Tribological Behavior of Bioinspired Surfaces
Abstract
:1. Introduction
2. Biomimetic Surfaces Inspired by Animals
2.1. Biomimicking Surfaces Inspired by Snake Scales and Sandfish
2.2. Biomimetic Surfaces (Shark Skin) Revealing the Riblet Effect
2.3. Biomimetics Surfaces Inspired by Scaly Texture
2.4. Bio-Inspired Green Dopamine Oil Soluble Additive
2.5. Biomimetic Structures Inspired by a Laminated Structure
2.6. Biomimetics Surfaces Inspirations for Improved Traction
3. Biomimetic Surfaces Inspired by Plants
3.1. Bio-Inspired Mushroom-like Structures
3.2. Biomimetic Tree-like Bifurcation Network Texture
3.3. Plant-Based Super Slippery Surfaces
4. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, K.; Jiang, L. Multifunctional Integration: From Biological to Bio-Inspired Materials. ACS Nano 2011, 5, 6786–6790. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Jiang, L. Bio-inspired design of multiscale structures for function integration. Nano Today 2011, 6, 155–175. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616. [Google Scholar] [CrossRef]
- Grewal, H.S.; Cho, I.-J.; Yoon, E.-S. The role of bio-inspired hierarchical structures in wetting. Bioinspir. Biomim. 2015, 10, 026009. [Google Scholar] [CrossRef]
- Li, M.; Li, C.; Blackman, B.R.; Eduardo, S. Mimicking nature to control bio-material surface wetting and adhesion. Int. Mater. Rev. 2022, 67, 658–681. [Google Scholar] [CrossRef]
- Vinod Chandra, S.S.; Anand, H.S. Nature inspired meta heuristic algorithms for optimization problems. Computing 2022, 104, 251–269. [Google Scholar]
- Eggermont, M. Nature Can Inspire the Things We Make and Why It Matters. In Design Praxiology and Phenomenology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 79–93. [Google Scholar]
- Collins, C.M.; Safiuddin, M. Lotus-Leaf-Inspired Biomimetic Coatings: Different Types, Key Properties, and Applications in Infrastructures. Infrastructures 2022, 7, 46. [Google Scholar] [CrossRef]
- Tian, W.; Jin, H.; Tian, L.J.C. Ideas Inspired by Nature to Combat Marine Biofouling and Corrosion. Coatings 2022, 12, 1434. [Google Scholar] [CrossRef]
- Kumar, V.; Verma, R.; Sharma, V.S.; Sharma, V. Properties. Recent progresses in super-hydrophobicity and micro-texturing for engineering applications. Surf. Topogr. Metrol. Prop. 2022, 9, 043003. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Guo, Z. Overview of the development of slippery surfaces: Lubricants from presence to absence. Adv. Colloid Interface Sci. 2022, 301, 102602. [Google Scholar] [CrossRef]
- Pusplata, P.; Tadge, P.; Ray, S. A Review On The Synthesis Strategies For The Fabrication Of Superhydrophobic Coating. ECS Trans. 2022, 107, 19835. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, Y.; Li, L.; Lin, Z.; Zhu, B.; Chen, W.; Li, G.; Liu, H.; Xiao, K.; Xiong, Y.; et al. Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces. Bioinspir. Biomim. 2022, 17, 041003. [Google Scholar] [CrossRef] [PubMed]
- Sang, Y.; Liu, M. Hierarchical self-assembly into chiral nanostructures. Chem. Sci. 2022, 13, 633–656. [Google Scholar] [CrossRef]
- Jung, Y.C.; Bhushan, B. Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Langmuir 2008, 24, 6262–6269. [Google Scholar] [CrossRef]
- Howell, C.; Grinthal, A.; Sunny, S.; Aizenberg, M.; Aizenberg, J. Designing liquid-infused surfaces for medical applications: A review. Adv. Mater. 2018, 30, 1802724. [Google Scholar] [CrossRef] [PubMed]
- Mathew, M.T.; Srinivasa Pai, P.; Pourzal, R.; Fischer, A.; Wimmer, M.A. Significance of tribocorrosion in biomedical applications: Overview and current status. Adv. Tribol. 2009, 2009, 250986. [Google Scholar] [CrossRef]
- Nishimoto, S.; Bhushan, B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. Rsc Adv. 2013, 3, 671–690. [Google Scholar] [CrossRef]
- Long, J.; Fan, P.; Gong, D.; Jiang, D.; Zhang, H.; Li, L.; Zhong, M. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: From lotus leaf to rose petal. ACS Appl. Mater. Interfaces 2015, 7, 9858–9865. [Google Scholar] [CrossRef]
- Bhushan, B.; Jung, Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 2011, 56, 1–108. [Google Scholar] [CrossRef]
- Holmberg, K.; Erdemir, A.J.T.I. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol. Int. 2019, 135, 389–396. [Google Scholar] [CrossRef]
- Bach, D.; Schmich, F.; Masselter, T.; Speck, T. A review of selected pumping systems in nature and engineering—Potential biomimetic concepts for improving displacement pumps and pulsation damping. Bioinspir. Biomim. 2015, 10, 051001. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Yuan, Z.; Qiu, Z.; Feng, S.; Xie, Y.; Leng, D.; Tian, X. A brief review of bio-inspired surface technology and application toward underwater drag reduction. Ocean Eng. 2020, 199, 106962. [Google Scholar] [CrossRef]
- Li, J.; Xin, M.; Ma, Z.; Shi, Y.; Pan, L. Nanomaterials and their applications on bio-inspired wearable electronics. Nanotechnology 2021, 32, 472002. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yuan, L.; Li, J.; Wang, J. Boundary layer drag reduction research hypotheses derived from bio-inspired surface and recent advanced applications. Micron 2015, 79, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Karthick, B.; Maheshwari, R. Lotus-inspired nanotechnology applications. Resonance 2008, 13, 1141–1145. [Google Scholar] [CrossRef]
- Naik, V.M.; Mukherjee, R.; Majumder, A.; Sharma, A. Super functional materials: Creation and control of wettability, adhesion and optical effects by meso-texturing of surfaces. Platin. Jubil. Spec. 2009, 14, 129–148. [Google Scholar]
- Gad-El-hak, M.; Blackwelder, R. A drag reduction method for turbulent boundary layers. In Proceedings of the 25th AIAA Aerospace Sciences Meeting, Miami, FL, USA, 25–28 June 2007; p. 358. [Google Scholar]
- Kim, T.W. Assessment of hydro/oleophobicity for shark skin replica with riblets. Nanotechnology 2014, 14, 7562–7568. [Google Scholar] [CrossRef]
- Dai, Z.; Tong, J.; Ren, L. Researches and developments of biomimetics in tribology. Chin. Sci. Bull. 2006, 51, 2681–2689. [Google Scholar] [CrossRef]
- Crick, C.R.; Parkin, I.P. Preparation and characterisation of super-hydrophobic surfaces. Chem.—A Eur. J. 2010, 16, 3568–3588. [Google Scholar] [CrossRef]
- Pathak, P.; Grewal, H.S. Solvent-free Synthesis of Superhydrophobic Materials with Self-Regenerative and Drag Reduction Properties. Colloids Surf. A Physicochem. Eng. Asp. 2022, 658, 130675. [Google Scholar] [CrossRef]
- Renous, S.; de Broin, F.d.L.; Depecker, M.; Davenport, J.; Bels, V. Evolution of locomotion in aquatic turtles. In Biology of Turtles; CRC Press: Boca Raton, FL, USA, 2007; pp. 111–152. [Google Scholar]
- Wu, L.; Qin, W.; He, Y.; Zhu, W.; Ren, X.; York, P.; Xiao, T.; Yin, X.; Zhang, J. Material distributions and functional structures in probiotic microcapsules. Eur. J. Pharm. Sci. 2018, 122, 1–8. [Google Scholar] [CrossRef]
- Domel, A.G.; Saadat, M.; Weaver, J.C.; Haj-Hariri, H.; Bertoldi, K.; Lauder, G.V. Shark skin-inspired designs that improve aerodynamic performance. J. R. Soc. Interface 2018, 15, 20170828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidarian, A.; Ghassemi, H.; Liu, P. Numerical analysis of the effects of Riblets on drag reduction of a flat plate. J. Appl. Fluid Mech. 2018, 11, 679–688. [Google Scholar] [CrossRef]
- Song, X.-W.; Zhang, M.-X.; Lin, P.-Z. Skin friction reduction characteristics of nonsmooth surfaces inspired by the shapes of barchan dunes. Math. Probl. Eng. 2017, 2017, 6212605. [Google Scholar] [CrossRef]
- Wen, L.; Weaver, J.C.; Lauder, G.V. Biomimetic shark skin: Design, fabrication and hydrodynamic function. J. Exp. Biol. 2014, 217, 1656–1666. [Google Scholar] [CrossRef]
