Advanced Bionic Attachment Equipment Inspired by the Attachment Performance of Aquatic Organisms: A Review
Abstract
:1. Introduction
2. Non-Smooth Structural Morphologies and Attachment Mechanisms of Aquatic Organisms
2.1. The Single-Level Non-Smooth Structures of Aquatic Organisms and Their Attachment Mechanisms
2.1.1. The Gully-Shaped Single-Level Structures
2.1.2. The Spinous (Barb)-like Structures
2.1.3. Other Single-Level Non-Smooth Structures
2.2. The Multi-Level Hair-like Non-Smooth Structures of Aquatic Organisms and Their Attachment Mechanisms
3. Basic Models and Force Testing Experiments of the Underwater Attachment of Aquatic Biological Suckers
3.1. Basic Models of Underwater Attachment of Aquatic Organisms
3.1.1. Suction
3.1.2. Interlocking Friction
3.2. Force Testing Experiments and Related Research of Aquatic Biosorption
4. Research Status and Potential Application Fields of Biomimetic Attachment Equipment Inspired by Aquatic Organisms
4.1. The Bionic Attachment Robots
4.1.1. The Bionic Soft Attachment Robots
4.1.2. The Bionic Wall-Climbing Robots
4.2. The Bionic Flexible Grasping Robotic Arms
4.3. The Bionic Suction Cups and Micro-Suction Cup Patches That Can Be Used as Accessories for Bionic Attachment Robots
4.3.1. The Bionic Suction Cups That Can Be Used as Suction Accessories for Attachment Robots
- (1)
- The octopus-inspired bionic end manipulators that can be applied to attachment robots.Based on the good underwater attachment effect of the octopus, various attachment manipulators suitable for underwater soft attachment robots were manufactured. For example, an octopus-inspired suction cup was developed by Follador et al. (Figure 6c) [128]. It was mainly composed of a driving device fixed by a plexiglass frame and a soft artificial funnel made of silicone. The actuation of the suction cup mimicked the acetabular radialis muscle of the octopus suction cup and was based on a dielectric elastomer actuator with an integrated actuation system. This suction cup system was especially suitable for soft robotic manipulators working in wet conditions.In addition, as shown in Figure 6d, based on the octopus’s perception system, a robot anchoring module with a sensing mechanism was also designed by Sareh et al. to enhance the attachment robot’s ability to move and maintain its position and manipulate objects [129]. This module could be used for robot motion planning and anchor fixation state measurement, and it quantified its ability to hold anchors under constant and variable vacuum pressure signals. Subsequently, inspired by the attachment, sensing, and decision-making functions of octopus suckers, a soft attachment actuator was developed by Lee Heon Joon et al. (Figure 6e) [130]. The strain sensor module was combined with the complex surface of the AOS to help it identify objects. The actuators were integrated with machine learning to help predict the weight of specific objects and determine their center of gravity for more stable and reliable attachment. To its credit, the soft adhesion actuator had the advantages of responsiveness, high durability, and repeatability.
- (2)
- The octopus-inspired bionic suction cup attachment foot that can be applied to wall-climbing robotsIn order to further improve the attachment capacity of wall-climbing robots and realize their better climbing effect, researchers gained inspiration from the sucker of the octopus. They carried out bionic optimization designs for the attachment feet of wall-climbing robots. For example, a bionic micro-suction cup driven by SMA was designed by Hu Bingshan et al. [131] (Figure 6a). It comprised an SMA spring driver, a rigid edge, a guide element, a guide piece, and an elastic element. It was actuated by a biased unidirectional SMA actuator and could be used as an attachment mechanism for a miniature wall-climbing robot without an air pump. In addition, by simulating the muscle contraction and expansion of the octopus’s sucker, a suction module with good underwater vibration attachment capacity was designed by Chen Rui et al. (Figure 6b) [132]. It mainly included a vibration source mechanism, a release mechanism, a sealing mechanism, and a damping mechanism. The vibration source mechanism was a central crank-slider structure and two groups of suction cups could vibrate by controlling the assembly position of the two eccentric wheels. In addition, the release mechanism could complete the attachment and release of the machine on the wall by controlling the six-way valve. The mechanism might be used in the feet of underwater wall-climbing robots in the future.
- (3)
- The bionic suction cup accessories inspired by other aquatic organisms that can be applied to attachment robotsMany bionic suction cup accessories have been inspired by aquatic organisms other than the octopus and could be integrated with attachment equipment. For example, based on the influence mechanism of the papillary hair-like hierarchical structure on the surface of the sucker of the clingfish, a biomimetic pharynx sucker was designed by Sandoval et al. (Figure 6h) [133]. The suction cup with good adaptability on smooth and rough surfaces could be used for suction robots. In addition, a biomimetic fish sucker with a microstructure was designed by Petra Ditsche et al. (Figure 6g) [134]. It could attach to rough surfaces, non-planar geometries, and surfaces of fragile objects stably and could be used as a flexible attachment part of ROV manipulators. Inspired by the structure and performance of the suction cups of the leech, a miniature bionic suction cup was designed by Feng Huashan et al. (Figure 6i) [135]. It was powered by a petal-like ionomer metal composite (IPMC) and wrapped in harmless silicone rubber. It could be used as an attachment mechanism for a micro-medical robot to help it attach to the inner wall of the gastrointestinal tract for long-term peristalsis experiments. In addition, inspired by the adhesion mechanism of sea urchins, a suction cup that was suitable for both underwater crawling robots and manipulators was designed by Sadeghi et al. (Figure 6f). It combined a soft suction cup and chemical adhesive material and could have better attachment capacity on rough surfaces [136].
4.3.2. The Bionic Micro-Suction Cup Patches That Can Be Used as Suction Accessories for Attachment Robots
4.4. The Micro-Suction Cup Patches for Wearable, Flexible Sensors
4.5. The Smart Micro-Suction Cup Patches for Biomedical Therapies
5. Conclusions and Perspectives
- (1)
- The surface microstructure of aquatic biological attachment and the regulation mechanisms of underwater attachment–detachment have not been deeply explored. Much research about attachment mechanisms is not in-depth enough. For instance, the problems of how suckermouth catfishes use their oral suction cups to achieve spontaneous breathing and attachment without interfering with each other and how abalones independently utilize multiple structures such as bristles, gully-like gastropods, and mucus to achieve autonomous control of attachment–detachment, etc. need to be solved as soon as possible.
- (2)
- The research and development of intelligent and responsive underwater reversible attachment equipment face great challenges. Unlike on land, the underwater environment, especially the deep sea, is complex and unpredictable. When bionic attachment equipment is grasping, transporting, and monitoring in these environments, it is extremely susceptible to interference from unknown objects or stimuli. As a result, the requirements for the design and development of underwater intelligent response reversible bionic attachment equipment are significantly increased, and the research and development of related new equipment are quite challenging.
- (3)
- The research and development process of biomimetic micro-suction cup patches with excellent characteristics such as bioapplicability, durability, and environmental protection still need to be accelerated. Although the traditional adhesive patches with high application rates have reached the standard, they still stimulate wounds and pollute the environment. At the same time, bionic micro-suction cup patches which are green, non-toxic, and of good biocompatibility can be used in wearable sensing and medical applications. However, the problems of decreased attachment and insufficient attachment time in humid environments still need to be solved as soon as possible.
- (1)
- Continue to further explore the micro–nanostructures of aquatic biological attachment surfaces and their original attachment–detachment mechanisms, and lay a solid foundation for developing and manufacturing advanced biomimetic attachment equipment.Although a lot of research and exploration on the suckers of aquatic organisms have been carried out, it is not enough to only grasp the external morphological information of the structure. Combining the multi-disciplinary knowledge of physics, mechanics, biology, chemistry, etc. is necessary to study comprehensively. The mechanical properties, organizational structure, and motion control mechanisms of these aquatic organisms are characterized by many aspects [193]. Only by fully excavating the details of all aspects related to aquatic biological attachment and exploring the original attachment–detachment mechanism can we lay a good foundation for the advent of advanced biomimetic attachment equipment.
