Luttmer, N.G.; Coats, B.; Minor, M.A. Optimization of a soft robotic bladder array for dissipating high impact loads: An initial study in designing a smart helmet. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar]
- Liu, S.; Zhu, Y.; Zhang, Z.; Fang, Z.; Tan, J.; Peng, J.; Song, C.; Asada, H.H.; Wang, Z. Otariidae-Inspired Soft-Robotic Supernumerary Flippers by Fabric Kirigami and Origami. IEEE/ASME Trans. Mechatronics 2021, 26, 2747–2757. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, W.; Chen, G.; Luo, J.; Lu, Q.; Wang, H. A 3D Printable Origami Vacuum Pneumatic Artificial Muscle with Fast and Powerful Motion. In Proceedings of the 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 12–16 April 2021. [Google Scholar] [CrossRef]
- Arachchige, D.D.K.; Godage, I.S. Hybrid Soft Robots Incorporating Soft and Stiff Elements. In Proceedings of the 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), Edinburgh, UK, 4–8 April 2022. [Google Scholar] [CrossRef]
- Tolley, M.T.; Shepherd, R.F.; Mosadegh, B.; Galloway, K.C.; Wehner, M.; Karpelson, M.; Wood, R.J.; Whitesides, G.M. A resilient, untethered soft robot. Soft Robot. 2014, 1, 213–223. [Google Scholar] [CrossRef]
- Shepherd, R.F.; Ilievski, F.; Choi, W.; Morin, S.A.; Stokes, A.A.; Mazzeo, A.D.; Chen, X.; Wang, M.; Whitesides, G.M. Multigait soft robot. Proc. Natl. Acad. Sci. 2011, 108, 20400–20403. [Google Scholar] [CrossRef]
- Nawroth, J.C.; Lee, H.; Feinberg, A.W.; Ripplinger, C.M.; McCain, M.L.; Grosberg, A.; Dabiri, J.O.; Parker, K.K. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 2012, 30, 792–797. [Google Scholar] [CrossRef]
- Seok, S.; Onal, C.D.; Cho, K.J.; Wood, R.J.; Rus, D.; Kim, S. Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatron. 2013, 18, 1485–1497. [Google Scholar] [CrossRef]
- Cianchetti, M.; Calisti, M.; Margheri, L.; Kuba, M.; Laschi, C. Bioinspired locomotion and grasping in water: The soft eight-arm OCTOPUS robot. Bioinspiration Biomimetics 2015, 10, 3. [Google Scholar] [CrossRef]
- Cheng, N.G.; Lobovsky, M.B.; Keating, S.J.; Setapen, A.M.; Gero, K.I.; Hosoi, A.E.; Iagnemma, K.D. Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012. [Google Scholar]
- Lin, H.T.; Leisk, G.G.; Trimmer, B. GoQBot: A caterpillar-inspired soft-bodied rolling robot. Bioinspiration Biomimetics 2011, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Laschi, C.; Cianchetti, M.; Mazzolai, B.; Margheri, L.; Follador, M.; Dario, P. Soft robot arm inspired by the octopus. Adv. Robot. 2012, 26, 709–727. [Google Scholar] [CrossRef]
- Kim, S.; Spenko, M.; Trujillo, S.; Heyneman, B.; Santos, D.; Cutkosky, M.R. Smooth vertical surface climbing with directional adhesion. IEEE Trans. Robot. 2008, 24, 65–74. [Google Scholar]
- Follador, M.; Cianchetti, M.; Laschi, C. Development of the functional unit of a completely soft octopus-like robotic arm. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012. [Google Scholar]
- Arienti, A.; Calisti, M.; Giorgio-Serchi, F.; Laschi, C. PoseiDRONE: Design of a soft-bodied ROV with crawling, swimming and manipulation ability. In Proceedings of the 2013 OCEANS, San Diego, CA, USA, 23–27 September 2013; pp. 1–7. [Google Scholar]
- Umedachi, T.; Vikas, V.; Trimmer, B.A. Softworms: The design and control of non-pneumatic, 3d-printed, deformable robots. Bioinspiration Biomimetics 2016, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Low, K.; Yang, J.; Pattathil, A.; Zhang, Y. Initial prototype design and investigation of an undulating body by SMA. In Proceedings of the 2006 IEEE International Conference on Automation Science and Engineering, Shanghai, China, 8–10 October 2006. [Google Scholar]
- Umedachi, T.; Vikas, V.; Trimmer, B.A. Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013. [Google Scholar] [CrossRef]
- Sugiyama, Y.; Hirai, S. Crawling and jumping by a deformable robot. Int. J. Robot. Res. 2006, 25, 603–620. [Google Scholar] [CrossRef]
- Deng, T.; Wang, H.; Chen, W.; Wang, X.; Pfeifer, R. Development of a new cable-driven soft robot for cardiac ablation. In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013. [Google Scholar]
- Guo, S.; Fukuda, T.; Asaka, K. A new type of fish-like underwater microrobot. IEEE/ASME Trans. Mechatron. 2003, 8, 136–141. [Google Scholar]