- Han, X.; Zhang, D.; Li, X.; Li, Y. Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin. Chin. Sci. Bull. 2008, 53, 1587–1592. [Google Scholar] [CrossRef]
- Rastegari, A.; Akhavan, R. The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets. J. Fluid Mech. 2018, 838, 68–104. [Google Scholar] [CrossRef]
- Khan, M.A.; Padhy, C.J. Aerodynamic and experimental analysis of biomimic corrugated dragonfly aerofoil. INCAS Bull. 2020, 12, 73–85. [Google Scholar] [CrossRef]
- Arunvinthan, S.; Raatan, V.S.; Nadaraja Pillai, S.; Pasha, A.A.; Rahman, M.M.; Juhany, A.K. Aerodynamic characteristics of shark scale-based vortex generators upon symmetrical airfoil. Energies 2021, 14, 1808. [Google Scholar] [CrossRef]
- Vivek, Y.; Shankar, M. Effect of Spoilers on aerodynamic properties of a car. Int. J. Sci. Res. Rev. 2018, 7, 271–280. [Google Scholar]
- Kim, J.; Choi, H. Aerodynamics of a golf ball with grooves. Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol. 2014, 228, 233–241. [Google Scholar] [CrossRef]
- Kozlov, A.; Chowdhury, H.; Mustary, I.; Loganathan, B.; Alam, F. Bio-inspired design: Aerodynamics of boxfish. Procedia Eng. 2015, 105, 323–328. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Y.; Chen, H.; Zhang, D. Bio-inspired drag reduction surface from sharkskin. Biosurf. Biotribol. 2018, 4, 39–45. [Google Scholar] [CrossRef]
- Miyazaki, M.; Hirai, Y.; Moriya, H.; Shimomura, M.; Miyauchi, A.; Liu, H. Biomimetic riblets inspired by sharkskin denticles: Digitizing, modeling and flow simulation. J. Bionic Eng. 2018, 15, 999–1011. [Google Scholar] [CrossRef]
- Dai, W.; Alkahtani, M.; Hemmer, P.R.; Liang, H. Drag-reduction of 3D printed shark-skin-like surfaces. Friction 2019, 7, 603–612. [Google Scholar] [CrossRef]
- Sen, W.; Rahman, K.A.; Tanim, I.K. Experimental and CFD Analysis on Car with Several Types of Vortex Generators. In Proceedings of the International Conference on Mechanical Engineering and Renewable Energy, Chittagong, Bangladesh, 11–13 December 2019. [Google Scholar]
- Wen, L.; Weaver, J.C.; Thornycroft, P.J.M.; Lauder, G.V. Hydrodynamic function of biomimetic shark skin: Effect of denticle pattern and spacing. Bioinspir. Biomim. 2015, 10, 066010. [Google Scholar] [CrossRef]
- Muthuramalingam, M.; Puckert, D.K.; Rist, U.; Bruecker, C. Transition delay using biomimetic fish scale arrays. Sci. Rep. 2020, 10, 14534. [Google Scholar] [CrossRef]
- Ibrahim, M.D.; Amran, S.N.A.; Yunos, Y.S.; Rahman, M.R.A.; Mohtar, M.Z.; Wong, L.K.; Zulkharnain, A. The study of drag reduction on ships inspired by simplified shark skin imitation. Appl. Bionics Biomech. 2018, 2018, 7854321. [Google Scholar] [CrossRef] [PubMed]
- Greiner, C.; Schäfer, M. Bio-inspired scale-like surface textures and their tribological properties. Bioinspir. Biomim. 2015, 10, 044001. [Google Scholar] [CrossRef]
- Schneider, J.; Djamiykov, V.; Greiner, C. Friction reduction through biologically inspired scale-like laser surface textures. Beilstein J. Nanotechnol. 2018, 9, 2561–2572. [Google Scholar] [CrossRef]
- Hochachka, P.W.; Somero, G.N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Klein, J.; Kumacheva, E.; Mahalu, D.; Perahia, D.; Fetters, L.J. Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature 1994, 370, 634–636. [Google Scholar] [CrossRef]
- Espinosa, T.; Jiménez, M.; Sanes, J.; Jiménez, A.-E.; Iglesias, M.; Bermúdez, M.-D. Ultra-low friction with a protic ionic liquid boundary film at the water-lubricated sapphire–stainless steel interface. Tribol. Lett. 2014, 53, 1–9. [Google Scholar] [CrossRef]
- Martinez, A.; DeJong, J.; Akin, I.; Aleali, A.; Arson, C.; Atkinson, J.; Bandini, P.; Baser, T.; Borela, R.; Boulanger, R. Bio-inspired geotechnical engineering: Principles, current work, opportunities and challenges. Géotechnique 2022, 72, 687–705. [Google Scholar] [CrossRef]
- Jayaram, K. Robustness of Biological and Bio-inspired Exoskeletons; University of California: Berkeley, CA, USA, 2015. [Google Scholar]
- Rutland, C.S.; Cigler, P.; Kubale, V. Reptilian skin and its special histological structures. In Veterinary Anatomy and Physiology; IntechOpen: London, UK, 2019; pp. 1–21. [Google Scholar]
- Stratakis, E.; Bonse, J.; Heitz, J.; Siegel, J.; Tsibidis, G.D.; Skoulas, E.; Papadopoulos, A.; Mimidis, A.; Joel, A.C.; Comanns, P. Laser engineering of biomimetic surfaces. Mater. Sci. Eng. R Rep. 2020, 141, 100562. [Google Scholar] [CrossRef]
- Palumbo, S. Anisotropic Interface Shear Behavior of Granular Soil and Surfaces Biologically-Inspired by Snakeskin; University of California: Davis, CA, USA, 2018. [Google Scholar]
- Zhao, Y.; Sakai, F.; Su, L.; Liu, Y.; Wei, K.; Chen, G.; Jiang, M. Progressive Macromolecular Self-Assembly: From Biomimetic Chemistry to Bio-Inspired Materials. Adv. Mater. 2013, 25, 5215–5256. [Google Scholar] [CrossRef]
- Xia, F.; Jiang, L. Bio-inspired, smart, multiscale interfacial materials. Adv. Mater. 2008, 20, 2842–2858. [Google Scholar] [CrossRef]
- Yu, S.-H.; Cölfen, H. Bio-inspired crystal morphogenesis by hydrophilic polymers. J. Mater. Chem. 2004, 14, 2124–2147. [Google Scholar] [CrossRef]
- Schiebel, P.E. Limbless Locomotion in Complex Terrestrial Terrain. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2019. [Google Scholar]
- Liu, Z.; Yin, W.; Tao, D.; Tian, Y. A glimpse of superb tribological designs in nature. Biotribology 2015, 1, 11–23. [Google Scholar] [CrossRef]
- Hoskins, J.K.; Zou, M. Designing a Bioinspired Surface for Improved Wear Resistance and Friction Reduction. J. Tribol. 2021, 143, 051107. [Google Scholar] [CrossRef]
- Kim, M.; Lee, S.M.; Lee, S.J.; Kim, Y.W.; Lee, D.W. Effect on friction reduction of micro/nano hierarchical patterns on sapphire wafers. Int. J. Precis. Eng. Manuf.-Green Technol. 2017, 4, 27–35. [Google Scholar] [CrossRef]
- Marczak, J. Micromachining and pattering in micro/nano scale on macroscopic areas. Arch. Metall. Mater. 2015, 60, 2221–2234. [Google Scholar] [CrossRef]
- Yoon, E.-S.; Singh, R.A.; Oh, H.-J.; Kong, H. The effect of contact area on nano/micro-scale friction. Wear 2005, 259, 1424–1431. [Google Scholar] [CrossRef]
- Rau, D.C.; Parsegian, V.A. Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Evidence for long range attractive hydration forces. Biophys. J. 1992, 61, 246–259. [Google Scholar] [CrossRef] [Green Version]
- Grewal, H.S.; Piao, S.; Cho, I.-J.; Jhang, K.-Y.; Yoon, E.-S. Nanotribological and wetting performance of hierarchical patterns. Soft Matter 2016, 12, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.A.; Yoon, E.-S.; Jackson, R.L. Biomimetics: The science of imitating nature. Tribol. Lubr. Technol. 2009, 65, 40. [Google Scholar]
- Singh, A.; Suh, K.-Y. Biomimetic patterned surfaces for controllable friction in micro-and nanoscale devices. Micro Nano Syst. Lett. 2013, 1, 6. [Google Scholar] [CrossRef]
- Fei, H.; Wei, M. Facile synthesis of hierarchical nanostructured rutile titania for lithium-ion battery. Electrochim. Acta 2011, 56, 6997–7004. [Google Scholar] [CrossRef]
- Zhang, K.; Xiao, X.; Wang, X.; Fan, Y.; Li, X. Topographical patterning: Characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies. J. Mater. Chem. B 2019, 7, 7090–7109. [Google Scholar] [CrossRef] [PubMed]
- Maithani, R.; Kumar, A.; Raghav, G.; Nagpal, M.; Kumar, B. Thermal analysis of jet impingement on hemispherical protrusion on heated surface. Exp. Heat Transf. 2021, 34, 662–677. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, Q.; Abuflaha, R.; Olson, D.; Furlong, O.; You, T.; Zhang, Q.; Hu, X.; Tysoe, W.T. Influence of dimple shape on tribofilm formation and tribological properties of textured surfaces under full and starved lubrication. Tribol. Int. 2019, 136, 267–275. [Google Scholar] [CrossRef]
