Urban Biomimicry for Flood Mitigation Using an Ecosystem Service Assessment Tool in Central Wellington, New Zealand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site
2.2. Nature Braid
2.3. Test Model
2.4. Flood Mitigation Ecosystem Service Tool
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019; pp. 1–126. Available online: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (accessed on 14 November 2022).
- zu Ermgassen, S.O.S.E.; Utamiputri, P.; Bennun, L.; Edwards, S.; Bull, J.W. The Role of “No Net Loss” Policies in Conserving Biodiversity Threatened by the Global Infrastructure Boom. One Earth 2019, 1, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Farhad, N.; Garg, S.; Huxley, R. Water Safe Cities Technical Report; C40 Cites, 2022; pp. 1–27. Available online: https://c40.my.salesforce.com/sfc/p/#36000001Enhz/a/1Q000000ZjNF/NQMDUgqZ_Mcr3hqAYY2bicKH_K17ttVGJyVnDJpypWM (accessed on 14 November 2022).
- Cao, W.; Zhou, Y.; Güneralp, B.; Li, X.; Zhao, K.; Zhang, H. Increasing global urban exposure to flooding: An analysis of long-term annual dynamics. Sci. Total. Environ. 2022, 817, 153012. [Google Scholar] [CrossRef]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, H. Barriers to gauging built environment climate vulnerability. Nat. Clim. Chang. 2020, 10, 482–485. [Google Scholar] [CrossRef]
- Zari, M.P. Biomimetic Urban Design: Ecosystem Service Provision of Water and Energy. Buildings 2017, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Pedersen Zari, M. Regenerative Urban Design and Ecosystem Biomimicry, 1st ed.; Taylor and Francis: London, UK, 2018; p. 260. [Google Scholar] [CrossRef]
- Pedersen Zari, M.; Connolly, P.; Southcombe, M. Ecologies Design: Transforming Architecture, Landscape, and Urbanism, 1st ed.; Taylor and Francis: London, UK, 2020; p. 320. [Google Scholar] [CrossRef]
- Blanco, E.; Zari, M.P.; Raskin, K.; Clergeau, P. Urban Ecosystem-Level Biomimicry and Regenerative Design: Linking Ecosystem Functioning and Urban Built Environments. Sustainability 2021, 13, 404. [Google Scholar] [CrossRef]
- Zari, M.P.; MacKinnon, M.; Varshney, K.; Bakshi, N. Regenerative living cities and the urban climate–biodiversity–wellbeing nexus. Nat. Clim. Chang. 2022, 12, 601–604. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; pp. 1–155. Available online: https://www.millenniumassessment.org/documents/document.356.aspx.pdf (accessed on 14 November 2022).
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A.; et al. The IPBES Conceptual Framework—Connecting nature and people. Curr. Opin. Environ. Sustain. 2014, 14, 1–16. [Google Scholar] [CrossRef]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Raček, J.; Hlavínek, P. Stormwater Management in Urban Areas. In Management of Water Quality and Quantity, 1st ed.; Zelenakova, M., Hlavínek, P., Negm, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 17–39. [Google Scholar] [CrossRef]
- Filazzola, A.; Shrestha, N.; MacIvor, J.S.; Stanley, M. The contribution of constructed green infrastructure to urban biodiversity: A synthesis and meta-analysis. J. Appl. Ecol. 2019, 56, 2131–2143. [Google Scholar] [CrossRef]
- Chen, W.; Wang, W.; Huang, G.; Wang, Z.; Lai, C.; Yang, Z. The capacity of grey infrastructure in urban flood management: A comprehensive analysis of grey infrastructure and the green-grey approach. Int. J. Disaster Risk Reduct. 2021, 54, 102045. [Google Scholar] [CrossRef]
- Li, C.; Peng, C.; Chiang, P.-C.; Cai, Y.; Wang, X.; Yang, Z. Mechanisms and applications of green infrastructure practices for stormwater control: A review. J. Hydrol. 2018, 568, 626–637. [Google Scholar] [CrossRef]
- Xu, C.; Tang, T.; Jia, H.; Xu, M.; Xu, T.; Liu, Z.; Long, Y.; Zhang, R. Benefits of coupled green and grey infrastructure systems: Evidence based on analytic hierarchy process and life cycle costing. Resour. Conserv. Recycl. 2019, 151, 104478. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R.; Kyung-Ho, K. Green Roof for Stormwater Management in a Highly Urbanized Area: The Case of Seoul, Korea. Sustainability 2018, 10, 584. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Lin, Z.; Zhang, S.; Ge, D. Stormwater retention and detention performance of green roofs with different substrates: Observational data and hydrological simulations. J. Environ. Manag. 2021, 291, 112682. [Google Scholar] [CrossRef]