- Chen, Z.; Um, T.I.; Zhu, J.; Bart-Smith, H. Bio-inspired robotic cownose ray propelled by electroactive polymer pectoral fin. Biomed. Biotechnol. Eng. Nanoeng. Med. Biol. 2011, 54884, 817–824. [Google Scholar]
- Rogóż, M.; Zeng, H.; Xuan, C.; Wiersma, D.S.; Wasylczyk, P. Light-driven soft robot mimics caterpillar locomotion in natural scale. Adv. Opt. Mater. 2016, 4, 1689–1694. [Google Scholar] [CrossRef]
- Dollar, A.M.; Jentoft, L.P.; Gao, J.H.; Howe, R.D. Contact sensing and grasping performance of compliant hands. Auton. Robot. 2010, 28, 1. [Google Scholar] [CrossRef]
- Kofod, G.; Wirges, W.; Paajanen, M.; Bauer, S. Energy minimization for self-organized structure formation and actuation. Appl. Phys. Lett. 2007, 90, 8. [Google Scholar] [CrossRef]
- Su, K.Y.; Gul, J.Z.; Choi, K.H. A biomimetic jumping locomotion of functionally graded frog soft robot. In Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, Republic of Korea, 28 June–1 July 2017. [Google Scholar]
- Chang, M.H.; Chae, S.H.; Yoo, H.J.; Kim, S.H.; Kim, W.; Cho, K.J. Loco-sheet: Morphing inchworm robot across rough-terrain. In Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Republic of Korea, 14–18 April 2019. [Google Scholar]
- Munadi, M.; Ariyanto, M.; Setiawan, J.D.; Ayubi, M.F.A. Development of a low-cost quadrupedal starfish soft robot. In Proceedings of the 2018 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, 27–28 September 2018. [Google Scholar]
- Tawk, C.; Sariyildiz, E.; Zhou, H.; Marc in het Panhuis; Spinks, G.M.; Alici, G. Position control of a 3D printed soft finger with integrated soft pneumatic sensing chambers. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar]
- Teeple, C.B.; Koutros, T.N.; Graule, M.A.; Wood, R.J. Multi-segment soft robotic fingers enable robust precision grasping. Int. J. Robot. Res. 2020, 39, 1647–1667. [Google Scholar] [CrossRef]
- Honji, S.; Tahara, K. Dynamic modeling and joint design of a cable driven soft gripper. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar]
- Gatto, V.L.; Rossiter, J.M.; Hauser, H. Robotic jellyfish actuated by soft FinRay effect structured tentacles. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar]
- Patterson, Z.J.; Sabelhaus, A.P.; Majidi, C. Robust Control of a Multi-Axis Shape Memory Alloy-Driven Soft Manipulator. IEEE Robot. Autom. Lett. 2022, 7, 2210–2217. [Google Scholar] [CrossRef]
- Zheng, Z.; Kumar, P.; Chen, Y.; Cheng, H.; Wagner, S.; Chen, M.; Verma, N.; Sturm, J.C. Model-Based Control of Planar Piezoelectric Inchworm Soft Robot for Crawling in Constrained Environments. In Proceedings of the 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), Edinburgh, UK, 4–8 April 2022. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Rogowski, L.W.; Zhang, X.; Kim, M.J. Untethered Soft Millirobot with Magnetic Actuation. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020. [Google Scholar] [CrossRef]
- Meder, F.; Babu, S.P.M.; Mazzolai, B. A Plant Tendril-Like Soft Robot That Grasps and Anchors by Exploiting its Material Arrangement. IEEE Robot. Autom. Lett. 2022, 7, 5191–5197. [Google Scholar] [CrossRef]
- Sakuhara, Y.; Shimizu, H.; Ito, K. Climbing Soft Robot Inspired by Octopus. In Proceedings of the 2020 IEEE 10th International Conference on Intelligent Systems (IS), Varna, Bulgaria, 28–30 August 2020. [Google Scholar] [CrossRef]
- Alizadehyazdi, V.; Bonthron, M.; Spenko, M. An Electrostatic/Gecko-Inspired Adhesives Soft Robotic Gripper. IEEE Robot. Autom. Lett. 2020, 5, 4679–4686. [Google Scholar] [CrossRef]
- Oh, B.; Park, Y.G.; Jung, H.; Ji, S.; Cheong, W.H.; Cheon, J.; Lee, W.; Park, J.U. Untethered Soft Robotics with Fully Integrated Wireless Sensing and Actuating Systems for Somatosensory and Respiratory Functions. Soft Robot. 2020, 7, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Karipoth, P.; Christou, A.; Pullanchiyodan, A.; Dahiya, R. Bioinspired Inchworm- and Earthworm-like Soft Robots with Intrinsic Strain Sensing. Adv. Intell. Syst. 2021, 4, 2100092. [Google Scholar] [CrossRef]
- Sun, W.; Li, B.; Zhang, F.; Fang, C.; Lu, Y.; Gao, X.; Cao, C.; Chen, G.; Zhang, C.; Wang, Z.L. TENG-Bot: Triboelectric nanogenerator powered soft robot made of uni-directional dielectric elastomer. Nano Energy 2021, 85, 106012. [Google Scholar] [CrossRef]