- Emerson Iv, R.J.; Bergstrom, T.S.; Liu, Y.; Soto, E.R.; Brown, C.A.; McGimpsey, W.G.; Camesano, T.A. Microscale correlation between surface chemistry, texture, and the adhesive strength of Staphylococcus e pidermidis. Langmuir 2006, 22, 11311–11321. [Google Scholar] [CrossRef]
- Sun, Z.P.; Guo, Y.B.; Shim, V.P.W. Deformation and energy absorption characteristics of additively-manufactured polymeric lattice structures—Effects of cell topology and material anisotropy. Thin-Walled Struct. 2021, 169, 108420. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, F. Surfaces and Interfaces of Biomimetic Superhydrophobic Materials; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Labonte, D.; Clemente, C.J.; Dittrich, A.; Kuo, C.-Y.; Crosby, A.J.; Irschick, D.J.; Federle, W. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing. Proc. Natl. Acad. Sci. USA 2016, 113, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Sustaita, D.; Pouydebat, E.; Manzano, A.; Abdala, V.; Hertel, F.; Herrel, A. Getting a grip on tetrapod grasping: Form, function, and evolution. Biol. Rev. 2013, 88, 380–405. [Google Scholar] [CrossRef] [PubMed]
- Gorb, S.N. Smooth attachment devices in insects: Functional morphology and biomechanics. Adv. Insect Physiol. 2007, 34, 81–115. [Google Scholar]
- Zhang, H.; Yan, Y.; Gu, Z.; Wang, Y.; Sun, T. Friction enhancement between microscopically patterned polydimethylsiloxane and rabbit small intestinal tract based on different lubrication mechanisms. ACS Biomater. Sci. Eng. 2016, 2, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Guo, Z. Recent advances of bioinspired functional materials with specific wettability: From nature and beyond nature. Nanoscale Horiz. 2019, 4, 52–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, K.; Yao, X.; Jiang, L. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 2015, 115, 8230–8293. [Google Scholar] [CrossRef] [PubMed]
- Tsipenyuk, A.; Varenberg, M. Use of biomimetic hexagonal surface texture in friction against lubricated skin. J. R. Soc. Interface 2014, 11, 20140113. [Google Scholar] [CrossRef]
- Ward, D. The Biology of Deserts; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Han, Z.; Zhang, J.; Ge, C.; Lü, Y.; Jiang, J.; Liu, Q.; Ren, L. Anti-erosion function in animals and its biomimetic application. J. Bionic Eng. 2010, 7, S50–S58. [Google Scholar] [CrossRef]
- Meng, J.; Zhang, P.; Wang, S. Recent progress of abrasion-resistant materials: Learning from nature. Chem. Soc. Rev. 2016, 45, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, J.; Zhu, B.; Niu, S.; Han, Z.; Ren, L. Progress in bio-inspired anti-solid particle erosion materials: Learning from nature but going beyond nature. Chin. J. Mech. Eng. 2020, 33, 42. [Google Scholar] [CrossRef]
- Hamilton, A.R.; Sottos, N.R.; White, S.R. Self-healing of internal damage in synthetic vascular materials. Adv. Mater. 2010, 22, 5159–5163. [Google Scholar] [CrossRef] [PubMed]
- Naat, N.; Boutar, Y.; Naïmi, S.; Mezlini, S.; da Silva, L.F.M. Effect of bio-inspired surface texture on the resistance of 3D-printed polycarbonate bonded joints. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022. [Google Scholar] [CrossRef]
- Richards, C.; Slaimi, A.; O’Connor, N.E.; Barrett, A.; Kwiatkowska, S.; Regan, F. Bio-inspired surface texture modification as a viable feature of future aquatic antifouling strategies: A review. Int. J. Mol. Sci. 2020, 21, 5063. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, Y.; Huang, J.; Chen, Z.; Chen, G.; Lai, Y. Bioinspired surfaces with superamphiphobic properties: Concepts, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1707415. [Google Scholar] [CrossRef]
- Mandal, P.; Shishodia, A.; Ali, N.; Ghosh, S.; Arora, H.S.; Grewal, H.S.; Ghosh, S.K. Effect of topography and chemical treatment on the hydrophobicity and antibacterial activities of micropatterned aluminium surfaces. Surf. Topogr. Metrol. Prop. 2020, 8, 025017. [Google Scholar] [CrossRef]
- Obilor, A.F.; Pacella, M.; Wilson, A.; Silberschmidt, V.V. Micro-texturing of polymer surfaces using lasers: A review. Int. J. Adv. Manuf. Technol. 2022, 120, 103–135. [Google Scholar] [CrossRef]
- Lu, P.; Wood, R.J.K. Tribological performance of surface texturing in mechanical applications—A review. Surf. Topogr. Metrol. Prop. 2020, 8, 043001. [Google Scholar] [CrossRef]
- Sullivan, T.; O’Callaghan, I. Recent Developments in Biomimetic Antifouling Materials: A Review. Biomimetics 2020, 5, 58. [Google Scholar] [CrossRef]
- Xu, D.; Ng, M.-K.; Fan, R.; Zhou, R.; Wang, H.-P.; Chen, J.; Cao, J. Enhancement of adhesion strength by micro-rolling-based surface texturing. Int. J. Adv. Manuf. Technol. 2015, 78, 1427–1435. [Google Scholar] [CrossRef]
- Vishnoi, M.; Kumar, P.; Murtaza, Q. Surface texturing techniques to enhance tribological performance: A review. Surf. Interfaces 2021, 27, 101463. [Google Scholar] [CrossRef]
- Kumar, V.; Verma, R.; Kango, S.; Sharma, V.S. Recent progresses and applications in laser-based surface texturing systems. Mater. Today Commun. 2021, 26, 101736. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Zhang, G.; Wang, G.; Zeng, Z.; Wang, C.; Wang, C.; Zhao, S.; Zhang, Y.; Ren, T. Electrochemical corrosion and anisotropic tribological properties of bioinspired hierarchical morphologies on Ti-6Al-4V fabricated by laser texturing. Tribol. Int. 2019, 134, 352–364. [Google Scholar] [CrossRef]
- Ancona, A.; Joshi, G.S.; Volpe, A.; Scaraggi, M.; Lugarà, P.M.; Carbone, G. Non-uniform laser surface texturing of an un-tapered square pad for tribological applications. Lubricants 2017, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aal, H.A. Functional surfaces for tribological applications: Inspiration and design. Surf. Topogr. Metrol. Prop. 2016, 4, 043001. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.-W.; Wang, M.; Zhao, Q.-Z. Manipulation of tribological properties of stainless steel by picosecond laser texturing and quenching. Tribol. Int. 2016, 99, 14–22. [Google Scholar] [CrossRef]
- Meng, Y.; Deng, J.; Ge, D.; Wu, J.; Sun, W.; Wang, R. Surface textures fabricated by laser and ultrasonic rolling for improving tribological properties of TiAlSiN coatings. Tribol. Int. 2021, 164, 107248. [Google Scholar] [CrossRef]
- Shum, P.W.; Zhou, Z.F.; Li, K.Y. Investigation of the tribological properties of the different textured DLC coatings under reciprocating lubricated conditions. Tribol. Int. 2013, 65, 259–264. [Google Scholar] [CrossRef]
- Schille, J.; Schneider, L.; Mauersberger, S.; Szokup, S.; Höhn, S.; Pötschke, J.; Reiß, F.; Leidich, E.; Löschner, U. High-rate laser surface texturing for advanced tribological functionality. Lubricants 2020, 8, 33. [Google Scholar] [CrossRef]
- Xing, Y.; Deng, J.; Wu, Z.; Wu, F. High friction and low wear properties of laser-textured ceramic surface under dry friction. Opt. Laser Technol. 2017, 93, 24–32. [Google Scholar] [CrossRef]
- Rodriguez-Hernandez, J. Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 2015, 42, 1–41. [Google Scholar] [CrossRef]
- Gachot, C.; Rosenkranz, A.; Hsu, S.M.; Costa, H.L. A critical assessment of surface texturing for friction and wear improvement. Wear 2017, 372, 21–41. [Google Scholar] [CrossRef]
- Coblas, D.G.; Fatu, A.; Maoui, A.; Hajjam, M. Manufacturing textured surfaces: State of art and recent developments. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2015, 229, 3–29. [Google Scholar] [CrossRef]
- Bruzzone, A.A.G.; Costa, H.L.; Lonardo, P.M.; Lucca, D.A. Advances in engineered surfaces for functional performance. CIRP Ann. 2008, 57, 750–769. [Google Scholar] [CrossRef]