- (2)
- Although there is a long way to go to develop multi-functional flexible underwater attachment equipment with intelligent sensing and autonomous and precise control capabilities, we must forge ahead.Flexible underwater robots still play an essential role in underwater transportation and monitoring. In the future, they may become the mainstay in AUV recovery, underwater rescue, all-round water, land, and air monitoring, etc. The underwater attachment equipment should eventually move toward diverse functions, intelligent response, precise control, and flexible drive sensing control integration to avoid the interference of underwater stimuli, so they can adapt to the complex underwater environment and complete their tasks more smoothly and perfectly.
- (3)
- Continue to develop high-quality and high-performance bionic micro-suction cup patches with diverse functions, green environmental protection qualities, wide adaptability, and strong attachment capacity to better serve important fields such as wearable sensing devices and biomedical treatments.With the rise of non-toxic and non-polluting bionic micro-suction cup patches, they are widely used in wearable sensing devices (such as wet climbing, electronic sensing, vital sign monitoring, etc.) and biomedical treatments (such as wound dressings, rapid recovery, dermatological protection, etc.) and other fields. In addition, they may play a more critical role in the health monitoring of various organs and the controllable input of drugs in the future. However, their attachment strength on wet or rough surfaces is reduced, and the attachment time is short, which seriously limits their development. Therefore, researchers should try their best to find and test new materials and develop new suction cup patches that are more suitable for skin attachment and treatments to make up for the shortcomings of the current traditional suction cup patches.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Wang, R. Surface area, pore size distribution and microstructure of vacuum getter. Vacuum 2011, 85, 909–914. [Google Scholar] [CrossRef]
- Cai, S.S.; Gowda, A.U.; Alexander, R.H.; Silverman, R.P.; Goldberg, N.H.; Rasko, Y.M. Use of negative pressure wound therapy on malignant wounds—A case report and review of literature. Int. Wound J. 2017, 14, 661–665. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, Q.; Lu, X.; Ma, Z.; Zhang, H.; Wu, C. Experimental study of the optimal vacuum pressure in vacuum assisted air gap membrane distillation process. Desalination 2017, 414, 63–72. [Google Scholar] [CrossRef]
- Baik, S.; Lee, H.J.; Kim, D.W.; Kim, J.W.; Lee, Y.; Pang, C. Bioinspired Adhesive Architectures: From Skin Patch to Integrated Bioelectronics. Adv. Mater. 2019, 31, e1803309. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.I.; Kim, S.H.; Ko, H.C. Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures. Nano Res. 2021, 14, 3143–3158. [Google Scholar] [CrossRef]
- Quinn, S.; Gaughran, W. Bionics—An inspiration for intelligent manufacturing and engineering. Robot. Comput.-Integr. Manuf. 2010, 26, 616–621. [Google Scholar] [CrossRef]
- Ren, L. Progress in the bionic study on anti-adhesion and resistance reduction of terrain machines. Sci. China Technol. Sci. 2009, 52, 273–284. [Google Scholar] [CrossRef]
- Dodou, D.; Breedveld, P.; de Winter, J.C.; Dankelman, J.; van Leeuwen, J.L. Mechanisms of temporary adhesion in benthic animals. Biol. Rev. Camb. Philos. Soc. 2011, 86, 15–32. [Google Scholar] [CrossRef]
- Chan, T.S.; Carlson, A. Physics of adhesive organs in animals. Eur. Phys. J. Spec. Top. 2019, 227, 2501–2512. [Google Scholar] [CrossRef]
- Federle, W.; Labonte, D. Dynamic biological adhesion: Mechanisms for controlling attachment during locomotion. Integr. Comp. Biol. 2019, 374, 20190199. [Google Scholar] [CrossRef] [Green Version]
- Tramacere, F.; Follador, M.; Pugno, N.M.; Mazzolai, B. Octopus-like suction cups: From natural to artificial solutions. Bioinspir. Biomim. 2015, 10, 035004. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Hu, A.; Cummings, S.; Roy, C.; Casleton, R.; Wan, A.; Erjavic, N.; Berman, S.; Peet, M.M.; Aukes, D.M.; et al. New Insights on the Control and Function of Octopus Suckers. Adv. Intell. Syst. 2020, 2, 1900154. [Google Scholar] [CrossRef] [Green Version]
- Tramacere, F.; Beccai, L.; Kuba, M.; Gozzi, A.; Bifone, A.; Mazzolai, B. The morphology and adhesion mechanism of Octopus vulgaris suckers. PLoS ONE 2013, 8, e65074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandyopadhyay, P.R.; Hrubes, J.D.; Leinhos, H.A. Biorobotic adhesion in water using suction cups. Bioinspir. Biomim. 2008, 3, 016003. [Google Scholar] [CrossRef] [PubMed]
- Cong, Q.; Xu, J.; Fan, J.; Chen, T.; Ru, S. Insights into the Multilevel Structural Characterization and Adsorption Mechanism of Sinogastromyzon szechuanensis Sucker on the Rough Surface. Life 2021, 11, 952. [Google Scholar] [CrossRef]
- Geerinckx, T.; De Kegel, B. Functional and evolutionary anatomy of the African suckermouth catfishes (Siluriformes: Mochokidae): Convergent evolution in Afrotropical and Neotropical faunas. J. Anat. 2014, 225, 197–208. [Google Scholar] [CrossRef]
- Arens, W. Wear and tear of mouthparts a critical problem in stream animals feeding on epilithic algae. Can. J. Zool. 1989, 68, 1896–1914. [Google Scholar] [CrossRef]
- Trivedi, D.; Rahn, C.D.; Kier, W.M.; Walker, I.D. Soft robotics: Biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 2008, 5, 99–117. [Google Scholar] [CrossRef]
- Tramacere, F.; Beccai, L.; Mattioli, F.; Sinibaldi, E.; Mazzolai, B. Artificial Adhesion Mechanisms inspired by Octopus Suckers. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 3846–3851. [Google Scholar]
- Wang, W.; You, S.; Gong, X.; Qi, D.; Chandran, B.K.; Bi, L.; Cui, F.; Chen, X. Bioinspired Nanosucker Array for Enhancing Bioelectricity Generation in Microbial Fuel Cells. Adv. Mater. 2016, 28, 270–275. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Chen, Y.; Wainwright, D.K.; Kenaley, C.P.; Gong, Z.; Liu, Z.; Liu, H.; Guan, J.; Wang, T.; et al. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Sci. Robot. 2017, 2, eaan8072. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, S.; Zhang, Y.; Song, S.; Wang, C.; Tan, S.; Zhao, W.; Wang, G.; Sun, W.; Yang, F.; et al. Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces. Sci. Robot. 2022, 7, eabm6695. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-r.; Xi, Y.-x.; Ji, C.; Zou, J. A biomimetic robot crawling bidirectionally with load inspired by rock-climbing fish. J. Zhejiang Univ.-SCI. A 2022, 23, 14–26. [Google Scholar] [CrossRef]