- Morin, S.A.; Shepherd, R.F.; Kwok, S.W.; Stokes, A.A.; Nemiroski, A.; Whitesides, G.M. Camouflage and display for soft machines. Science 2012, 337, 828–832. [Google Scholar] [CrossRef]
- Marchese, A.D.; Onal, C.D.; Rus, D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 2014, 1, 75–87. [Google Scholar] [CrossRef]
- Shepherd, R.F.; Stokes, A.A.; Freake, J.; Barber, J.; Snyder, P.W.; Mazzeo, A.D.; Cademartiri, L.; Morin, S.A.; Whitesides, G.M. Using explosions to power a soft robot. Angew. Chem. Int. Ed. 2013, 52, 2892–2896. [Google Scholar] [CrossRef]
- Mosadegh, B.; Polygerinos, P.; Keplinger, C.; Wennstedt, S.; Shepherd, R.F.; Gupta, U.; Shim, J.; Bertoldi, K.; Walsh, C.J.; Whitesides, G.M. Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 2014, 24, 2163–2170. [Google Scholar] [CrossRef]
- Onal, C.D.; Rus, D. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspiration Biomimetics 2013, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Onal, C.D.; Chen, X.; Whitesides, G.M.; Rus, D. Soft mobile robots with on-board chemrical pressure geneation. In Tracts in Advanced Robotics; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 525–540. [Google Scholar]
- Tolley, M.T.; Shepherd, R.F.; Karpelson, M.; Bartlett, N.W.; Galloway, K.C.; Wehner, M.; Nunes, R.; Whitesides, G.M.; Wood, R.J. An untethered jumping soft robot. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014. [Google Scholar]
- Stokes, A.A.; Shepherd, R.F.; Morin, S.A.; Ilievski, F.; Whitesides, G.M. A hybrid combining hard and soft robots. Soft Robot. 2014, 1, 70–74. [Google Scholar] [CrossRef]
- Suzumori, K.; Endo, S.; Kanda, T.; Kato, N.; Suzuki, H. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In Proceedings of the Proceedings 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007. [Google Scholar]
- Maeder-York, P.; Clites, T.; Boggs, E.; Neff, R.; Polygerinos, P.; Holland, D.; Stirling, L.; Galloway, K.; Wee, C.; Walsh, C. Biologically inspired soft robot for thumb rehabilitation1. J. Med Devices 2014, 8, 2. [Google Scholar] [CrossRef]
- Follador, M.; Tramacere, F.; Mazzolai, B. Dielectric elastomer actuators for octopus inspired suction cups. Bioinspiration Biomimetics 2014, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Goldfield, E.C.; Park, Y.L.; Chen, B.R.; Hsu, W.H.; Young, D.; Wehner, M.; Kelty-Stephen, D.G.; Stirling, L.; Weinberg, M.; Newman, D.; et al. Bio-inspired design of soft robotic assistive devices: The interface of physics, biology, and behavior. Ecol. Psychol. 2012, 24, 300–327. [Google Scholar] [CrossRef]
- Deimel, R.; Brock, O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 2015, 35, 161–185. [Google Scholar] [CrossRef]
- Suzumori, I.A. Tanaka. Applying a flexible microactuator to robotic mechanisms. IEEE Control. Syst. 1992, 12, 21–27. [Google Scholar]
- Marchese, A.D.; Komorowski, K.; Onal, C.D.; Rus, D. Design and control of a soft and continuously deformable 2d robotic manipulation system. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014. [Google Scholar]
- Polygerinos, P.; Wang, Z.; Galloway, K.C.; Wood, R.J.; Walsh, C.J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 2015, 73, 135–143. [Google Scholar] [CrossRef]
- Martinez, R.V.; Branch, J.L.; Fish, C.R.; Jin, L.; Shepherd, R.F.; Nunes, R.M.D.; Suo, Z.; Whitesides, G.M. Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv. Mater. 2012, 25, 205–212. [Google Scholar] [CrossRef]
- Park, Y.L.; Rong Chen, B.; Pérez-Arancibia, N.O.; Young, D.; Stirling, L.; Wood, R.J.; Goldfield, E.C.; Nagpal, R. Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation. Bioinspiration Biomimetics 2014, 9, 016007. [Google Scholar] [CrossRef] [PubMed]
- Sanan, S.; Lynn, P.S.; Griffith, S.T. Pneumatic torsional actuators for inflatable robots. J. Mech. Robot. 2014, 6, 3. [Google Scholar] [CrossRef]
- Roche, E.T.; Wohlfarth, R.; Overvelde, J.T.B.; Vasilyev, N.V.; Pigula, F.A.; Mooney, D.J.; Bertoldi, K.; Walsh, C.J. A bioinspired soft actuated material. Adv. Mater. 2013, 26, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Devi, M.A.; Udupa, G.; Sreedharan, P. A novel underactuated multi-fingered soft robotic hand for prosthetic application. Robot. Auton. Syst. 2018, 100, 267–277. [Google Scholar]