- Sitar, A.; Crivellari, M.; Schille, J.; Mauersberger, S.; Löschner, U.; Golobič, I. Improved boiling heat transfer in dry etched microchannels with laser structured surfaces. In Proceedings of the International Conference on Nanochannels, Microchannels, and Minichannels, Dubrovnik, Croatia, 10–13 June 2018; p. V001T002A015. [Google Scholar]
- Wang, Z.; Zhao, Q.; Wang, C.; Zhang, Y. Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing. Appl. Phys. A 2015, 119, 1155–1163. [Google Scholar] [CrossRef]
- Dunn, A.; Carstensen, J.V.; Wlodarczyk, K.L.; Hansen, E.B.; Gabzdyl, J.; Harrison, P.M.; Shephard, J.D.; Hand, D.P. Nanosecond laser texturing for high friction applications. Opt. Lasers Eng. 2014, 62, 9–16. [Google Scholar] [CrossRef]
- Schille, J.; Ullmann, F.; Schneider, L.; Graefensteiner, M.; Schiefer, S.; Gerlach, M.; Leidich, E.; Exner, H. Experimental Study on Laser Surface Texturing for Friction Coefficient Enhancement. J. Laser Micro/Nanoeng. 2015, 10, 245–253. [Google Scholar] [CrossRef]
- Rung, S.; Bokan, K.; Kleinwort, F.; Schwarz, S.; Simon, P.; Klein-Wiele, J.-H.; Esen, C.; Hellmann, R. Possibilities of dry and lubricated friction modification enabled by different ultrashort laser-based surface structuring methods. Lubricants 2019, 7, 43. [Google Scholar] [CrossRef]
- van der Poel, S.H.; Mezera, M.; Römer, G.-w.R.B.E.; de Vries, E.G.; Matthews, D.T.A. Fabricating laser-induced periodic surface structures on medical grade cobalt–chrome–molybdenum: Tribological, wetting and leaching properties. Lubricants 2019, 7, 70. [Google Scholar] [CrossRef]
- Alves-Lopes, I.; Almeida, A.; Oliveira, V.; Vilar, R. Influence of femtosecond laser surface nanotexturing on the friction behavior of silicon sliding against PTFE. Nanomaterials 2019, 9, 1237. [Google Scholar] [CrossRef]
- Eichstädt, J.; Römer, G.; Huis, A.J. Towards friction control using laser-induced periodic surface structures. Phys. Procedia 2011, 12, 7–15. [Google Scholar] [CrossRef]
- Koch, K.; Bhushan, B.; Barthlott, W. Multifunctional surface structures of plants: An inspiration for biomimetics. Prog. Mater. Sci. 2009, 54, 137–178. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, Y.; Feng, X.; Hu, Y. Focus on bioinspired textured surfaces toward fluid drag reduction: Recent progresses and challenges. Adv. Eng. Mater. 2022, 24, 2100696. [Google Scholar] [CrossRef]
- Zhou, Z.R.; Jin, Z.M. Biotribology: Recent progresses and future perspectives. Biosurf. Biotribol. 2015, 1, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Mu, Z.; Yin, W.; Li, W.; Niu, S.; Zhang, J.; Ren, L. Biomimetic multifunctional surfaces inspired from animals. Adv. Colloid Interface Sci. 2016, 234, 27–50. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, H.; Carmona-Aparicio, G.; Lei, I.; Despeisse, M. Energy and material efficiency strategies enabled by metal additive manufacturing—A review for the aeronautic and aerospace sectors. Energy Rep. 2022, 8, 298–305. [Google Scholar] [CrossRef]
- Gordon, D.G. The Eat-A-Bug Cookbook, Revised: 40 Ways to Cook Crickets, Grasshoppers, Ants, Water Bugs, Spiders, Centipedes, and Their Kin; Ten Speed Press: Berkeley, CA, USA, 2013. [Google Scholar]
- Tong, J.; Zhang, Z.; Ma, Y.; Chen, D.; Jia, B.; Menon, C. Abrasive wear of embossed surfaces with convex domes. Wear 2012, 274, 196–202. [Google Scholar] [CrossRef]
- Aizenberg, J.; Fratzl, P. Biological and Biomimetic Materials; Wiley Online Library: New York, NY, USA, 2009; Volume 21, pp. 387–388. [Google Scholar]
- Tian, X.; Han, Z.; Li, X.; Pu, Z.; Ren, L. Biological coupling anti-wear properties of three typical molluscan shells—Scapharca subcrenata, Rapana venosa and Acanthochiton rubrolineatus. Sci. China Technol. Sci. 2010, 53, 2905–2913. [Google Scholar] [CrossRef]
- Tong, J.; Wang, H.; Ma, Y.; Ren, L. Two-body abrasive wear of the outside shell surfaces of mollusc Lamprotula fibrosa Heude, Rapana venosa Valenciennes and Dosinia anus Philippi. Tribol. Lett. 2005, 19, 331–338. [Google Scholar] [CrossRef]
- Tong, J.; Mohammad, M.A.; Zhang, J.; Ma, Y.; Rong, B.; Chen, D.; Menon, C. DEM numerical simulation of abrasive wear characteristics of a bioinspired ridged surface. J. Bionic Eng. 2010, 7, 175–181. [Google Scholar] [CrossRef]
- Zhiwu, H.; Junqiu, Z.; Chao, G.; Li, W.; Ren, L. Erosion resistance of bionic functional surfaces inspired from desert scorpions. Langmuir 2012, 28, 2914–2921. [Google Scholar] [CrossRef]
- Han, Z.; Feng, H.; Yin, W.; Niu, S.; Zhang, J.; Chen, D. An efficient bionic anti-erosion functional surface inspired by desert scorpion carapace. Tribol. Trans. 2015, 58, 357–364. [Google Scholar] [CrossRef]
- Han, Z.; Yin, W.; Zhang, J.; Jiang, J.; Niu, S.; Ren, L. Erosion-resistant surfaces inspired by tamarisk. J. Bionic Eng. 2013, 10, 479–487. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, J.; Ge, C.; Jiang, J.; Ren, L. Gas-solid erosion on bionic configuration surface. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2011, 26, 305–310. [Google Scholar] [CrossRef]
- Han, Z.W.; Yang, M.K.; Yin, W.; Zhang, J.Q. Biomimetic design and manufacturing of anti-Erosion functional surfaces inspired from desert scorpion. In Advances in Science and Technology; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2017; pp. 187–196. [Google Scholar]
- Jung, S.; Yang, E.; Jung, W.; Kim, H.-Y. Anti-erosive mechanism of a grooved surface against impact of particle-laden flow. Wear 2018, 406, 166–172. [Google Scholar] [CrossRef]
- Liang, P.; Xu, Y.-B.; Li, W.-M.; Ren, L.-Q. The Simulation and Analysis of Erosion to a Layered Structure of a Single Particle. In Proceedings of the 3rd Annual International Conference on Mechanics and Mechanical Engineering, Chengdu, China, 16–18 December 2016; pp. 897–902. [Google Scholar]
- Yan, Y.Y.; Gao, N.; Barthlott, W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interface Sci. 2011, 169, 80–105. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L. Petal effect: A superhydrophobic state with high adhesive force. Langmuir 2008, 24, 4114–4119. [Google Scholar] [CrossRef] [PubMed]
- Koch, K.; Bhushan, B.; Barthlott, W. Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 2008, 4, 1943–1963. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, G.; Cong, Q.; Chen, G.-h.; Ren, L.Q. Effects of methanol on wettability of the non-smooth surface on butterfly wing. J. Bionic Eng. 2008, 5, 127–133. [Google Scholar] [CrossRef]
- Byun, D.; Hong, J.; Ko, J.H.; Lee, Y.J.; Park, H.C.; Byun, B.-K.; Lukes, J.R. Wetting characteristics of insect wing surfaces. J. Bionic Eng. 2009, 6, 63–70. [Google Scholar] [CrossRef]
- Gao, X.; Jiang, L. Water-repellent legs of water striders. Nature 2004, 432, 36. [Google Scholar] [CrossRef]
- Yoon, J.; Hou, Y.; Knoepfel, A.M.; Yang, D.; Ye, T.; Zheng, L.; Wang, K. Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chem. Soc. Rev. 2021, 50, 12915–12984. [Google Scholar] [CrossRef] [PubMed]
- Roach, P.; Shirtcliffe, N. Superhydrophobicity, and Self-Cleaning. In Self-Cleaning Materials and Surfaces: A Nanotechnology Approach; Wiley: New York, NY, USA, 2013; pp. 1–32. [Google Scholar]
- Yoon, J.; Hou, Y.; Knoepfel, A.M.; Yang, D.; Ye, T.; Zheng, L.; Yennawar, N.; Sanghadasa, M.; Priya, S.; Wang, K. Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chem. Soc. Rev. 2021, 50, 12915–12984. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.-Q.; Tong, J.; Li, J.-Q.; Chen, B.-C. Soil adhesion and biomimetics of soil-engaging components: A review. J. Agric. Eng. Res. 2001, 79, 239–264. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Fang, Y.; Cong, Q.; Ren, L.Q. Anisotropism of the non-smooth surface of butterfly wing. J. Bionic Eng. 2009, 6, 71–76. [Google Scholar] [CrossRef]