- Razzaghmanesh, M.; Beecham, S.; Kazemi, F. Impact of green roofs on stormwater quality in a South Australian urban environment. Sci. Total Environ. 2014, 470–471, 651–659. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Martinez-Izquierdo, L.; Langemeyer, J.; Baró, F.; McPhearson, T. Interactive spatial planning of urban green infrastructure—Retrofitting green roofs where ecosystem services are most needed in Oslo. Ecosyst. Serv. 2021, 50, 101314. [Google Scholar] [CrossRef]
- Langemeyer, J.; Wedgwood, D.; McPhearson, T.; Baró, F.; Madsen, A.L.; Barton, D.N. Creating urban green infrastructure where it is needed—A spatial ecosystem service-based decision analysis of green roofs in Barcelona. Sci. Total. Environ. 2020, 707, 135487. [Google Scholar] [CrossRef]
- Delpy, F.; Zari, M.P.; Jackson, B.; Benavidez, R.; Westend, T. Ecosystem Services Assessment Tools for Regenerative Urban Design in Oceania. Sustainability 2021, 13, 2825. [Google Scholar] [CrossRef]
- Trégarot, E.; Failler, P. Adequacy of ecosystem services assessment tools and approaches to current policy needs and gaps in the European Union Overseas entities. One Ecosyst. 2021, 6, e74170. [Google Scholar] [CrossRef]
- Nature Braid. Available online: https://naturebraid.org/ (accessed on 14 November 2022).
- Statistics New Zealand. 2018 Census Place Summaries: Wellington City. 2018. Available online: https://www.stats.govt.nz/tools/2018-census-place-summaries/wellington-city#more-data-and-information (accessed on 14 November 2022).
- Biophilic Cities. Available online: https://www.biophiliccities.org/wellington (accessed on 14 November 2022).
- Wellington City Council. Our Natural Capital: Wellington’s Biodiversity Strategy and Action Plan 2015; Wellington City Council: Wellington, New Zealand, 2015; pp. 1–116. Available online: https://wellington.govt.nz/~/media/your-council/plans-policies-and-bylaws/plans-and-policies/a-to-z/biodiversity/files/2015/our-natural-capital-entire.pdf?la=en (accessed on 14 November 2022).
- Wellington City Council. Wellington Central City Green Network Plan; Wellington City Council: Wellington, New Zealand, 2021; pp. 1–64. Available online: https://wellington.govt.nz/-/media/your-council/plans-policies-and-bylaws/plans-and-policies/a-to-z/green-network/green-network-plan- (accessed on 14 November 2022).
- Blaschke, P.; Chapman, R.; Gyde, E.; Howden-Chapman, P.; Ombler, J.; Pedersen Zari, M.; Perry, M.; Randal, R. Green Space in Wellington’s Central City: Current Provision, and Design for Future Wellbeing; New Zealand Centre for Sustainable Cities: Wel-lington, New Zealand, 2019; pp. 1–96. Available online: https://www.sustainablecities.org.nz/sites/default/files/2021-12/Report-Green-Space-in-Wellington%E2%80%99s-Central-City.pdf (accessed on 14 November 2022).
- World Health Organization. Health Indicators of Sustainable Cities in the Context of the Rio+20 UN Conference on Sustainable Development; World Health Organization: Geneva, Switzerland, 2012; pp. 1–6. Available online: https://cdn.who.int/media/docs/default-source/environment-climate-change-and-health/sustainable-development-indicator-cities.pdf?sfvrsn=c005156b_2 (accessed on 14 November 2022).
- Wellington City Council. Long-Term Plan 2018-28; Wellington City Council: Wellington, New Zealand, 2018; pp. 1–236. Available online: https://wellington.govt.nz/-/media/your-council/plans-policies-and-bylaws/plans-and-policies/longtermplan/2018-28/wcc-long-term-plan-2018-28-volume-1.pdf?la=en&hash=07BACEFF739B18327D43E67F890E895CC7A68E5A (accessed on 14 November 2022).
- McLean, S. Stream or discharge? Analysing hydrosocial relations in the Waimapihi Stream to innovate urban water politics. N. Z. Geogr. 2022, 78, 9–22. [Google Scholar] [CrossRef]
- Capacity Infrastructure Services. Stage 1 ICMP Development: Summary; Wellington City Council: Wellington, New Zealand, 2014; pp. 1–51. Available online: https://www.wellingtonwater.co.nz/publication-library/community-information-and-education/document/113/ (accessed on 14 November 2022).