- Chen, L.; Yang, C.; Wang, H.; Branson, D.T.; Dai, J.S.; Kang, R. Design and modeling of a soft robotic surface with hyperelastic material. Mech. Mach. Theory 2018, 130, 109–122. [Google Scholar] [CrossRef]
- Qi, Q.; Teng, Y.; Li, X. Design and characteristic study of a pneumatically actuated earthworm-like soft robot. In Proceedings of the 2015 International Conference on Fluid Power and Mechatronics (FPM), Harbin, China, 5–7 August 2015. [Google Scholar]
- Vergara, A.; Lau, Y.-s.; Mendoza-Garcia, R.F.; Zagal, J.C. Soft Modular Robotic Cubes: Toward Replicating Morphogenetic Movements of the Embryo. PLoS ONE 2017, 12, e0169179. [Google Scholar] [CrossRef]
- Ortiz, D.; Gravish, N.; Tolley, M.T. Soft robot actuation strategies for locomotion in granular substrates. IEEE Robot. Autom. Lett. 2019, 4, 2630–2636. [Google Scholar] [CrossRef]
- Truby, R.L.; Katzschmann, R.K.; Lewis, J.A.; Rus, D. Soft robotic fingers with embedded ionogel sensors and discrete actuation modes for somatosensitive manipulation. In Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) COEX, Seoul, Republic of Korea, 14–18 April 2019; pp. 14–18. [Google Scholar]
- Gamus, B.; Salem, L.; Gat, A.D.; Or, Y. Understanding inchworm crawling for soft-robotics. IEEE Robot. Autom. Lett. 2020, 5, 1397–1404. [Google Scholar] [CrossRef]
- Das, R.; Babu, S.P.M.; Palagi, S.; Mazzolai, B. Soft Robotic Locomotion by Peristaltic Waves in Granular Media. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar] [CrossRef]
- Milana, E.; Raemdonck, B.V.; Cornelis, K.; Dehaerne, E.; Clerck, J.D.; Groof, Y.D.; Vil, T.D.; Gorissen, B.; Reynaerts, D. EELWORM: A bioinspired multimodal amphibious soft robot. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar]
- Tse, Y.A.; Liu, S.; Yang, Y.; Wang, M.Y. A flexible connector for soft modular robots based on micropatterned intersurface jamming. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar]
- Partridge, A.J.; Conn, A.T. Passive, reflex response units for reactive soft robotic systems. IEEE Robot. Autom. Lett. 2020, 5, 4014–4020. [Google Scholar] [CrossRef]
- Yao, Y.; He, L.; Maiolino, P. A Simulation-Based Toolbox to Expedite the Digital Design of Bellow Soft Pneumatic Actuators. In Proceedings of the 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), Edinburgh, UK, 4–8 April 2022. [Google Scholar] [CrossRef]
- Yang, H.D.; Cooper, M.; Akbas, T.; Schumm, L.; Orzel, D.; Walsh, C.J. A Soft Inflatable Wearable Robot for Hip Abductor Assistance: Design and Preliminary Assessment. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020. [Google Scholar] [CrossRef]
- Hao, Y.; Biswas, S.; Hawkes, E.W.; Wang, T.; Zhu, M.; Wen, L.; Visell, Y. A Multimodal, Enveloping Soft Gripper: Shape Conformation, Bioinspired Adhesion, and Expansion-Driven Suction. IEEE Trans. Robot. 2021, 37, 350–362. [Google Scholar] [CrossRef]
- Ma, J.; Chen, D.; Liu, Z.; Wang, M. A Soft Wearable Exoskeleton with Pneumatic Actuator for Assisting Upper Limb. In Proceedings of the 2020 IEEE International Conference on Real-time Computing and Robotics (RCAR), Asahikawa, Japan, 28–29 September 2020. [Google Scholar] [CrossRef]
- Zou, J.; Yang, M.; Jin, G. A five-way directional soft valve with a case study: A starfish like soft robot. In Proceedings of the 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China, 19–20 September 2020. [Google Scholar] [CrossRef]
- Abondance, S.; Teeple, C.B.; Wood, R.J. A Dexterous Soft Robotic Hand for Delicate In-Hand Manipulation. IEEE Robot. Autom. Lett. 2020, 5, 5502–5509. [Google Scholar] [CrossRef]
- Walker, I.D.; Dawson, D.M.; Flash, T.; Grasso, F.W.; Hanlon, R.T.; Hochner, B.; Kier, W.M.; Pagano, C.C.; Rahn, C.D.; Zhang, Q.M. Continuum robot arms inspired by cephalopods. In Unmanned Ground Vehicle Technology VII; Gerhart, G.R., Shoemaker, C.M., Gage, D.W., Eds.; SPIE: Orlando, FL, USA, 2005. [Google Scholar]
- McMahan, W.; Chitrakaran, V.; Csencsits, M.; Dawson, D.; Walker, I.D.; Jones, B.A.; Pritts, M.; Dienno, D.; Grissom, M.; Rahn, C.D. Field trials and testing of the OctArm continuum manipulator. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006. [Google Scholar]