- Tramacere, F.; Beccai, L.; Kuba, M.J.; Mazzolai, B. Octopus Suckers Identification Code (OSIC). Mar. Freshw. Behav. Physiol. 2013, 46, 447–453. [Google Scholar] [CrossRef]
- Kier, W.M.; Stella, M.P. The arrangement and function of octopus arm musculature and connective tissue. J. Morphol. 2007, 268, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Feinstein, N.; Nesher, N.; Hochner, B. Functional morphology of the neuromuscular system of the Octopus vulgaris arm. Vie Milieu 2011, 61, 219–229. [Google Scholar]
- Follador, M.; Tramacere, F.; Viry, L.; Cianchetti, M.; Beccai, L.; Laschi, C.; Mazzolai, B. Octopus-inspired innovative suction cups. In Proceedings of the Second International Conference, Living Machines 2013, London, UK, 29 July–2 August 2013; pp. 368–370. [Google Scholar]
- Xi, P.; Cong, Q.; Xu, J.; Qiu, K. Design, experiment and adsorption mechanism analysis of bionic sucker based on octopus sucker. Proc. Inst. Mech. Eng. Part H 2019, 233, 1–12. [Google Scholar] [CrossRef]
- Tramacere, F.; Kovalev, A.; Kleinteich, T.; Gorb, S.N.; Mazzolai, B. Structure and mechanical properties of Octopus vulgaris suckers. J. R. Soc. Interface 2014, 11, 20130816. [Google Scholar] [CrossRef] [Green Version]
- Tramacere, F.; Beccai, L.; Mazzolai, B. What Can We Learn from the Octopus? In Proceedings of the 1st International Conference on Biological and Biomimetic Adhesives, Lisbon, Portugal, 9–11 May 2013; pp. 89–102. [Google Scholar]
- Tramacere, F.; Pugno, N.M.; Kuba, M.J.; Mazzolai, B. Unveiling the morphology of the acetabulum in octopus suckers and its role in attachment. Interface Focus 2015, 5, 20140050. [Google Scholar] [CrossRef] [Green Version]
- Kier, W.M.; Smith, A.M. The Structure and Adhesive Mechanism of Octopus Suckers. Integr. Comp. Biol. 2002, 42, 1146–1153. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Chai, N.; Dong, W. Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers. PLoS ONE 2015, 10, e0140776. [Google Scholar] [CrossRef] [Green Version]
- Phillips, A.J.; Govedich, F.R.; Moser, W.E. Leeches in the extreme: Morphological, physiological, and behavioral adaptations to inhospitable habitats. Int. J. Parasitol.-Parasit. Wildl. 2020, 12, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Saglam, N.; Saunders, R.; Shain, D.H.; Saidel, W.M. Detailed ultrastructure of the Hirudo (Annelida: Hirudinea) salivary gland. Micron 2020, 136, 102887. [Google Scholar] [CrossRef] [PubMed]
- Ellerby, D.J. The physiology and mechanics of undulatory swimming: A student laboratory exercise using medicinal leeches. Adv. Physiol. Educ. 2009, 33, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenkova, J.; Kment, P.; Malenovsky, I.; Tothova, A. Myxobdella socotrensis sp. nov., a new parasitic leech from Socotra Island, with comments on the phylogeny of Praobdellidae (Hirudinida: Arhynchobdellida). Parasitol. Int. 2021, 82, 102310. [Google Scholar] [CrossRef] [PubMed]
- Solgi, R.; Raz, A.; Zakeri, S.; Kareshk, A.T.; Yousef, A.; Jarehan, A.; Djadid, N.D. Morphological and molecular description of parasitic leeches (Annelida: Hirudinea) isolated from rice field of Bandar Anzali, North of Iran. Gene Rep. 2021, 23, 101162. [Google Scholar] [CrossRef]
- Kampowski, T.; Eberhard, L.; Gallenmuller, F.; Speck, T.; Poppinga, S. Functional morphology of suction discs and attachment performance of the Mediterranean medicinal leech (Hirudo verbana Carena). J. R. Soc. Interface 2016, 13, 20160096. [Google Scholar] [CrossRef] [Green Version]
- Ayhan, H.; Ozyurt Kocakoglu, N.; Candan, S. Functional morphology of the suckers and teeth of the medicinal leech Hirudo verbana Carena, 1820 (Annelida; Clitellata; Hirudinida): A scanning electron microscope study. Microsc. Res. Tech. 2021, 84, 2930–2935. [Google Scholar] [CrossRef]
- Kampowski, T.; Thiemann, L.-L.; Kuerner, L.; Speck, T.; Poppinga, S. Exploring the attachment of the Mediterranean medicinal leech (Hirudo verbana) to porous substrates. J. R. Soc. Interface 2020, 17, 20200300. [Google Scholar] [CrossRef]
- Qiao, S.; Wang, L.; Jeong, H.; Rodin, G.J.; Lu, N. Suction effects in cratered surfaces. J. R. Soc. Interface 2017, 14, 20170377. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, S.; Zuo, P.; Ji, J.; Liu, J. The mechanics of abalone crawling on sharp objects without injury. Sci. Rep. 2019, 9, 3881. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.Y.M.; Brunner, R.; Chen, P.Y.; Talke, F.E.; Meyers, M.A. Underwater adhesion of abalone: The role of van der Waals and capillary forces. Acta Mater. 2009, 57, 4178–4185. [Google Scholar] [CrossRef]
- Beckert, M.; Flammang, B.E.; Nadler, J.H. Remora fish suction pad attachment is enhanced by spinule friction. J. Exp. Biol. 2015, 218, 3551–3558. [Google Scholar] [PubMed] [Green Version]
- Beckert, M. Mechanics of Remora Adhesion. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 1 May 2015. [Google Scholar]
- Ditsche-Kuru, P.; Koop, J.H.; Gorb, S.N. Underwater attachment in current: The role of setose attachment structures on the gills of the mayfly larvae Epeorus assimilis (Ephemeroptera, Heptageniidae). J. Exp. Biol. 2010, 213, 1950–1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, D.; Nag, T.C. Fine structure of the organ of attachment of the teleost, Garra gotyla gotyla (Ham). Zoology 2006, 109, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elhafeez, H.H.; Mokhtar, D.M. Comparative Morphological Study of Lips and Associated Structures of Two Algal Grazer Fish. J. Adv. Microsc. Res. 2014, 9, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, M. The oral sucker of Gyrinocheilus aymonieri (Teleostei Cypriniformes). J. Zool. 1986, 1, 211–254. [Google Scholar] [CrossRef]
- Uehara, K.; Miyoshi, S.; Toh, H. Fine structure of the horny teeth of the lamprey, Entosphenus japonicus. Cell Tissue Res. 1983, 231, 1–15. [Google Scholar] [CrossRef]
- Khidir, K.T.; Renaud, C.B. Oral Fimbriae and Papillae in Parasitic Lampreys (Petromyzontiformes). Environ. Biol. Fishes 2003, 66, 271–278. [Google Scholar] [CrossRef]