- Gao, H.; Wang, X.; Yao, H.; Gorb, S.; Arzt, E. Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 2005, 37, 275–285. [Google Scholar] [CrossRef]
- Bhushan, B.; Peressadko, A.G.; Kim, T.-W. Adhesion analysis of two-level hierarchical morphology in natural attachment systems for ’smart adhesion’. J. Adhes. Sci. Technol. 2006, 20, 1475–1491. [Google Scholar] [CrossRef]
- Autumn, K. How gecko toes stick: The powerful fantastic adhesive used by geckos is made of nanoscale hairs that engage tiny forces, inspiring envy among human imitators. Am. Sci. 2006, 94, 124–133. [Google Scholar] [CrossRef]
- Bhushan, B.; Sayer, R.A. Surface characterization and friction of a bio-inspired reversible adhesive tape. Microsyst. Technol. 2007, 13, 71–78. [Google Scholar] [CrossRef]
- Kim, T.W.; Bhushan, B. Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface. J. Adhes. Sci. Technol. 2007, 21, 1–20. [Google Scholar] [CrossRef]
- Fratzl, P. Biomimetic materials research: What can we really learn from nature’s structural materials? J. R. Soc. Interface 2007, 4, 637–642. [Google Scholar] [CrossRef]
- Dirks, J.H.; Federle, W. Fluid-based adhesion in insects–principles and challenges. Soft Matter 2011, 7, 11047–11053. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Xie, Z. Gecko-like dry adhesive surfaces and their applications: A review. J. Bionic Eng. 2021, 18, 1011–1044. [Google Scholar] [CrossRef]
- Peng, L.; Hsia, F.-C.; Woutersen, S.; Bonn, M.; Weber, B.; Bonn, D. Nonmonotonic friction due to water capillary adhesion and hydrogen bonding at multiasperity interfaces. Phys. Rev. Lett. 2022, 129, 256101. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Tian, H.; Gao, Y.; Wan, Z.; Wang, L.; Xu, H.; Wang, C.; Shao, J.; Zheng, Z. Revisiting the contact splitting hypothesis: An effective route for enhancing adhesion on rough surface. J. Mech. Phys. Solids 2023, 170, 105121. [Google Scholar] [CrossRef]
- Guan, C.; Fu, J.; Xu, L.; Jiang, X.; Wang, S.; Cui, Z. Study on the reduction of soil adhesion and tillage force of bionic cutter teeth in secondary soil crushing. Biosyst. Eng. 2022, 213, 133–147. [Google Scholar] [CrossRef]
- Salazar, R.; Fuentes, V.; Abdelkefi, A. Classification of biological and bioinspired aquatic systems: A review. Ocean Eng. 2018, 148, 75–114. [Google Scholar] [CrossRef]
- Liu, K.; Tian, Y.; Jiang, L. Bio-inspired superoleophobic and smart materials: Design, fabrication, and application. Prog. Mater. Sci. 2013, 58, 503–564. [Google Scholar] [CrossRef]
- Pu, X.; Li, G.; Huang, H. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface. Biol. Open 2016, 5, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Guangji, L.; Hanlu, H.; Yunhong, L.; Ashraf, M.A. Using Bio-Replicated Forming Technologies to Fabricate Shark-Skin Surface. Braz. Arch. Biol. Technol. 2018, 60, e17160511. [Google Scholar] [CrossRef]
- Popp, M.; White, C.F.; Bernal, D.; Wainwright, D.K.; Lauder, G.V. The denticle surface of thresher shark tails: Three-dimensional structure and comparison to other pelagic species. J. Morphol. 2020, 281, 938–955. [Google Scholar] [CrossRef]
- Krsmanovic, M.; Biswas, D.; Ali, H.; Kumar, A.; Ghosh, R.; Dickerson, A.K. Hydrodynamics and surface properties influence biofilm proliferation. Adv. Colloid Interface Sci. 2021, 288, 102336. [Google Scholar] [CrossRef]
- Siddiqui, N.A.; Agelin-Chaab, M. Nature-inspired solutions to bluff body aerodynamic problems: A review. J. Mech. Eng. Sci. 2021, 15, 8095–8140. [Google Scholar] [CrossRef]
- Oeffner, J.; Lauder, G.V. The hydrodynamic function of shark skin and two biomimetic applications. J. Exp. Biol. 2012, 215, 785–795. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Liu, Q.; Liao, G.; Yang, Y.; Ren, L.; Yang, H.; Chen, X. The sound suppression characteristics of wing feather of owl (Bubo bubo). J. Bionic Eng. 2012, 9, 192–199. [Google Scholar] [CrossRef]
- Tramsen, H.T.; Heepe, L.; Gorb, S.N. Bioinspired Granular Media Friction Pad: A Universal System for Friction Enhancement on Variety of Substrates. Biomimetics 2022, 7, 9. [Google Scholar] [CrossRef]
- Tramsen, H. The Granular Media Friction Pad: A Novel Biologically-Inspired System for Friction Maximization on a Wide Range of Substrates by Passive Jamming of Granular Material. Ph.D. Thesis, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 2020. [Google Scholar]
- Ivanović, L.; Vencl, A.; Stojanovic, B.; Markovic, B. Biomimetics design for tribological Applications. Tribol. Ind. 2018, 40, 448–456. [Google Scholar] [CrossRef]
- Maladen, R.D.; Ding, Y.; Li, C.; Goldman, D.I. Undulatory swimming in sand: Subsurface locomotion of the Sandfish Lizard. Science 2009, 325, 314–318. [Google Scholar] [CrossRef]
- Sharpe, S.S.; Kuckuk, R.; Goldman, D.I. Controlled preparation of wet granular media reveals limits to lizard burial ability. Phys. Biol. 2015, 12, 046009. [Google Scholar] [CrossRef]
- Yu, C.; Wang, Q.J. Friction anisotropy with respect to topographic orientation. Sci. Rep. 2012, 2, 988. [Google Scholar] [CrossRef]
- Gupta, K.M. Engineering Materials: Research, Applications and Advances; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Wahab, J.A.; Ghazali, M.J.; Yusoff, W.M.W.; Sajuri, Z. Enhancing material performance through laser surface texturing: A review. Trans. IMF 2016, 94, 193–198. [Google Scholar] [CrossRef]
- Segu, D.Z.; Choi, S.G.; hyouk Choi, J.; Kim, S.S. The effect of multi-scale laser textured surface on lubrication regime. Appl. Surf. Sci. 2013, 270, 58–63. [Google Scholar] [CrossRef]
- Baumgartner, W.; Saxe, F.; Weth, A.; Hajas, D.; Sigumonrong, D.; Emmerlich, J.; Singheiser, M.; Böhme, W.; Schneider, J.M. The sandfish’s skin: Morphology, chemistry and reconstruction. J. Bionic Eng. 2007, 4, 1–9. [Google Scholar] [CrossRef]
- Pu, X.; Li, G.; Liu, Y. Progress and perspective of studies on biomimetic shark skin drag reduction. ChemBioEng Rev. 2016, 3, 26–40. [Google Scholar] [CrossRef]
- Siddaiah, A.; Menezes, P.L. Advances in bio-inspired tribology for engineering applications. J. Bio-Tribo-Corros. 2016, 2, 23. [Google Scholar] [CrossRef]
- Yu, C.; Liu, M.; Zhang, C.; Yan, H.; Zhang, M.; Wu, Q.; Liu, M.; Jiang, L. Bio-inspired drag reduction: From nature organisms to artificial functional surfaces. Giant 2020, 2, 100017. [Google Scholar] [CrossRef]
- Viswanath, P.R. Aircraft viscous drag reduction using riblets. Prog. Aerosp. Sci. 2002, 38, 571–600. [Google Scholar] [CrossRef]
- Dean, B.; Bhushan, B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 4775–4806. [Google Scholar] [CrossRef]
- Bhushan, B. Biomimetics: Lessons from nature—An overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1445–1486. [Google Scholar] [CrossRef]
- Miyazaki, M.; Hirai, Y.; Moriya, H.; Shimomura, M.; Miyauchi, A.; Liu, H. Biomimetic design inspired Sharkskin denticles and modeling of diffuser for fluid control. J. Photopolym. Sci. Technol. 2018, 31, 133–138. [Google Scholar] [CrossRef]
- Lu, Y.; Hua, M.; Liu, Z. The biomimetic shark skin optimization design method for improving lubrication effect of engineering surface. J. Tribol. 2014, 136, 031703. [Google Scholar] [CrossRef]
- Singh, A.V.; Rahman, A.; Kumar, N.V.G.S.; Aditi, A.S.; Galluzzi, M.; Bovio, S.; Barozzi, S.; Montani, E.; Parazzoli, D. Bio-inspired approaches to design smart fabrics. Mater. Des. (1980–2015) 2012, 36, 829–839. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Dai, S.; Dong, G. Designing a bioinspired scaly textured surface for improving the tribological behaviors of starved lubrication. Tribol. Int. 2022, 173, 107594. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Simonelli, M.; Parry, L.; Ashcroft, I.; Tuck, C.; Hague, R. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Prog. Mater. Sci. 2019, 106, 100578. [Google Scholar] [CrossRef]