- Boxerbaum, A.S.; Shaw, K.M.; Chiel, H.J.; Quinn, R.D. Continuous wave peristaltic motion in a robot. Int. J. Robot. Res. 2012, 31, 302–318. [Google Scholar] [CrossRef]
- Kwon, G.H.; Park, J.Y.; Kim, J.Y.; Frisk, M.L.; Beebe, D.J.; Lee, S.H. Biomimetic soft multifunctional miniature aquabots. Small 2008, 4, 2148–2153. [Google Scholar] [CrossRef] [PubMed]
- Galloway, K.C.; Clark, J.E.; Yim, M.; Koditschek, D.E. Experimental investigations into the role of passive variable compliant legs for dynamic robotic locomotion. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1243–1249. [Google Scholar]
- Nakabo, Y.; Mukai, T.; Asaka, K. Biomimetic soft robots with artificial muscles. In Smart Materials III; Wilson, A.R., Ed.; SPIE: Sydney, Australia, 2004. [Google Scholar]
- Otake, M.; Kagami, Y.; Inaba, M.; Inoue, H. Motion design of a starfish-shaped gel robot made of electro-active polymer gel. Robot. Auton. Syst. 2002, 40, 185–191. [Google Scholar] [CrossRef]
- Morales, D.; Palleau, E.; Dickey, M.D.; Velev, O.D. Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter 2014, 10, 1337–1348. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Natarajan, S. An easy use auxiliary arm: Design and control of a portable continuum manipulator for enhanced dexterity by soft rigid arms collaboration. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar]
- Deutschmann, B.; Reinecke, J.; Dietrich, A. Open Source Tendon-driven Continuum Mechanism: A Platform for Research in Soft Robotics. In Proceedings of the 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), Edinburgh, UK, 4–8 April 2022. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, B.; Li, W.; Zu, L.; Tang, W.; Wang, Z.L. Bioinspired Triboelectric Soft Robot Driven by Mechanical Energy. Adv. Funct. Mater. 2021, 31, 2104770. [Google Scholar] [CrossRef]
- Li, D.; Wang, S.; He, J.; Zeng, H.; Yao, K.; Gao, Z.; Wu, M.; Liu, Y.; Wang, L.; Xie, Z.; et al. Bioinspired Ultrathin Piecewise Controllable Soft Robots. Adv. Mater. Technol. 2021, 6, 2001095. [Google Scholar] [CrossRef]
- Marchese, A.D.; Rus, D. Design, kinematics, and control of a soft spatial fluidic elastomer manipulator. Int. J. Robot. Res. 2015, 35, 840–869. [Google Scholar] [CrossRef]
- Rafter, A.; Hollinger, G.A.; Menguc, Y.; Olson, G. Analyzing the effect of soft arm design on obstacle navigation through collision. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar]
- Bodily, D.M.; Allen, T.F.; Killpack, M.D. Multi-objective design optimization of a soft, pneumatic robot. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017. [Google Scholar]
- Wakamatsu, K.; Inoue, K.; Hagiwara, D.; Adachi, H.; Matsui, D.; Kurumaya, S.; Nishihama, R.; Okui, M.; Nakajima, K.; Kuniyoshi, Y.; et al. Mixing state estimation of peristaltic continuous mixing conveyor with distributed sensing system based on soft intestine motion. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar]
- Nguyen, P.H.; Qiao, Z.; Seidel, S.; Amatya, S.; Mohd, I.I.B.; Zhang, W. Towards an untethered knit fabric soft continuum robotic module with embedded fabric sensing. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar]
- Lamping, F.; Muller, D.; de Payrebrune, K.M. A systematically derived design for a modular pneumatic soft bending actuator. In Proceedings of the 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), Edinburgh, UK, 4–8 April 2022. [Google Scholar] [CrossRef]
- Hall, D.; Williams, C. Big Hero 6; Walt Disney Animation Studios: Burbank, CA, USA, 2014. [Google Scholar]
- Karimi, M.A.; Alizadehyazdi, V.; Busque, B.P.; Jaeger, H.M.; Spenko, M. A boundary-constrained swarm robot with granular jamming. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar]
- Meng, J.; Gerez, L.; Chapman, J.; Liarokapis, M. A tendon-driven, pneumatically actuated, soft robotic gripper with a telescopic palm. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020. [Google Scholar]
Support Structure | Class | Actuator Type | Class |
---|---|---|---|
Endoskeleton | End | Skeletal muscle | Mu |
Exoskeleton | Exo | Inflatable | In |
Hydrostatic skeleton | HyS | ||
Muscular hydrostat | MuH |
Soft Robot Type | Support Structure | Actuator Type | Figure | Table |