- Wellington City Council Recreational Water Quality. Available online: https://wellington.govt.nz/climate-change-sustainability-environment/water/recreational-water#:~:text=Is%20your%20beach%20safe%20for,other%20water%2Dbased%20recreational%20activities (accessed on 14 November 2022).
- Smith, L. What’s up with wet-weather wastewater overflows? Water 2020, 213, 18–19. Available online: https://ndhadeliver.natlib.govt.nz/delivery/DeliveryManagerServlet?dps_pid=IE52913237 (accessed on 14 November 2022).
- Chappell, P.R. The climate and weather of Wellington. NIWA Sci. Technol. Ser. 2014, 65, 1–44. Available online: https://niwa.co.nz/sites/niwa.co.nz/files/Wellington%20Climate%20WEB_0.pdf (accessed on 14 November 2022).
- Ministry for the Environment. Climate Change Projections for New Zealand: Atmosphere Projections Based on Simulations from the IPCC Fifth Assessment, 2nd ed.; Ministry for the Environment: Wellington, New Zealand, 2018; pp. 1–131. Available online: https://environment.govt.nz/assets/Publications/Files/Climate-change-projections-2nd-edition-final.pdf (accessed on 14 November 2022).
- Pearce, P. Wellington Region Climate Change Projections and Impacts (Report 2017148AK); NIWA: Wellington, New Zealand, 2017; pp. 1–6. Available online: https://niwa.co.nz/sites/niwa.co.nz/files/Well_NCC_projections_impacts2017.pdf (accessed on 14 November 2022).
- Wellington City Council. Flood Zones. 2021. Available online: https://data-wcc.opendata.arcgis.com/datasets/WCC::flood-zones-3/explore?location=-41.281526%2C174.778973%2C13.07 (accessed on 14 November 2022).
- Eagle Technology. New Zealand Imagery. 2022. Available online: https://www.arcgis.com/home/item.html?id=d284729222d04a3cb548cfe27716ea43 (accessed on 14 November 2022).
- Land Information New Zealand. Wellington City LiDAR 1m DEM (2019–2022). 2020. Available online: https://data.linz.govt.nz/layer/105023-wellington-city-lidar-1m-dem-2019-2020/ (accessed on 14 November 2022).
- Wellington City Council. Wellington Buildings. 2020. Available online: https://data-wcc.opendata.arcgis.com/datasets/WCC::wellington-buildings/explore?location=-41.301753%2C174.779914%2C17.85 (accessed on 14 November 2022).
- Wellington City Council District Plan. Available online: https://eplan.wellington.govt.nz/eplan/ (accessed on 14 November 2022).
- Landcare Research. New Zealand Land Cover Database Version 5.0 Mainland New Zealand. 2020. Available online: https://lris.scinfo.org.nz/layer/104400-lcdb-v50-land-cover-database-version-50-mainland-new-zealand/ (accessed on 14 November 2022).
- Landcare Research. Fundamental Soil Layers (FSL) North Island (All Attributes). 2010. Available online: https://lris.scinfo.org.nz/layer/48136-fsl-north-island-all-attributes/ (accessed on 14 November 2022).
- NIWA. National Climate Database (CliFlo). 2018. Available online: https://cliflo.niwa.co.nz/ (accessed on 14 November 2022).
- NIWA. River Environment Classification v2.0. 2019. Available online: https://niwa.co.nz/freshwater/management-tools/river-environment-classification-0 (accessed on 14 November 2022).
- LUCI Help Documentation 2019. Available online: https://www.lucitools.org/assets/Uploads/LUCIDocumentation-as-of-April-2019.pdf (accessed on 14 November 2022).