- Chen, Y.; Shih, M.-C.; Wu, M.-H.; Yang, E.-C.; Chi, K.-J. Underwater attachment using hairs: The functioning of spatula and sucker setae from male diving beetles. J. R. Soc. Interface 2014, 11, 20140273. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, Y.; Liu, S.; Liu, J. Insights into adhesion of abalone: A mechanical approach. J. Mech. Behav. Biomed. Mater. 2018, 77, 331–336. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Zuo, P.; Li, J.; Liu, J. A Mechanics Study on the Self-Righting of Abalone from the Substrate. Appl. Bionics Biomech. 2020, 2020, 8825451. [Google Scholar] [CrossRef] [PubMed]
- Kuanpradit, C.; Stewart, M.J.; York, P.S.; Degnan, B.M.; Sobhon, P.; Hanna, P.J.; Chavadej, J.; Cummins, S.F. Characterization of mucus-associated proteins from abalone (Haliotis)—Candidates for chemical signaling. FEBS J. 2012, 279, 437–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, P.; Cong, Q.; Xu, J.; Sun, L. Surface movement mechanism of abalone and underwater adsorbability of its abdominal foot. Bioinspired Biomim. Nanobiomater. 2019, 8, 254–262. [Google Scholar] [CrossRef]
- De Meyer, J.; Geerinckx, T. Using the whole body as a sucker: Combining respiration and feeding with an attached lifestyle in hill stream loaches (Balitoridae, Cypriniformes). J. Morphol. 2014, 275, 1066–1079. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Nag, T.C. Adhesion by paired pectoral and pelvic fins in a mountain-stream catfish, Pseudocheneis sulcatus (Sisoridae). Environ. Biol. Fishes 2004, 71, 1–5. [Google Scholar] [CrossRef]
- Wang, L.; Ha, K.-H.; Rodin, G.J.; Liechti, K.M.; Lu, N. Mechanics of Crater-Enabled Soft Dry Adhesives: A Review. Front. Mech. Eng. 2020, 6, 601510. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, J.; Gu, Z.; Wan, X.; Jiang, L.; Wang, S. Bioinspired Multiscale Wet Adhesive Surfaces: Structures and Controlled Adhesion. Adv. Funct. Mater. 2019, 30, 1905287. [Google Scholar] [CrossRef]
- Friedman, M.; Johanson, Z.; Harrington, R.C.; Near, T.J.; Graham, M.R. An early fossil remora (Echeneoidea) reveals the evolutionary assembly of the adhesion disc. Proc. R. Soc. B-Biol. Sci. 2013, 280, 20131200. [Google Scholar] [CrossRef]
- Beckert, M.; Flammang, B.E.; Anderson, E.J.; Nadler, J.H. Theoretical and computational fluid dynamics of an attached remora (Echeneis naucrates). Zoology 2016, 119, 430–438. [Google Scholar] [CrossRef]
- Cohen, K.E.; Flammang, B.E.; Crawford, C.H.; Hernandez, L.P. Knowing when to stick: Touch receptors found in the remora adhesive disc. R. Soc. Open Sci. 2020, 7, 190990. [Google Scholar] [CrossRef] [Green Version]
- Su, S.; Wang, S.; Li, L.; Xie, Z.; Hao, F.; Xu, J.; Wang, S.; Guan, J.; Wen, L. Vertical Fibrous Morphology and Structure-Function Relationship in Natural and Biomimetic Suction-Based Adhesion Discs. Matter 2020, 2, 1207–1221. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Shi, W.; Arredondo-Galeana, A.; Mei, L.; Demirel, Y.K. Understanding of remora’s “hitchhiking” behaviour from a hydrodynamic point of view. Sci. Rep. 2021, 11, 14837. [Google Scholar] [CrossRef] [PubMed]
- Nadler, J.H.; Mercer, A.J.; Culler, M.; Ledford, K.A.; Bloomquist, R.; Lin, A. Structures and Function of Remora Adhesion. MRS OPL 2013, 1498, 159–168. [Google Scholar] [CrossRef]
- Flammang, B.E.; Kenaley, C.P. Remora cranial vein morphology and its functional implications for attachment. Sci. Rep. 2017, 7, 5914. [Google Scholar] [CrossRef]
- Britz, R.; Johnson, G.D. Ontogeny and homology of the skeletal elements that form the sucking disc of remoras (Teleostei, Echeneoidei, Echeneidae). J. Morphol. 2012, 273, 1353–1366. [Google Scholar] [CrossRef]
- Cohen, K.E.; Crawford, C.H.; Hernandez, L.P.; Beckert, M.; Nadler, J.H.; Flammang, B.E. Sucker with a fat lip: The soft tissues underlying the viscoelastic grip of remora adhesion. J. Anat. 2020, 237, 643–654. [Google Scholar] [CrossRef]
- Conrado, A.L.V.; Iunes, R.S.; Bruno, C.E.M.; Rocha, A.T.S.; da Silva, J.R.M.C. Radiographic and tomographic description of marlin sucker Remora osteochir, Pisces: Echeneidae—Preliminary data of one specimen. Mar. Life Sci. Technol. 2020, 2, 246–251. [Google Scholar] [CrossRef]
- Ditsche, P.; Michels, J.; Kovalev, A.; Koop, J.; Gorb, S. More than just slippery: The impact of biofilm on the attachment of non-sessile freshwater mayfly larvae. J. R. Soc. Interface 2014, 11, 20130989. [Google Scholar] [CrossRef] [Green Version]
- Ditsche, P.; Summers, A.P. Aquatic versus terrestrial attachment: Water makes a difference. Beilstein J. Nanotechnol. 2014, 5, 2424–2439. [Google Scholar] [CrossRef]
- Ditsche-Kuru, P. Influence of the Surface Roughness of Hard Substrates on the Attachment of Selected Running Water Macrozoobenthos. Ph.D. Thesis, Universitäts-und Landesbibliothek Bonn, Bonn, Germany, 21 July 2009. [Google Scholar]
- Das, D.; Chakraborti, S.; Nag, T.C. Morphology of adhesive surfaces in the sisorid catfish, Glyptothorax sinense sikkimensis. Indian J. Biochem. Biophys. 2021, 58, 385–393. [Google Scholar]
- Lethbridge, R.; Potter, I. The Oral fimbriae of the lamprey Geotria australis. J. Zool. 1979, 188, 267–277. [Google Scholar]
- Blake, R.W. Biomechanics of rheotaxis in six teleost genera. Can. J. Zool. 2006, 84, 1173–1186. [Google Scholar] [CrossRef]
- Adriaens, D.; Geerinckx, T.; Vlassenbroeck, J.; Van Hoorebeke, L.; Herrel, A. Extensive jaw mobility in suckermouth armored catfishes (Loricariidae): A morphological and kinematic analysis of substrate scraping mode of feeding. Physiol. Biochem. Zool. 2009, 82, 51–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geerinckx, T.; Herrel, A.; Adriaens, D. Suckermouth armored catfish resolve the paradox of simultaneous respiration and suction attachment: A kinematic study of Pterygoplichthys disjunctivus. J. Exp. Zool. Part A. 2011, 315, 121–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wassenbergh, S.; Lieben, T.; Herrel, A.; Huysentruyt, F.; Geerinckx, T.; Adriaens, D.; Aerts, P. Kinematics of benthic suction feeding in Callichthyidae and Mochokidae, with functional implications for the evolution of food scraping in catfishes. J. Exp. Biol. 2009, 212, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.D.; Reinhardt, U.G. Effects of texture on surface attachment of spawning-run sea lampreysPetromyzon marinus: A quantitative analysis. J. Fish Biol. 2008, 73, 1464–1472. [Google Scholar] [CrossRef]