---|---|---|---|---|
EndMu | Endoskeleton | Skeletal muscle | Figure 4 | Table 3 |
EndIn | Endoskeleton | Inflatable | Figure 5 | Table 3 |
ExoMu | Exoskeleton | Skeletal muscle | Figure 7 | Table 4 |
ExoIn | Exoskeleton | Inflatable | Figure 8 | Table 4 |
HySMu | Hydrostatic skeleton | Skeletal muscle | Figure 10 | Table 5 |
HySIn | Hydrostatic skeleton | Inflatable | Figure 11 | Table 5 |
MuHMu | Muscular hydrostat | Skeletal muscle | Figure 13 | Table 6 |
MuHIn | Muscular hydrostat | Inflatable | Figure 14 | Table 6 |
Robot | Authors | Class. | Characteristics |
---|---|---|---|
iSprawl | Kim et al. [35] | EndMu | Cable-driven |
Robot with amoeboid movement | Kaufhold et al. [36] | EndMu | Magnetic based actuators |
Elephant’s trunk manipulator | Hannan et al. [31] | EndMu | Cable Driven, extension springs actuators |
Soft humanoid robotic hand | She et al. [32] | EndMu | SMA actuator and PZT flexure sensor |
Soft lattice modules | Zhao et al. [37] | EndMu | Shape memory alloy spring actuators |
Tensegrity manipulator with tetrahedral parallel modules | Ramadoss et al. [38] | EndMu | Cable driven |
Bio-inspired manipulator for MSI | Ranzani et al. [39] | EndIn | Pneumatic actuator granular jamming |
Simple passive universal gripper | Amend et al. [40] | EndIn | Pneumatic actuator granular jamming |
JSEL | Steltz et al. [41] | EndIn | Jamming skin Pneumatic actuator |
STIFF-FLOP Surgical manipulator | Cianchetti et al. [42] | EndIn | Pneumatic actuators |
Peristaltic crawling robot | Nakamura et al. [34] | EndIn | Pneumatic actuator |
Spherical rolling robots | Wait et al. [33] | EndIn | Pneumatic actuator |
Fluid-driven origami-inspired artificial muscles | Li et al. [43] | EndIn | Vacuum actuator |
Multi-material metacarpophalangeal joint | Gollob et al. [44] | EndIn | McKibben muscles |
Soft pneumatic modules | Nilles et al. [45] | EndIn | Pneumatic actuator |
Hybrid jamming SR Fingers | Yang et al. [46] | EndIn | Hybrid Jamming and pneumatic actuator |
RoBoa | Maur et al. [47] | EndIn | Pneumatic actuator |
Robot | Authors | Class. | Characteristics |
---|---|---|---|
Self-folding origami robot | Kim et al. [50] | ExoMu | Torsion shape memory alloy wire |
Sprawlita | Cham et al. [51] | ExoMu | SDM-mechanical actuator |
Origami wheel transformer | Lee et al. [52] | ExoMu | Coil spring actuator |
Insect model-based microrobot | Suzuki et al. [53] | ExoMu | Electrostatic actuator |
PAC hinge | Ge et al. [54] | ExoMu | Thermomechanical actuator |
Soft adaptive robotic fish | Liu et al. [55] | ExoMu | Cable-driven actuator |
Crawling robot | Pagano et al. [56] | ExoMu | Motor-driven actuator |
2 DOF hexapod | Faal et al. [57] | ExoMu | Motor-driven actuator |
Self-folding robot | Felton et al. [58] | ExoMu | Motor-driven actuator |
Robogami | Firouzeh et al. [59] | ExoMu | SMA torsional actuator |
Origami-inspired worm robot | Onal et al. [60] | ExoMu | Nickel titanium coil actuators |
Omega-shaped inchworm | Koh et al. [61] | ExoMu | SMA coil-spring actuator |
Self-folding crane | Felton et al. [62] | ExoMu | Resistive circuits actuators |
Origami water bomb-based | Bowen et al. [63] | ExoMu | MagnetoActive Elastomer Actuators |
Helical Kirigami | Zhang et al. [64] | ExoMu | Linear SMA Actuators |
OrigamiBot-II: Three-finger origami manipulator | Jeong et al. [65] | ExoMu | Servomotors actuator |
Quad-Spatula gripper | Gafer et al. [66] | ExoMu | Cable driven actuators |
Push puppet soft-rigid robot | Bern et al. [67] | ExoMu | Cable-driven actuators |
Salamanderbot | Sun et al. [68] | ExoMu | Cable-driven actuators |
Robot Jumper | Bartlett et al. [69] | ExoIn | Butane/oxygen combustion |
Soft robot that can imitate an earthworm | Zhou et al. [70] | ExoIn | Pneumatic actuator |
Soft biomimetic prosthetic hand | Fras et al. [71] | ExoIn | Pneumatic actuator |
Planar-printable robotic hand | Niiyama et al. [48] | ExoIn | Pouch Motor Pneumatic Actuator |
Soft robotic bladder array | Aston et al. [72] | ExoIn | Pneumatic actuators |
Otariidae-inspired SR | Liu et al. [73] | ExoIn | Pneumatic actuators |
VPAM | Zhang et al. [74] | ExoIn | Pneumatic actuators |
Hybrid soft robot | Archchige et al. [75] | ExoIn | Pneumatic actuators |
Robot | Authors | Class. | Characteristics |