- Mahdiyar, A.; Tabatabaee, S.; Abdullah, A.; Marto, A. Identifying and assessing the critical criteria affecting decision-making for green roof type selection. Sustain. Cities Soc. 2018, 39, 772–783. [Google Scholar] [CrossRef]
- Hill, J.; Drake, J.; Sleep, B.; Margolis, L. Influences of Four Extensive Green Roof Design Variables on Stormwater Hydrology. J. Hydrol. Eng. 2017, 22, 04017019. [Google Scholar] [CrossRef] [Green Version]
- VanWoert, N.D.; Rowe, D.B.; Andresen, J.A.; Rugh, C.L.; Fernandez, R.T.; Xiao, L. Green Roof Stormwater Retention: Effects of roof sur-face, slope, and media depth. J. Environ. Qual. 2005, 34, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhang, S.; Zhang, J.; Zhang, S.; Zhang, C.; Yang, H.; Wang, R.; Wei, L. Stormwater retention performance of green roofs with various configurations in different climatic zones. J. Environ. Manag. 2022, 319, 115447. [Google Scholar] [CrossRef]
- Mora-Melià, D.; López-Aburto, C.S.; Ballesteros-Pérez, P.; Muñoz-Velasco, P. Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile. Sustainability 2018, 10, 1130. [Google Scholar] [CrossRef] [Green Version]
- Ercolani, G.; Chiaradia, E.A.; Gandolfi, C.; Castelli, F.; Masseroni, D. Evaluating performances of green roofs for stormwater runoff mitigation in a high flood risk urban catchment. J. Hydrol. 2018, 566, 830–845. [Google Scholar] [CrossRef]
- Twohig, C.; Casali, Y.; Aydin, N.Y. Can green roofs help with stormwater floods? A geospatial planning approach. Urban For. Urban Green. 2022, 76, 127724. [Google Scholar] [CrossRef]
- Viecco, M.; Jorquera, H.; Sharma, A.; Bustamante, W.; Fernando, H.J.S.; Vera, S. Green roofs and green walls layouts for improved urban air quality by mitigating particulate matter. Build. Environ. 2021, 204, 108120. [Google Scholar] [CrossRef]
- Hirano, Y.; Ihara, T.; Gomi, K.; Fujita, T. Simulation-Based Evaluation of the Effect of Green Roofs in Office Building Districts on Mitigating the Urban Heat Island Effect and Reducing CO2 Emissions. Sustainability 2019, 11, 2055. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, H.; Wang, Y.; Che, Y.; Ge, Z.; Mao, L. The relationship between green roofs and urban biodiversity: A systematic review. Biodivers. Conserv. 2022, 31, 1771–1796. [Google Scholar] [CrossRef]
Classification | Existing Scenario (km2) | Percentage of Catchment | Green Roof Scenario (km2) | Percentage of Catchment | Change in Area (km2) | Percentage Change in Area |
---|---|---|---|---|---|---|
Non-mitigated Features | 8.05 | 59% | 6.57 | 48% | −1.49 | −11% |
Mitigated Features | 1.51 | 11% | 2.42 | 18% | +0.91 | +7% |
Mitigating Features | 4.07 | 30% | 4.65 | 34% | +0.58 | +4% |
Classification | Existing Scenario (km2) | Percentage of Catchment | Green Roof Scenario (km2) | Percentage of Catchment | Change in Area (km2) | Percentage Change in Area |
---|---|---|---|---|---|---|
Flood-Mitigating Land | 4.06 | 30% | 4.65 | 34% | +0.58 | +4% |
Low Flood Concentration | 6.80 | 50% | 6.76 | 50% | −0.04 | 0% |
Moderate Flood Concentration | 1.40 | 10% | 1.11 | 8% | −0.29 | −2% |
High Flood Concentration | 1.35 | 10% | 1.10 | 8% | −0.25 | −2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
MacKinnon, M.; Pedersen Zari, M.; Brown, D.K.; Benavidez, R.; Jackson, B. Urban Biomimicry for Flood Mitigation Using an Ecosystem Service Assessment Tool in Central Wellington, New Zealand. Biomimetics 2023, 8, 9. https://doi.org/10.3390/biomimetics8010009
MacKinnon M, Pedersen Zari M, Brown DK, Benavidez R, Jackson B. Urban Biomimicry for Flood Mitigation Using an Ecosystem Service Assessment Tool in Central Wellington, New Zealand. Biomimetics. 2023; 8(1):9. https://doi.org/10.3390/biomimetics8010009
Chicago/Turabian StyleMacKinnon, Maggie, Maibritt Pedersen Zari, Daniel K. Brown, Rubianca Benavidez, and Bethanna Jackson. 2023. "Urban Biomimicry for Flood Mitigation Using an Ecosystem Service Assessment Tool in Central Wellington, New Zealand" Biomimetics 8, no. 1: 9. https://doi.org/10.3390/biomimetics8010009
APA StyleMacKinnon, M., Pedersen Zari, M., Brown, D. K., Benavidez, R., & Jackson, B. (2023). Urban Biomimicry for Flood Mitigation Using an Ecosystem Service Assessment Tool in Central Wellington, New Zealand. Biomimetics, 8(1), 9. https://doi.org/10.3390/biomimetics8010009