- Green, K.K.; Kovalev, A.; Svensson, E.I.; Gorb, S.N. Male clasping ability, female polymorphism and sexual conflict: Fine-scale elytral morphology as a sexually antagonistic adaptation in female diving beetles. J. R. Soc. Interface 2013, 10, 20130409. [Google Scholar] [CrossRef] [Green Version]
- Wainwright, D.K.; Kleinteich, T.; Kleinteich, A.; Gorb, S.N.; Summers, A.P. Stick tight: Suction adhesion on irregular surfaces in the northern clingfish. Biol. Lett. 2013, 9, 20130234. [Google Scholar] [CrossRef] [Green Version]
- Tramacere, F.; Appel, E.; Mazzolai, B.; Gorb, S.N. Hairy suckers: The surface microstructure and its possible functional significance in the Octopus vulgaris sucker. Beilstein J. Nanotechnol. 2014, 5, 561–565. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Liu, Y.; Xie, Z. Gecko-Like Dry Adhesive Surfaces and Their Applications: A Review. J. Bionic Eng. 2021, 18, 1011–1044. [Google Scholar]
- Garner, A.M.; Russell, A.P. Revisiting the classification of squamate adhesive setae: Historical, morphological and functional perspectives. R. Soc. Open Sci. 2021, 8, 202039. [Google Scholar] [CrossRef] [PubMed]
- Alibardi, L. Adhesive pads of gecko and anoline lizards utilize corneous and cytoskeletal proteins for setae development and renewal. J. Exp. Zool. Part B 2020, 334, 263–279. [Google Scholar] [CrossRef] [PubMed]
- Terashima, S.; Ochi, A.; Sato, J.; Suzuki, M.; Takahashi, T.; Aoyagi, S. Proposal of a three-stage hair structure imitating the sole of gecko foot and its fabrication by UV nanoimprinting. Precis. Eng. 2021, 67, 359–369. [Google Scholar] [CrossRef]
- Russell, A.P.; Stark, A.Y.; Higham, T.E. The Integrative Biology of Gecko Adhesion: Historical Review, Current Understanding, and Grand Challenges. Integr. Comp. Biol. 2019, 59, 101–116. [Google Scholar] [CrossRef]
- Ditsche, P.; Hicks, M.; Truong, L.; Linkem, C.; Summers, A. From smooth to rough, from water to air: The intertidal habitat of Northern clingfish (Gobiesox maeandricus). Sci. Nat. 2017, 104, 33. [Google Scholar] [CrossRef]
- Ditsche, P.; Wainwright, D.K.; Summers, A.P. Attachment to challenging substrates--fouling, roughness and limits of adhesion in the northern clingfish (Gobiesox maeandricus). J. Exp. Biol. 2014, 217, 2548–2554. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, J.A.; Sommers, J.; Peddireddy, K.R.; Robertson-Anderson, R.M.; Tolley, M.T.; Deheyn, D.D. Toward Bioinspired Wet Adhesives: Lessons from Assessing Surface Structures of the Suction Disc of Intertidal Clingfish. ACS Appl. Mater. Interfaces 2020, 12, 45460–45475. [Google Scholar] [CrossRef]
- Greco, G.; Bosia, F.; Tramacere, F.; Mazzolai, B.; Pugno, N.M. The role of hairs in the adhesion of octopus suckers: A hierarchical peeling approach. Bioinspir. Biomim. 2020, 15, 035006. [Google Scholar] [CrossRef]
- Chuang, Y.-C.; Chang, H.-K.; Liu, G.-L.; Chen, P.-Y. Climbing upstream: Multi-scale structural characterization and underwater adhesion of the Pulin river loach (Sinogastromyzon puliensis). J. Mech. Behav. Biomed. Mater. 2017, 73, 76–85. [Google Scholar] [CrossRef]
- Wang, J.; Ji, C.; Wang, W.; Zou, J.; Yang, H.; Pan, M. An adhesive locomotion model for the rock-climbing fish, Beaufortia kweichowensis. Sci. Rep. 2019, 9, 16571. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Ma, C.; Liu, J.; Dong, X.; Liu, J. The co-effect of microstructures and mucus on the adhesion of abalone from a mechanical perspective. Biosurf. Biotribol. 2021, 7, 180–186. [Google Scholar] [CrossRef]
- Fulcher, B.A.; Motta, P.J. Suction disk performance of echeneid fishes. Can. J. Zool. 2006, 84, 42–50. [Google Scholar] [CrossRef]
- Kenaley, C.P.; Stote, A.; Ludt, W.B.; Chakrabarty, P. Comparative Functional and Phylogenomic Analyses of Host Association in the Remoras (Echeneidae), a Family of Hitchhiking Fishes. Integr. Organism. Biol. 2019, 1, obz007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsujioka, K.; Matsuo, Y.; Shimomura, M.; Hirai, Y. A New Concept for an Adhesive Material Inspired by Clingfish Sucker Nanofilaments. Langmuir 2022, 38, 1215–1222. [Google Scholar] [CrossRef]
- Park, H.-H.; Seong, M.; Sun, K.; Ko, H.; Kim, S.M.; Jeong, H.E. Flexible and Shape-Reconfigurable Hydrogel Interlocking Adhesives for High Adhesion in Wet Environments Based on Anisotropic Swelling of Hydrogel Microstructures. ACS Macro Lett. 2017, 6, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Wang, J.; Ji, C. The Adhesive System and Anisotropic Shear Force of Guizhou Gastromyzontidae. Sci. Rep. 2016, 6, 37221. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Liang, Y. Preliminary studies on the basic factors of bionics. Sci. China-Technol. Sci. 2014, 57, 520–530. [Google Scholar] [CrossRef]
- Wang, S.; Li, L.; Zhao, W.; Zhang, Y.; Wen, L. A biomimetic remora disc with tunable, reversible adhesion for surface sliding and skimming. Bioinspir. Biomim. 2022, 17, 036001. [Google Scholar] [CrossRef]
- Meloni, G.; Tricinci, O.; Degl’Innocenti, A.; Mazzolai, B. A protein-coated micro-sucker patch inspired by octopus for adhesion in wet conditions. Sci. Rep. 2020, 10, 15480. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Lan, T.; Li, H.; Cui, B.; Liang, Z.; Wang, W. Bionic Design and Casting Forming Method of a Soft Gripper Robot. In Proceedings of the 2020 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA), Shanghai, China, 16–18 October 2020; pp. 116–120. [Google Scholar]
- Ma, Y.; Ma, S.; Wu, Y.; Pei, X.; Gorb, S.N.; Wang, Z.; Liu, W.; Zhou, F. Remote Control over Underwater Dynamic Attachment/Detachment and Locomotion. Adv. Mater. 2018, 30, e1801595. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Sun, K.; Seong, M.; Hwang, I.; Jang, H.; Park, S.; Choi, G.; Lee, S.-H.; Kim, J.; Jeong, H.E. Applications of Bioinspired Reversible Dry and Wet Adhesives: A Review. Front. Mech. Eng. 2021, 7, 668262. [Google Scholar] [CrossRef]
- Fang, B.; Sun, F.; Wu, L.; Liu, F.; Wang, X.; Huang, H.; Huang, W.; Liu, H.; Wen, L. Multimode Grasping Soft Gripper Achieved by Layer Jamming Structure and Tendon-Driven Mechanism. Soft Robot. 2022, 9, 233–249. [Google Scholar] [CrossRef] [PubMed]
- Trimmer, B.A. Metal or muscle The future of biologically inspired robots. Sci. Robot. 2020, 5, eaba6149. [Google Scholar] [CrossRef] [PubMed]
- Sfakiotakis, M.; Kazakidi, A.; Tsakiris, D.P. Octopus-inspired multi-arm robotic swimming. Bioinspir. Biomim. 2015, 10, 035005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Wu, Z.; Meng, Y.; Dong, H.; Tan, M.; Yu, J. Development and Control of a Bioinspired Robotic Remora for Hitchhiking. IEEE-ASME Trans. Mechatron. 2021, 27, 2852–2862. [Google Scholar] [CrossRef]