---|---|---|---|
Meshworm | Seok et al. [79] | HySMu | Nickel titanium (NiTi) coil actuators |
Octopus Robots | Cianchetti et al. [80] | HySMu | Cable driven actuators and SMA |
Robot arm | Cheng et al. [81] | HySMu | Cable driven actuators |
Robot worm | Lin et al. [82] | HySMu | SMA coil |
Robot arm | Laschi et al. [83] | HySMu | SMA coil |
Stickybot | Kim et al. [84] | HySMu | Push–pull cable actuator |
Artificial octopus muscle | Follador et al. [85] | HySMu | SMA springs |
PoseiDRONE | Arienti et al. [86] | HySMu | Cable-driven actuator |
Softworms | Umedachi et al. [87] | HySMu | SMA coils and motor tendons |
Undulating body by SMA | Low et al. [88] | HySMu | SMA actuator |
A 3D-printed soft robot | Umedachi et al. [89] | HySMu | 3-D Printed, SMA actuators |
Spherical deformable robot | Sugiyama et al. [90] | HySMu | SMA coils and polymer gel actuators |
Soft robot for cardiac ablation | Deng et al. [91] | HySMu | Cable driven actuator |
Fish-like underwater microrobot | Guo et al. [92] | HySMu | ICPF actuator |
Robotic cownose ray microrobot | Chen et al. [93] | HySMu | IPMC actuator |
Soft robot mimics caterpillar locomotion | Rogóż et al. [94] | HySMu | LCE film with patterned molecular orientation, light-driven |
SDM hand | Dollar et al. [95] | HySMu | Cable driven actuator |
Jellyfish 2D muscle architecture | Nawroth et al. [78] | HySMu | Bio-hybrid actuators |
Plastic frame shell dielectric elastomer actuator | Kofod et al. [96] | HySMu | Dielectric elastomer actuator. |
Soft frog robot | Su et al. [97] | HySMu | Multilayer composite of SMP and polyurethane, SMA actuator |
Loco-sheet | Chang et al. [98] | HySMu | Cable-driven actuator |
Quadrupedal starfish soft robot | Munadi et al. [99] | HySMu | String-driven actuator |
Soft finger with a pneumatic sensor | Tawk et al. [100] | HySMu | Cable-driven actuator, pneumatic sensor |
Soft robotic fingers | Teeple et al. [101] | HySIn | Pneumatic actuator |
Cable-driven soft gripper | Honji et al. [102] | HySMu | Cable-driven actuator |
Robotic jellyfish | Gatto et al. [103] | HySMu | Cable-driven actuator |
Soft SMA-powered limb | Patterson et al. [104] | HySMu | SMA actuators |
Planar soft robot | Zheng et al. [105] | HySMu | Piezoelectric actuator |
Untethered soft millirobot | Bhattacharjee et al. [106] | HySMu | Magnetic actuator |
Plant tendril-like soft robot | Meder et al. [107] | HySMu | Heating element actuator |
Climbing soft robot | Sakuhara et al. [108] | HySMu | Cable driven actuator |
Electrostatic/gecko-inspired SR | Alizadehyazdi et al. [109] | HySMu | Cable-driven actuator |
Untethered soft robot | Oh et al. [110] | HySMu | Heating element actuator |
Inchworm–earthworm-like Soft Robots | Karipoth et al. [111] | HySMu | Magnetic actuator |
TENG-Bot | Sun et al. [112] | HySMu | Dielectric actuator |
Quadruped soft robot | Tolley et al. [76] | HySIn | Pneumatic actuator |
Quadruped soft robot | Shepherd et al. [77] Morin et al. [113] | HySIn | Pneumatic actuators |
Robotic fish | Marchese et al. [114] | HySIn | Pneumatic actuators |
Tripedal soft robot | Shepherd et al. [115] | HySIn | Methane/oxygen combustion |
Actuator that actuates rapidly | Mosadegh et al. [116] | HySIn | Pneumatic actuator |
Bio-inspired soft robotic snake | Onal et al. [117] | HySIn | Pneumatic actuator |
Soft mobile-rolling robot | Onal et al. [118] | HySIn | Catalyzed decomposition of hydrogen peroxide |
Untethered jumping soft robot | Tolley et al. [119] | HySIn | Pneumatic and chemical (Butane combustion) actuator |
Four-legged quadruped | Stokes et al. [120] | HySIn | Pneumatic actuators |
Manta swimming robot | Suzumori et al. [121] | HySIn | Pneumatic actuators |
Soft robot for thumb rehabilitation | Maeder-York et al. [122] | HySIn | Pneumatic actuator |
Octopus-inspired suction cups | Follador et al. [123] | HySIn | Dielectric elastomer actuator |
The second skin: soft robot assistive device | Goldfield et al. [124] | HySIn | Soft pneumatic synthetic muscles and strain sensors |
RBO hand 2 | Deimel et al. [125] | HySIn | Pneumatic actuators |
Multi-fingered robot arm | Suzumori et al. [126] | HySIn | Flexible microactuators driven with pneumatics |
Deformable 2D robotic manipulation system | Marchese et al. [127] | HySIn | Pneumatic Actuator |