- Li, R.; Kim, Y.S.; Tho, H.V.; Yum, Y.J.; Kim, W.J.; Yang, S.Y. Additive manufacturing (AM) of piercing punches by the PBF method of metal 3D printing using mold steel powder materials. J. Mech. Sci. Technol. 2019, 33, 809–817. [Google Scholar] [CrossRef]
- Li, C.; Yang, X.; Wang, S.; Wang, Y.; Lu, C.; Cao, J. Study on friction and lubrication characteristics of surface with unidirectional convergence texture. Coatings 2019, 9, 780. [Google Scholar] [CrossRef]
- Zuo, Y.; Zheng, L.; Zhao, C.; Liu, H. Micro-/Nanostructured interface for liquid manipulation and its applications. Small 2020, 16, 1903849. [Google Scholar] [CrossRef]
- Murty, K.L.; Charit, I. Texture development and anisotropic deformation of zircaloys. Prog. Nucl. Energy 2006, 48, 325–359. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.; He, Q. Study on properties of fish scale biomimetic fluororubber prepared by template method. J. Polym. Res. 2022, 29, 368. [Google Scholar] [CrossRef]
- Kyrikou, I.; Briassoulis, D. Biodegradation of agricultural plastic films: A critical review. J. Polym. Environ. 2007, 15, 125–150. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Lu, Z.; Wang, X.; Jia, L.; Wang, J.; Gao, Q.; Li, L.; Zhou, C.; Chen, G. Synthesis and tribological properties of bio-inspired green dopamine oil soluble additive. Tribol. Int. 2022, 174, 107697. [Google Scholar] [CrossRef]
- Kringelbach, M.L.; Berridge, K.C. Towards a functional neuroanatomy of pleasure and happiness. Trends Cogn. Sci. 2009, 13, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Zhang, T.; He, B.; Xu, F.; Liu, S.; Ye, Q.; Zhou, F. Enhanced lubricity and anti-wear performance of zwitterionic polymer-modified N-enriched porous carbon nanosheets as water-based lubricant additive. Tribol. Int. 2022, 167, 107421. [Google Scholar] [CrossRef]
- Fu, X.; Sun, L.; Zhou, X.; Li, Z.; Ren, T. Tribological study of oil-miscible quaternary ammonium phosphites ionic liquids as lubricant additives in PAO. Tribol. Lett. 2015, 60, 23. [Google Scholar] [CrossRef]
- Chen, Y.; Renner, P.; Liang, H. Dispersion of nanoparticles in lubricating oil: A critical review. Lubricants 2019, 7, 7. [Google Scholar] [CrossRef]
- Borges, J.; Mano, J.F. Molecular interactions driving the layer-by-layer assembly of multilayers. Chem. Rev. 2014, 114, 8883–8942. [Google Scholar] [CrossRef]
- Levita, G.; Cavaleiro, A.; Molinari, E.; Polcar, T.; Righi, M.C. Sliding properties of MoS2 layers: Load and interlayer orientation effects. J. Phys. Chem. C 2014, 118, 13809–13816. [Google Scholar] [CrossRef]
- Dai, Z.; Lu, N.; Liechti, K.M.; Huang, R. Mechanics at the interfaces of 2D materials: Challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100837. [Google Scholar] [CrossRef]
- Leven, I.; Krepel, D.; Shemesh, O.; Hod, O. Robust superlubricity in graphene/h-BN heterojunctions. J. Phys. Chem. Lett. 2013, 4, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yang, W.; McKittrick, J.; Meyers, M.A. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 2016, 76, 229–318. [Google Scholar] [CrossRef]
- Bhushan, B. Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Ding, J.; Zhao, H.; Yu, H. Bio-inspired Multifunctional Graphene–Epoxy Anticorrosion Coatings by Low-Defect Engineered Graphene. ACS Nano 2022, 16, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Saxena, K.K. An outlook on the influence on mechanical properties of AZ31 reinforced with graphene nanoparticles using powder metallurgy technique for biomedical application. Mater. Today. Proc. 2022, 56, 2278–2287. [Google Scholar] [CrossRef]
- Jia, Q.; He, W.; Hua, D.; Zhou, Q.; Du, Y.; Ren, Y.; Lu, Z.; Wang, H.; Zhou, F.; Wang, J. Effects of structure relaxation and surface oxidation on nanoscopic wear behaviors of metallic glass. Acta Mater. 2022, 232, 117934. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, X.; Sun, H.; Zhang, Y.; Fang, Y.; Shu, R. Microstructure and mechanical properties of bioinspired laminated Al matrix hybrid reinforced with B4C and graphene nanoplatelets. Mater. Charact. 2022, 193, 112307. [Google Scholar] [CrossRef]
- Wenting, Y.; Qing, Z.; Dawei, L.; Zan, L.; Xiaolin, C.; Xianzong, W.; Haifeng, W.; Renguo, G. Nano-Tribological Properties of Bio-Inspired Laminated Graphene Reinforced Aluminum Martrix Composite. Tribology 2021, 42, 338–346. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X. Bioinspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness. Nano Lett. 2017, 17, 6907–6915. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, Q.; Tang, Z. Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem. Soc. Rev. 2012, 41, 1111–1129. [Google Scholar] [CrossRef]
- Libonati, F.; Buehler, M.J. Advanced structural materials by bioinspiration. Adv. Eng. Mater. 2017, 19, 1600787. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, Y.; Hu, T.; Song, J.; Ding, Q.; Hu, L. Surface composition–lubrication design of Al2O3/Ni laminated composites—Part I: Tribological synergy effect of micro–dimpled texture and diamond–like carbon films in a water environment. Tribol. Int. 2015, 84, 142–151. [Google Scholar] [CrossRef]
- De Portu, G.; Micele, L.; Pezzotti, G. Laminated ceramic structures from oxide systems. Compos. Part B Eng. 2006, 37, 556–567. [Google Scholar] [CrossRef]
- Sun, J.; Zhai, P.; Chen, Y.; Zhao, J.; Huang, Z. Hierarchical toughening of laminated nanocomposites with three-dimensional graphene/carbon nanotube/SiC nanowire. Mater. Today Nano 2022, 18, 100180. [Google Scholar] [CrossRef]
- Song, J.; Hu, L.; Qin, B.; Fan, H.; Zhang, Y. Fabrication and tribological behavior of Al2O3/MoS2–BaSO4 laminated composites doped with in situ formed BaMoO4. Tribol. Int. 2018, 118, 329–336. [Google Scholar] [CrossRef]
- Hadad, M.; Blugan, G.; Kübler, J.; Rosset, E.; Rohr, L.; Michler, J. Tribological behaviour of Si3N4 and Si3N4–% TiN based composites and multi-layer laminates. Wear 2006, 260, 634–641. [Google Scholar] [CrossRef]
- Tian, H.; Wang, D.; Zhang, Y.; Jiang, Y.; Liu, T.; Li, X.; Wang, C.; Chen, X.; Shao, J. Core–shell dry adhesives for rough surfaces via electrically responsive self-growing strategy. Nat. Commun. 2022, 13, 7659. [Google Scholar] [CrossRef]
- Dwivedi, P.; Singh, K.; Chaudhary, K.; Mangal, R. Biomimetic Polymer Adhesives. ACS Appl. Polym. Mater. 2022, 4, 4588–4608. [Google Scholar] [CrossRef]
- Balijepalli, R.G. Numerical Analysis of Interfacial Stress Distributions and Adhesion Behaviour of Fibrillar Surfaces. Ph.D. Thesis, der Universität des Saarlandes, Saarbrücken, Germany, 2016. [Google Scholar]
- Holmberg, K.; Andersson, P.; Nylund, N.-O.; Mäkelä, K.; Erdemir, A. Global energy consumption due to friction in trucks and buses. Tribol. Int. 2014, 78, 94–114. [Google Scholar] [CrossRef]
- Dolez, P.I. Nanomaterials definitions, classifications, and applications. In Nanoengineering; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–40. [Google Scholar]
- Park, H.-W.; Wensing, P.M.; Kim, S. Jumping over obstacles with MIT Cheetah 2. Robot. Auton. Syst. 2021, 136, 103703. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, Z.; Liu, W. Biomimetic water-collecting materials inspired by nature. Chem. Commun. 2016, 52, 3863–3879. [Google Scholar] [CrossRef]
- Meng, F.; Liu, Q.; Wang, X.; Tan, D.; Xue, L.; Barnes, W.J.P. Tree frog adhesion biomimetics: Opportunities for the development of new, smart adhesives that adhere under wet conditions. Philos. Trans. R. Soc. A 2019, 377, 20190131. [Google Scholar] [CrossRef]