- Liu, J.; Xu, L.; Chen, S.; Xu, H.; Cheng, G.; Xu, J. Development of a Bio-inspired Wall-Climbing Robot Composed of Spine Wheels, Adhesive Belts and Eddy Suction Cup. Robotica 2020, 39, 3–22. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, S.; Bi, Q.; Cui, D.; Yan, C. Design and Technical Development of Wall-Climbing Robots: A Review. J. Bionic Eng. 2022, 19, 877–901. [Google Scholar] [CrossRef]
- Xu, S.; He, B.; Hu, H. Research on Kinematics and Stability of a Bionic Wall-Climbing Hexapod Robot. Appl. Bionics Biomech. 2019, 2019, 6146214. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.; Sagoe-Crentsil, K.; Zhang, J.; Duan, W. Intelligent robotic systems for structural health monitoring: Applications and future trends. Autom. Constr. 2022, 139, 104273. [Google Scholar] [CrossRef]
- Brusell, A.; Andrikopoulos, G.; Nikolakopoulos, G. A Survey on Pneumatic Wall-Climbing Robots for Inspection. In Proceedings of the 2016 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece, 21–24 June 2016; pp. 220–225. [Google Scholar]
- Maggi, M.; Mantriota, G.; Reina, G. Influence of the Dynamic Effects and Grasping Location on the Performance of an Adaptive Vacuum Gripper. Actuators 2022, 11, 55. [Google Scholar] [CrossRef]
- Tai, K.; El-Sayed, A.-R.; Shahriari, M.; Biglarbegian, M.; Mahmud, S. State of the art robotic grippers and applications. Robotics 2016, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, T.; Mizushima, K.; Suzuki, Y.; Tsuji, T.; Watanabe, T. Variable-Grasping-Mode Underactuated Soft Gripper with Environmental Contact-Based Operation. IEEE Robot. Autom. Lett. 2017, 2, 1164–1171. [Google Scholar] [CrossRef] [Green Version]
- Sinatra, N.R.; Teeple, C.B.; Vogt, D.M.; Parker, K.K.; Gruber, D.F.; Wood, R.J. Ultragentle manipulation of delicate structures using a soft robotic gripper. Sci. Robot. 2019, 4, eaax5425. [Google Scholar] [CrossRef] [PubMed]
- Pi, J.; Liu, J.; Zhou, K.; Qian, M. An Octopus-Inspired Bionic Flexible Gripper for Apple Grasping. Agriculture 2021, 11, 1014. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, X.; Wu, T.; Yin, T.; Xiang, Y.; Qu, S. Pneumatically Actuated Soft Robotic Arm for Adaptable Grasping. Acta Mech. Solida Sin. 2018, 31, 608–622. [Google Scholar] [CrossRef]
- Zhong, G.; Hou, Y.; Dou, W. A soft pneumatic dexterous gripper with convertible grasping modes. Int. J. Mech. Sci. 2019, 153, 445–456. [Google Scholar] [CrossRef]
- Wu, M.; Zheng, X.; Liu, R.; Hou, N.; Afridi, W.H.; Afridi, R.H.; Guo, X.; Wu, J.; Wang, C.; Xie, G. Glowing Sucker Octopus (Stauroteuthis syrtensis)-Inspired Soft Robotic Gripper for Underwater Self-Adaptive Grasping and Sensing. Adv. Sci. 2022, 9, e2104382. [Google Scholar] [CrossRef]
- Cianchetti, M.; Arienti, A.; Follador, M.; Mazzolai, B.; Dario, P.; Laschi, C. Design concept and validation of a robotic arm inspired by the octopus. Mater. Sci. Eng. C 2011, 31, 1230–1239. [Google Scholar] [CrossRef]
- Mazzolai, B.; Mondini, A.; Tramacere, F.; Riccomi, G.; Sadeghi, A.; Giordano, G.; Del Dottore, E.; Scaccia, M.; Zampato, M.; Carminati, S. Octopus-Inspired Soft Arm with Suction Cups for Enhanced Grasping Tasks in Confined Environments. Adv. Intell. Syst. 2019, 1, 1900041. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Domel, A.G.; An, N.; Green, C.; Gong, Z.; Wang, T.; Knubben, E.M.; Weaver, J.C.; Bertoldi, K.; Wen, L. Octopus Arm-Inspired Tapered Soft Actuators with Suckers for Improved Grasping. Soft Robot. 2020, 7, 639–648. [Google Scholar] [CrossRef]
- Follador, M.; Tramacere, F.; Mazzolai, B. Dielectric elastomer actuators for octopus inspired suction cups. Bioinspir. Biomim. 2014, 9, 046002. [Google Scholar] [CrossRef] [PubMed]
- Sareh, S.; Althoefer, K.; Li, M.; Noh, Y.; Tramacere, F.; Sareh, P.; Mazzolai, B.; Kovac, M. Anchoring like octopus: Biologically inspired soft artificial sucker. J. R. Soc. Interface 2017, 14, 20170395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Baik, S.; Hwang, G.W.; Song, J.H.; Kim, D.W.; Park, B.-Y.; Min, H.; Kim, J.K.; Koh, J.-S.; Yang, T.-H.; et al. An Electronically Perceptive Bioinspired Soft Wet-Adhesion Actuator with Carbon Nanotube-Based Strain Sensors. Acs Nano 2021, 15, 14137–14148. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.-S.; Wang, L.-W.; Fu, Z.; Zhao, Y.-Z. Bio-inspired Miniature Suction Cups Actuated by Shape Memory Alloy. Int. J. Adv. Robot. Syst. 2009, 6, 151–160. [Google Scholar]
- Chen, R.; Fu, Q.; Liu, Z.; Hu, X.; Liu, M.; Song, R. Design and Experimental Research of an Underwater Vibration Suction Module Inspired by Octopus Suckers. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macao, China, 5–8 December 2017; pp. 1002–1007. [Google Scholar]
- Sandoval, J.A.; Jadhav, S.; Quan, H.; Deheyn, D.D.; Tolley, M.T. Reversible adhesion to rough surfaces both in and out of water, inspired by the clingfish suction disc. Bioinspir. Biomim. 2019, 14, 066016. [Google Scholar] [CrossRef]
- Ditsche, P.; Summers, A. Learning from Northern clingfish (Gobiesox maeandricus): Bioinspired suction cups attach to rough surfaces. Philos. Trans. R. Soc. B 2019, 374, 20190204. [Google Scholar]
- Feng, H.; Dong, W.; Chai, N. A bionic micro sucker actuated by IPMC. In Proceedings of the 2014 International Conference on Orange Technologies, Xi’an, China, 20–23 September 2014; pp. 223–226. [Google Scholar]
- Sadeghi, A.; Beccai, L.; Mazzolai, B. Design and Development of Innovative Adhesive Suckers Inspired by the Tube Feet of Sea Urchins. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 617–622. [Google Scholar]
- Wang, S.; Luo, H.; Linghu, C.; Song, J. Elastic Energy Storage Enabled Magnetically Actuated, Octopus-Inspired Smart Adhesive. Adv. Funct. Mater. 2020, 31, 2009217. [Google Scholar] [CrossRef]
- Baik, S.; Hwang, G.W.; Jang, S.; Jeong, S.; Kim, K.H.; Yang, T.H.; Pang, C. Bioinspired Microsphere-Embedded Adhesive Architectures for an Electrothermally Actuating Transport Device of Dry-Wet Pliable Surfaces. ACS Appl. Mater. Interfaces 2021, 13, 6930–6940. [Google Scholar] [CrossRef]
- Su, L.; Jin, D.D.; Pan, C.F.; Xia, N.; Chan, K.F.; Iacovacci, V.; Xu, T.; Du, X.; Zhang, L. A mobile magnetic pad with fast light-switchable adhesion capabilities. Bioinspir. Biomim. 2021, 16, 055005. [Google Scholar] [CrossRef]