Soft robotic glove | Polygerinos et al. [128] | HySIn | Pneumatic actuators |
Robotic tentacles | Martinez et al. [129] | HySIn | Pneumatic actuators |
Soft wearable robotic device for ankle-–foot rehabilitation | Park et al. [130] | HySIn | Pneumatic actuators |
PneuArm | Sanan et al. [131] | HySIn | Pneumatic torsional actuators |
Soft left ventricle | Roche et al. [132] | HySIn | McKibben actuators |
Multi-fingered soft robotic hand | Devi et al. [133] | HySIn | Pneumatic actuator |
Soft robotic surface | Chen et al. [134] | HySIn | Pneumatic actuators |
Soft robot with crawling locomotion | Qi et al. [135] | HySIn | Pneumatic actuators |
Soft Modular Robotic Cubes | Vergara et al. [136] | HySIn | Pneumatic actuator, magnetic modular cubes |
Soft robot for granular media | Ortiz et al. [137] | HySIn | Pneumatic actuator |
Soft robotic fingers | Truby et al. [138] | HySIn | Pneumatic actuator |
Inchworm crawling | Gamus et al. [139] | HySIn | Pneumatic actuator |
Soft robot with peristaltic movement | Das et al. [140] | HySIn | Pneumatic actuator |
EELWORM | Milana et al. [141] | HySIn | Pneumatic actuator |
Flexible connector for soft modular robots | Tse et al. [142] | HySIn | Pneumatic actuator |
PRR | Partridge et al. [143] | HySIn | Pneumatic actuator |
Soft actuator | Yao et al. [144] | HySIn | Pneumatic actuator |
Hip abduction actuator | Yang et al. [145] | HySIn | Pneumatic actuator |
Enveloping soft gripper | Hao et al. [146] | HySIn | Pneumatic actuator |
Soft wearable exoskeleton | Ma et al. [147] | HySIn | Pneumatic actuator |
Starfish-like soft robot | Zou et al. [148] | HySIn | Pneumatic actuator |
Dexterous soft robotic hand | Abondance et al. [149] | HySIn | Pneumatic actuators |
Robot | Authors | Class. | Characteristics |
---|---|---|---|
X-RHex | Galloway et al. [154] | MuHMu | DC motor to drive the slider |
Robot with peristalsis for locomotion | Boxerbaum et al. [152] | MuHMu | Bouden cable |
IPMC-patterned actuator | Nakabo et al. [155] | MuHMu | IPMC Actuator |
Mini soft aquabots | Kwon et. al. [153] | MuHMu | Electroactive hydro-gel-based actuators. |
Starfish gel robot | Otake et al. [156] | MuHMu | Hydrogel electro-actuator |
Gel walker | Morales et al. [157] | MuHMu | Hydrogel electro-actuator |
Soft Auxiliary Arm | Yu et al. [158] | MuHMu | Cable-driven actuator |
Tendon-driven continuum mechanism | Deutschmann et al. [159] | MuHMu | Tendon driven |
Triboelectric soft robot | Liu et al. [160] | MuHMu | Triboelectric actuators |
Piecewise controllable soft robots | Li et al. [161] | MuHMu | Electrothermal actuator |
Robot jumper | Walker et al. [150] | MuHIn | Pneumatic (McKibben) |
OctArm V-continuum manipulator | McMahan et al. [151] | MuHIn | Pneumatic Actuator |
Soft fluidic elastomer manipulator | Marchese et al. [162] | MuHIn | Pneumatic actuator |
Soft Arm | Rafter et al. [163] | MuHIn | Pneumatic actuator |
Soft robot Kaa | Bodily et al. [164] | MuHIn | Pneumatic actuator |
Peristaltic continuous mixing conveyor | Wakamatsu et al. [165] | MuHIn | Pneumatic actuator |
Untethered knit fabric soft robot | Nguyen et al. [166] | MuHIn | Pneumatic actuator |
Pneumatic bending actuators | Lamping et al. [167] | MuHIn | Pneumatic actuator |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-González, A.; Tejada, J.C.; López-Romero, J. Review and Proposal for a Classification System of Soft Robots Inspired by Animal Morphology. Biomimetics 2023, 8, 192. https://doi.org/10.3390/biomimetics8020192
López-González A, Tejada JC, López-Romero J. Review and Proposal for a Classification System of Soft Robots Inspired by Animal Morphology. Biomimetics. 2023; 8(2):192. https://doi.org/10.3390/biomimetics8020192
Chicago/Turabian StyleLópez-González, Alexandro, Juan C. Tejada, and Janet López-Romero. 2023. "Review and Proposal for a Classification System of Soft Robots Inspired by Animal Morphology" Biomimetics 8, no. 2: 192. https://doi.org/10.3390/biomimetics8020192
APA StyleLópez-González, A., Tejada, J. C., & López-Romero, J. (2023). Review and Proposal for a Classification System of Soft Robots Inspired by Animal Morphology. Biomimetics, 8(2), 192. https://doi.org/10.3390/biomimetics8020192