- Farzaneh, H.H.; Lindemann, U. A Practical Guide to Bio-Inspired Design; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Scholz, I.; Barnes, W.J.P.; Smith, J.M.; Baumgartner, W. Ultrastructure and physical properties of an adhesive surface, the toe pad epithelium of the tree frog, Litoria caerulea White. J. Exp. Biol. 2009, 212, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhang, Z.; Yang, M.; Li, P.; Zhao, X.; Wang, W. Adopting bio-inspired interfacial modification and reinforcements simultaneously for optimizing the tribological performance of fabric composites. Tribol. Int. 2022, 169, 107495. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, H.; Zhang, B.; Hu, L.; Xu, L.; Hao, J. Hydrogels totally from inorganic nanosheets and water with mechanical robustness, self-healing, controlled lubrication and anti-corrosion. Nano Res. 2023, 16, 1533–1544. [Google Scholar] [CrossRef]
- Hu, S.; Reddyhoff, T.; Li, J.; Cao, X.; Shi, X.; Peng, Z.; DeMello, A.J.; Dini, D. Biomimetic Water-Repelling Surfaces with Robustly Flexible Structures. ACS Appl. Mater. Interfaces 2021, 13, 31310–31319. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, N.M.R. Biomedical Devices Engineered Based on the Control of the Surface Wettability. Ph.D. Thesis, Universidade do Minho, Braga, Portugal, 2017. [Google Scholar]
- Hooda, A.; Goyat, M.S.; Pandey, J.K.; Kumar, A.; Gupta, R. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Prog. Org. Coat. 2020, 142, 105557. [Google Scholar] [CrossRef]
- Belhadjamor, M.; El Mansori, M.; Belghith, S.; Mezlini, S. Anti-fingerprint properties of engineering surfaces: A review. Surf. Eng. 2018, 34, 85–120. [Google Scholar] [CrossRef]
- Arzt, E.; Quan, H.; McMeeking, R.M.; Hensel, R. Functional surface microstructures inspired by nature–From adhesion and wetting principles to sustainable new devices. Prog. Mater. Sci. 2021, 120, 100823. [Google Scholar] [CrossRef]
- Chen, F.; Wang, Y.; Tian, Y.; Zhang, D.; Song, J.; Crick, C.R.; Carmalt, C.J.; Parkin, I.P.; Lu, Y. Robust and durable liquid-repellent surfaces. Chem. Soc. Rev. 2022, 51, 8476–8583. [Google Scholar] [CrossRef]
- Hu, S.; Cao, X.; Reddyhoff, T.; Shi, X.; Peng, Z.; deMello, A.J.; Dini, D. Flexibility-patterned liquid-repelling surfaces. ACS Appl. Mater. Interfaces 2021, 13, 29092–29100. [Google Scholar] [CrossRef]
- Chen, L.; Guo, Z.; Liu, W. Biomimetic multi-functional superamphiphobic FOTS-TiO2 particles beyond lotus leaf. ACS Appl. Mater. Interfaces 2016, 8, 27188–27198. [Google Scholar] [CrossRef]
- Al-Azawi, A. Programmable and Responsive Superhydrophobic Surfaces; Aalto University: Espoo, Finland, 2021. [Google Scholar]
- Borodich, F.M.; Savencu, O. Hierarchical models of engineering rough surfaces and bio-inspired adhesives. In Bio-Inspired Structured Adhesives; Springer: Berlin/Heidelberg, Germany, 2017; pp. 179–219. [Google Scholar]
- Shome, A.; Das, A.; Borbora, A.; Dhar, M.; Manna, U. Role of chemistry in bio-inspired liquid wettability. Chem. Soc. Rev. 2022, 51, 5452–5497. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Cao, X.; Reddyhoff, T.; Puhan, D.; Vladescu, S.-C.; Wang, J.; Shi, X.; Peng, Z.; DeMello, A.J.; Dini, D. Liquid repellency enhancement through flexible microstructures. Sci. Adv. 2020, 6, eaba9721. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, Z.; Liu, N.; Zhang, J. Study on Tribological Characteristics of Ultra-High Molecular Weight Polyethylene under Unsaturated Lubrication of Water and Brine. Polymers 2022, 14, 4138. [Google Scholar] [CrossRef] [PubMed]
- Rongxia, X.U.; Gang, W.E.I.; Lilan, W.E.I.; Jiecui, W.U.; Yujiang, J. Friction and wear properties of PE-UHMW modified with nano-SiO2 and PA6. China Plast. 2022, 36, 47. [Google Scholar]
- Ansal, K.A. Investigations On Asymmetric Coplanar Strip Fed Antennas with Defected Structures and Modified Ground Plane. Ph.D. Thesis, Pondicherry University, Pondicherry, India, 2015. [Google Scholar]
- Han, B.; Sun, D.; Yu, X.; Song, W.; Ding, L. Classification of urban street networks based on tree-like network features. Sustainability 2020, 12, 628. [Google Scholar] [CrossRef]
- Bejan, A.; Rocha, L.A.O.; Lorente, S. Thermodynamic optimization of geometry: T-and Y-shaped constructs of fluid streams. Int. J. Therm. Sci. 2000, 39, 949–960. [Google Scholar] [CrossRef]
- Xu, P.; Sasmito, A.P.; Yu, B.; Mujumdar, A.S. Transport phenomena and properties in treelike networks. Appl. Mech. Rev. 2016, 68, 040802. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Teng, J.; Zubarev, E.R.; Shulha, H.; Tsukruk, V.V. In-situ observation of switchable nanoscale topography for Y-shaped binary brushes in fluids. Nano Lett. 2005, 5, 491–495. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, X.; Li, S.; Huang, S.; Lai, W.; You, D.; Tu, X.; Li, W.; Wang, X. Self-lubricating coating with zero weight loss performance on additively manufactured Ti-6Al-4V. Surf. Coat. Technol. 2022, 447, 128847. [Google Scholar] [CrossRef]
- Fu, X.-K.; Cao, H.-B.; An, Y.-L.; Zhou, H.-D.; Shi, Y.-P.; Hou, G.-L.; Ha, W. Bioinspired Hydroxyapatite Coating Infiltrated with a Graphene Oxide Hybrid Supramolecular Hydrogel Orchestrates Antibacterial and Self-Lubricating Performance. ACS Appl. Mater. Interfaces 2022, 14, 31702–31714. [Google Scholar] [CrossRef]
- Li, J.; Ueda, E.; Paulssen, D.; Levkin, P.A. Slippery lubricant-infused surfaces: Properties and emerging applications. Adv. Funct. Mater. 2019, 29, 1802317. [Google Scholar] [CrossRef]
- Barthwal, S.; Lee, B.; Lim, S.-H. Fabrication of robust and durable slippery anti-icing coating on textured superhydrophobic aluminum surfaces with infused silicone oil. Appl. Surf. Sci. 2019, 496, 143677. [Google Scholar] [CrossRef]
- Sunny, S.; Vogel, N.; Howell, C.; Vu, T.L.; Aizenberg, J. Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition. Adv. Funct. Mater. 2014, 24, 6658–6667. [Google Scholar] [CrossRef]
- Singh, N.; Kakiuchida, H.; Sato, T.; Hönes, R.; Yagihashi, M.; Urata, C.; Hozumi, A. Omniphobic metal surfaces with low contact angle hysteresis and tilt angles. Langmuir 2018, 34, 11405–11413. [Google Scholar] [CrossRef] [PubMed]
- Kong, T.; Luo, G.; Zhao, Y.; Liu, Z. Bioinspired superwettability micro/nanoarchitectures: Fabrications and applications. Adv. Funct. Mater. 2019, 29, 1808012. [Google Scholar] [CrossRef]
- Li, Q.; Guo, Z. Lubricant-infused slippery surfaces: Facile fabrication, unique liquid repellence and antireflective properties. J. Colloid Interface Sci. 2019, 536, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Karl, I.; Bauer, U. Inside the trap: Biology and behavior of the pitcher-dwelling crab spider, Misumenops nepenthicola. Plants People Planet 2020, 2, 290–293. [Google Scholar] [CrossRef]
- Singh, N.S.; Zhang, J.; Stafford, J.; Anthony, C.; Gao, N. Implementing superhydrophobic surfaces within various condensation environments: A review. Adv. Mater. Interfaces 2021, 8, 2001442. [Google Scholar] [CrossRef]
- Samaha, M.A.; Gad-el-Hak, M. Slippery surfaces: A decade of progress. Phys. Fluids 2021, 33, 071301. [Google Scholar] [CrossRef]
- Li, J.; Han, X.; Li, W.; Yang, L.; Li, X.; Wang, L. Nature-inspired reentrant surfaces. Prog. Mater. Sci. 2022, 133, 101064. [Google Scholar] [CrossRef]
- Zheng, S.-F.; Gross, U.; Wang, X.-D. Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces. Adv. Colloid Interface Sci. 2021, 295, 102503. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Shen, T.; Chen, H.; Lu, J.; Yang, H.-C.; Li, W. Slippery liquid-infused porous surfaces (SLIPSs): A perfect solution to both marine fouling and corrosion? J. Mater. Chem. A 2020, 8, 7536–7547. [Google Scholar] [CrossRef]