- Khan, M.N.; Huo, T.; Zhang, Q.; Hu, Z.; Zhao, J.; Chen, J.; Wang, Z.; Ji, K. Synergetic adhesion in highly adaptable bio-inspired adhesive. Colloid Surf. B 2022, 212, 112335. [Google Scholar] [CrossRef]
- Ye, X.; Li, Y.; Zhang, Y.; Wang, P. A Comprehensive Review: Recent Developments of Biomimetic Sensors. J. Bionic Eng. 2022, 19, 853–876. [Google Scholar] [CrossRef]
- Amjadi, M.; Kyung, K.-U.; Park, I.; Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Shao, J.; Chen, X.; Li, X.; Tian, H.; Wang, C.; Lu, B. Nanoimprint lithography for the manufacturing of flexible electronics. Sci. China Technol. Sci. 2019, 62, 175–198. [Google Scholar] [CrossRef]
- Hwang, I.; Kim, H.N.; Seong, M.; Lee, S.-H.; Kang, M.; Yi, H.; Bae, W.G.; Kwak, M.K.; Jeong, H.E. Multifunctional Smart Skin Adhesive Patches for Advanced Health Care. Adv. Healthc. Mater. 2018, 7, e1800275. [Google Scholar] [CrossRef] [PubMed]
- Seong, M.; Hwang, I.; Lee, J.; Jeong, H.E. A Pressure-Insensitive Self-Attachable Flexible Strain Sensor with Bioinspired Adhesive and Active CNT Layers. Sensors 2020, 20, 6965. [Google Scholar] [CrossRef]
- Cai, P.; Hu, B.; Leow, W.R.; Wang, X.; Loh, X.J.; Wu, Y.L.; Chen, X. Biomechano-Interactive Materials and Interfaces. Adv. Mater. 2018, 30, e1800572. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lu, N.; Ghaffari, R.; Rogers, J.A. Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. NPG Asia Mater. 2012, 4, e15. [Google Scholar] [CrossRef] [Green Version]
- Chun, S.; Son, W.; Kim, D.W.; Lee, J.; Min, H.; Jung, H.; Kwon, D.; Kim, A.H.; Kim, Y.-J.; Lim, S.K.; et al. Water-Resistant and Skin-Adhesive Wearable Electronics Using Graphene Fabric Sensor with Octopus-Inspired Microsuckers. ACS Appl. Mater. Interfaces 2019, 11, 16951–16957. [Google Scholar] [CrossRef]
- Drotlef, D.-M.; Amjadi, M.; Yunusa, M.; Sitti, M. Bioinspired Composite Microfibers for Skin Adhesion and Signal Amplification of Wearable Sensors. Adv. Mater. 2017, 29, 1701353. [Google Scholar] [CrossRef]
- Kim, K.; Shin, M.; Koh, M.-Y.; Ryu, J.H.; Lee, M.S.; Hong, S.; Lee, H. TAPE: A Medical Adhesive Inspired by a Ubiquitous Compound in Plants. Adv. Funct. Mater. 2015, 25, 2402–2410. [Google Scholar] [CrossRef]
- Seitz, J.-M.; Durisin, M.; Goldman, J.; Drelich, J.W. Recent advances in biodegradable metals for medical sutures: A critical review. Adv. Healthc. Mater. 2015, 4, 1915–1936. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Qin, J.; Li, W.; Tyagi, A.; Liu, Z.; Hossain, M.D.; Chen, H.; Kim, J.-K.; Liu, H.; Zhuang, M.; et al. A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application. J. Mater. Chem. A 2019, 7, 27099–27109. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, X.; Rogers, J.A.; Huang, Y.; Zhang, Y. Design and application of ‘J-shaped’ stress-strain behavior in stretchable electronics: A review. Lab Chip 2017, 17, 1689–1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Liu, J.; Wang, J.; Wang, T.; Jiang, Y.; Hu, J.; Liu, Z.; Chen, X.; Yu, J. Bioinspired, Microstructured Silk Fibroin Adhesives for Flexible Skin Sensors. ACS Appl. Mater. Interfaces 2020, 12, 5601–5609. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Lu, N.; Ma, R.; Kim, Y.S.; Kim, R.H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, C.; Koo, J.H.; Nguyen, A.; Caves, J.M.; Kim, M.G.; Chortos, A.; Kim, K.; Wang, P.J.; Tok, J.B.; Bao, Z. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 2015, 27, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhou, Y.; Han, H.; Zheng, H.; Xu, W.; Wang, Z. Dopamine-Triggered Hydrogels with High Transparency, Self-Adhesion, and Thermoresponse as Skinlike Sensors. ACS Nano 2021, 15, 1785–1794. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yang, G.; Zhu, K.; Liu, S.; Guo, W.; Jiang, Z.; Li, Z. Materials, Devices, and Systems of On-Skin Electrodes for Electrophysiological Monitoring and Human-Machine Interfaces. Adv. Sci. 2021, 8, 2001938. [Google Scholar] [CrossRef]
- Jeong, S.H.; Zhang, S.; Hjort, K.; Hilborn, J.; Wu, Z. PDMS-Based Elastomer Tuned Soft, Stretchable, and Sticky for Epidermal Electronics. Adv. Mater. 2016, 28, 5830–5836. [Google Scholar] [CrossRef]
- Adams, M.J.; Briscoe, B.J.; Johnson, S.A. Friction and lubrication of human skin. Tribol. Lett. 2007, 26, 239–253. [Google Scholar] [CrossRef]
- Lee, H.; Choi, T.K.; Lee, Y.B.; Cho, H.R.; Ghaffari, R.; Wang, L.; Choi, H.J.; Chung, T.D.; Lu, N.; Hyeon, T.; et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 2016, 11, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K.; Ryu, J.H.; Baek, I.-B.; Kim, Y.; Jang, W.I.; Kim, S.-H.; Yoon, Y.S.; Kim, S.H.; Hong, S.-G.; Byun, S.; et al. Silicone-Based Adhesives with Highly Tunable Adhesion Force for Skin-Contact Applications. Adv. Healthc. Mater. 2017, 6, 1700621. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, H.; Shao, J.; Ding, Y. Fabrication of well-defined mushroom-shaped structures for biomimetic dry adhesive by conventional photolithography and molding. ACS Appl. Mater. Interfaces 2014, 6, 2213–2218. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Tian, H.; Li, X.; Shao, J.; Ding, Y.; Liu, H.; An, N. Biomimetic mushroom-shaped microfibers for dry adhesives by electrically induced polymer deformation. ACS Appl. Mater. Interfaces 2014, 6, 14167–14173. [Google Scholar] [CrossRef]
- Kwak, M.K.; Jeong, H.E.; Bae, W.G.; Jung, H.-S.; Suh, K.Y. Anisotropic adhesion properties of triangular-tip-shaped micropillars. Small 2011, 7, 2296–3000. [Google Scholar] [CrossRef]
- Hong, Y.J.; Jeong, H.; Cho, K.W.; Lu, N.; Kim, D.-H. Wearable and Implantable Devices for Cardiovascular Healthcare: From Monitoring to Therapy Based on Flexible and Stretchable Electronics. Adv. Funct. Mater. 2019, 29, 1808247. [Google Scholar] [CrossRef]
- Imani, S.; Bandodkar, A.J.; Mohan, A.M.; Kumar, R.; Yu, S.; Wang, J.; Mercier, P.P. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 2016, 7, 11650. [Google Scholar] [CrossRef] [Green Version]
- Chortos, A.; Liu, J.; Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950. [Google Scholar] [CrossRef]
- Ameri, S.K.; Ho, R.; Jang, H.; Tao, L.; Wang, Y.; Wang, L.; Schnyer, D.M.; Akinwande, D.; Lu, N. Graphene Electronic Tattoo Sensors. ACS Nano 2017, 11, 7634–7641. [Google Scholar] [CrossRef]
- Baik, S.; Kim, J.; Lee, H.J.; Lee, T.H.; Pang, C. Highly Adaptable and Biocompatible Octopus-Like Adhesive Patches with Meniscus-Controlled Unfoldable 3D Microtips for Underwater Surface and Hairy Skin. Adv. Sci. 2018, 5, 1800100. [Google Scholar] [CrossRef]
- Cai, C.; Chen, Z.; Chen, Y.; Li, H.; Yang, Z.; Liu, H. Mechanisms and applications of bioinspired underwater/wet adhesives. J. Polym. Sci. 2021, 59, 2911–2945. [Google Scholar] [CrossRef]
- Chun, S.; Kim, D.W.; Baik, S.; Lee, H.J.; Lee, J.H.; Bhang, S.H.; Pang, C. Conductive and Stretchable Adhesive Electronics with Miniaturized Octopus-Like Suckers against Dry/Wet Skin for Biosignal Monitoring. Adv. Funct. Mater. 2018, 28, 1805224. [Google Scholar] [CrossRef]
- Kim, D.W.; Baik, S.; Min, H.; Chun, S.; Lee, H.J.; Kim, K.H.; Lee, J.Y.; Pang, C. Highly Permeable Skin Patch with Conductive Hierarchical Architectures Inspired by Amphibians and Octopi for Omnidirectionally Enhanced Wet Adhesion. Adv. Funct. Mater. 2019, 29, 1807614. [Google Scholar] [CrossRef]
- Min, H.; Jang, S.; Kim, D.W.; Kim, J.; Baik, S.; Chun, S.; Pang, C. Highly Air/Water-Permeable Hierarchical Mesh Architectures for Stretchable Underwater Electronic Skin Patches. ACS Appl. Mater. Interfaces 2020, 12, 14425–14432. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Hong, S.Y.; Park, H.; Jin, S.W.; Jeong, Y.R.; Oh, S.Y.; Yun, J.; Lee, H.; Kim, J.W.; Ha, J.S. Fabrication of High-Sensitivity Skin-Attachable Temperature Sensors with Bioinspired Microstructured Adhesive. ACS Appl. Mater. Interfaces 2018, 10, 7263–7270. [Google Scholar] [CrossRef]
- Choi, M.K.; Park, O.K.; Choi, C.; Qiao, S.; Ghaffari, R.; Kim, J.; Lee, D.J.; Kim, M.; Hyun, W.; Kim, S.J.; et al. Cephalopod-Inspired Miniaturized Suction Cups for Smart Medical Skin. Adv. Healthc. Mater. 2016, 5, 80–87. [Google Scholar] [CrossRef]
- Cui, C.; Liu, W. Recent advances in wet adhesives: Adhesion mechanism, design principle and applications. Prog. Polym. Sci. 2021, 116, 101388. [Google Scholar] [CrossRef]
- Balkenende, D.W.R.; Winkler, S.M.; Messersmith, P.B. Marine-Inspired Polymers in Medical Adhesion. Eur. Polym. J. 2019, 116, 134–143. [Google Scholar] [CrossRef]
- Huber, G.; Mantz, H.; Spolenak, R.; Mecke, K.; Jacobs, K.; Gorb, S.N.; Arzt, E. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. USA 2005, 102, 16293–16296. [Google Scholar] [CrossRef] [Green Version]
- Baik, S.; Lee, H.J.; Kim, D.W.; Min, H.; Pang, C. Capillarity-Enhanced Organ-Attachable Adhesive with Highly Drainable Wrinkled Octopus-Inspired Architectures. ACS Appl. Mater. Interfaces 2019, 11, 25674–25681. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Yang, H. Octopus-Inspired Assembly of Nanosucker Arrays for Dry/Wet Adhesion. ACS Nano 2017, 11, 5332–5338. [Google Scholar] [CrossRef] [PubMed]
- Baik, S.; Kim, D.W.; Park, Y.; Lee, T.J.; Ho Bhang, S.; Pang, C. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 2017, 546, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhang, X.; Li, W.; Shang, L.; Wang, H.; Zhao, Y. Suction Cups-Inspired Adhesive Patch with Tailorable Patterns for Versatile Wound Healing. Adv. Sci. 2021, 8, e2100201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, G.; Yu, Y.; Sun, L.; Zhao, Y. Bioinspired Adhesive and Antibacterial Microneedles for Versatile Transdermal Drug Delivery. Research 2020, 2020, 3672120. [Google Scholar] [CrossRef]
- Song, J.H.; Baik, S.; Kim, D.W.; Yang, T.-H.; Pang, C. Wet soft bio-adhesion of insect-inspired polymeric oil-loadable perforated microcylinders. Chem. Eng. J. 2021, 423, 130194. [Google Scholar] [CrossRef]
- Baik, S.; Lee, J.; Jeon, E.J.; Park, B.Y.; Kim, D.W.; Song, J.H.; Lee, H.J.; Han, S.Y.; Cho, S.W.; Pang, C. Diving beetle–like miniaturized plungers with reversible, rapid biofluid capturing for machine learning–based care of skin disease. Sci. Adv. 2021, 7, eabf5695. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, C.; Zhang, X.; Hu, Q.; Zhang, Y.; Liu, Q.; Wen, D.; Milligan, J.; Bellotti, A.; Huang, L.; et al. A melanin-mediated cancer immunotherapy patch. Sci. Immunol. 2017, 2, eaan5692. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Yu, J.; Wang, C.; Nguyen, N.Y.; Walker, G.M.; Buse, J.B.; Gu, Z. Microneedles Integrated with Pancreatic Cells and Synthetic Glucose-Signal Amplifiers for Smart Insulin Delivery. Adv. Mater. 2016, 28, 3115–3121. [Google Scholar] [CrossRef] [Green Version]
- Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019, 109, 1249–1258. [Google Scholar] [CrossRef]
- Kim, Y.C.; Park, J.H.; Prausnitz, M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012, 64, 1547–1568. [Google Scholar] [CrossRef] [Green Version]
- Proksch, E. pH in nature, humans and skin. J. Dermatol. 2018, 45, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, Y.; Jia, L.; Mathewson, K.E.; Jang, K.I.; Kim, J.; Fu, H.; Huang, X.; Chava, P.; Wang, R.; et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 2014, 344, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Heepe, L.; Gorb, S.N. Biologically Inspired Mushroom-Shaped Adhesive Microstructures. Ann. Rev. Mater. Res. 2014, 44, 173–203. [Google Scholar] [CrossRef]
Mechanisms of Adhesion | Wet Conditions (Liquid Film) | Underwater Conditions |
---|---|---|
Electrostatic forces | ⊠ | ⊠ |
Van der Waals forces | ⊠ | ⊠ |
Capillary forces | ☑ | ⊠ |
Viscous forces | ☑ | ⊠ |
Negative pressure attachment | ☑ | ☑ |
Mechanical interlocking | ☑ | ☑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Xu, J.; Liu, X.; Zhang, Q.; Cong, Q.; Chen, T.; Liu, C. Advanced Bionic Attachment Equipment Inspired by the Attachment Performance of Aquatic Organisms: A Review. Biomimetics 2023, 8, 85. https://doi.org/10.3390/biomimetics8010085
Zhang D, Xu J, Liu X, Zhang Q, Cong Q, Chen T, Liu C. Advanced Bionic Attachment Equipment Inspired by the Attachment Performance of Aquatic Organisms: A Review. Biomimetics. 2023; 8(1):85. https://doi.org/10.3390/biomimetics8010085
Chicago/Turabian StyleZhang, Dexue, Jin Xu, Xuefeng Liu, Qifeng Zhang, Qian Cong, Tingkun Chen, and Chaozong Liu. 2023. "Advanced Bionic Attachment Equipment Inspired by the Attachment Performance of Aquatic Organisms: A Review" Biomimetics 8, no. 1: 85. https://doi.org/10.3390/biomimetics8010085
APA StyleZhang, D., Xu, J., Liu, X., Zhang, Q., Cong, Q., Chen, T., & Liu, C. (2023). Advanced Bionic Attachment Equipment Inspired by the Attachment Performance of Aquatic Organisms: A Review. Biomimetics, 8(1), 85. https://doi.org/10.3390/biomimetics8010085