- Morgese, G.; Ramakrishna, S.N.; Simic, R.; Zenobi-Wong, M.; Benetti, E.M. Hairy and slippery polyoxazoline-based copolymers on model and cartilage surfaces. Biomacromolecules 2018, 19, 680–690. [Google Scholar] [CrossRef]
- Solga, A.; Cerman, Z.; Striffler, B.F.; Spaeth, M.; Barthlott, W. The dream of staying clean: Lotus and biomimetic surfaces. Bioinspir. Biomim. 2007, 2, S126. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Jitsangiam, P.; Pachana, P.K.; Rattanasak, U. Self-cleaning superhydrophobic fly ash geopolymer. Sci. Rep. 2023, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8. [Google Scholar] [CrossRef]
- Liu, S.; Latthe, S.S.; Yang, H.; Liu, B.; Xing, R. Raspberry-like superhydrophobic silica coatings with self-cleaning properties. Ceram. Int. 2015, 41, 11719–11725. [Google Scholar] [CrossRef]
- Yu, C.; Sasic, S.; Liu, K.; Salameh, S.; Ras, R.H.A.; van Ommen, J.R. Nature–Inspired self–cleaning surfaces: Mechanisms, modelling, and manufacturing. Chem. Eng. Res. Des. 2020, 155, 48–65. [Google Scholar] [CrossRef]
- Ragesh, P.; Ganesh, V.A.; Nair, S.V.; Nair, A.S. A review on ‘self-cleaning and multifunctional materials’. J. Mater. Chem. A 2014, 2, 14773–14797. [Google Scholar] [CrossRef]
- Lin, J.; Cai, Y.; Wang, X.; Ding, B.; Yu, J.; Wang, M. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf. Nanoscale 2011, 3, 1258–1262. [Google Scholar] [CrossRef]
- Zhang, P.; Lin, L.; Zang, D.; Guo, X.; Liu, M. Designing Bioinspired Anti-Biofouling Surfaces based on a Superwettability Strategy. Small 2017, 13, 1503334. [Google Scholar] [CrossRef] [PubMed]
- Nir, S.; Reches, M. Bio-inspired antifouling approaches: The quest towards non-toxic and non-biocidal materials. Curr. Opin. Biotechnol. 2016, 39, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Guo, Z. A comparison between superhydrophobic surfaces (SHS) and slippery liquid-infused porous surfaces (SLIPS) in application. Nanoscale 2020, 12, 22398–22424. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, D.; Lu, Z. Slippery liquid-infused porous surface bio-inspired by pitcher plant for marine anti-biofouling application. Colloids Surf. B Biointerfaces 2015, 136, 240–247. [Google Scholar] [CrossRef]
- Li, Y.; Luo, B.; Guet, C.; Narasimalu, S.; Dong, Z. Preparation and formula analysis of anti-biofouling titania–polyurea spray coating with nano/micro-structure. Coatings 2019, 9, 560. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Z. Liquid-Repellent Surfaces. Langmuir 2022, 38, 9073–9084. [Google Scholar] [CrossRef]
- Huang, H.; Huang, C.; Xu, C.; Liu, R. Development and characterization of lotus-leaf-inspired bionic antibacterial adhesion film through beeswax. Food Packag. Shelf Life 2022, 33, 100906. [Google Scholar] [CrossRef]
- Rawlinson, J.M.; Cox, H.J.; Hopkins, G.; Cahill, P.; Badyal, J.P.S. Nature-inspired trapped air cushion surfaces for environmentally sustainable antibiofouling. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130491. [Google Scholar] [CrossRef]
- Sealy, C. Pitcher Plants Create a Slippery Trap for Insects; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Klicova, M.; Oulehlova, Z.; Klapstova, A.; Hejda, M.; Krejcik, M.; Novak, O.; Mullerova, J.; Erben, J.; Rosendorf, J.; Palek, R. Biomimetic hierarchical nanofibrous surfaces inspired by superhydrophobic lotus leaf structure for preventing tissue adhesions. Mater. Des. 2022, 217, 110661. [Google Scholar] [CrossRef]
- Song, Y.; Liu, Y.; Zhan, B.; Kaya, C.; Stegmaier, T.; Han, Z.; Ren, L. Fabrication of bioinspired structured superhydrophobic and superoleophilic copper mesh for efficient oil-water separation. J. Bionic Eng. 2017, 14, 497–505. [Google Scholar] [CrossRef]
- Li, D.; Huang, J.; Han, G.; Guo, Z. A facile approach to achieve bioinspired PDMS@ Fe3O4 fabric with switchable wettability for liquid transport and water collection. J. Mater. Chem. A 2018, 6, 22741–22748. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Jiao, J.; Lu, T.J.; Xu, F. Trichomes as a natural biophysical barrier for plants and their bioinspired applications. Soft Matter 2017, 13, 5096–5106. [Google Scholar] [CrossRef] [PubMed]
S. No | Researcher | Surface Topography | Research Outcomes | References |
---|---|---|---|---|
1 | Wu et al. | Fish Scales attributing to water trapping | biomimetic surface resembling water-trapping fish scale microstructures is effective in reducing drag resistance. The outcomes revealed the drag reduction is around 2.085%. | [34] |
2 | Domel et al. | Denticles | The object was the flow rate and denticle size, and the hydrodynamic characteristics of 3D-printed shark-skin foils were investigated. The outcomes revealed the drag reduction is around 35%. | [35] |
3 | Heidarian et al. | Riblet | The impact of various riblet types was examined using computational fluid dynamics. The outcomes revealed the drag reduction is around 11%. | [36] |
4 | Song et al. | Barchan dunes | To research the impact of drag reduction, a planned and simulated non-smooth surface with barchan dunes-like contours was developed. The outcomes revealed the drag reduction is around 33.63%. | [37] |
5 | Wen et al. | Denticles | A flexible, synthetic shark skin membrane was created and put to the test in the water. The outcomes revealed the drag reduction is around 5.9%. | [38] |
6 | Han et al. | Denticles | In a water tunnel, a biomimetic surface created via the exact duplication of shark skin was put to the test. The outcomes revealed the drag reduction is around 8.25%. | [39] |
7 | Rastegari et al. | Riblets | DNS (direct numerical simulation) looked at the general mechanism of superhydrophobic longitudinal microgrooves and riblets reducing turbulent drag. The outcomes revealed the drag reduction is around 61%. | [40] |
8 | Khan et al. | Dragonfly | Experimental evaluation using the 3D printer in a wind tunnel at different angles and speeds. The outcomes revealed that the higher angle and low speed entail a suitable drag reduction. | [41] |
9 | Arunvinthan et al. | Shark scales | The vortex model resembled shark scales and was applied to NACA 0015 airfoil that revealed the reduction in drag | [42] |
10 | Yakkundi et al. | Rear wings spoiler | Automobile models with rear wings spoiler were obtained at 70 km/h and depicted a drag reduction of around 8.2%. | [43] |
11 | Kim et al. | Golf ball embedded with no dimples but tiny grooves | Measured the drag coefficient over the gold ball embedded with tiny grooves and obtained that the drag coefficient of the micro-groove surface was higher as compared to dimple surfaces. | [44] |
12 | Kozlov et al. | Box-fish | Analyze and compute the computational behavior of box fish-inspired texture for drag reduction. The outcomes depicted that the bluff geometry in the case of box fish has obtained the most appropriate drag reduction. | [45] |
13 | Chen et al. | Shark Skin | Anti-fouling is regarded as the most suitable for drag reduction. The experimentation uses shark skin morphologies for surface alteration. | [46] |
14 | Miyazaki et al. | Riblets | The experimental study entails the biomimetic riblet inspired by the bumps of shark skin with round pattern grooves and rough surfaces over the bumps. | [47] |
15 | Dia et al. | Shark-skin | Shark-skin orientation illustrates the ridge and flow direction entails the fluid behavior effect on the surface of the water. The outcomes depicted by the rheometer entail that the uniform particles have a minimum velocity gradient at a 90° angle (orientation). | [48] |
16 | Sen et al. | Vortex | Several types of vortex generators were studied and drag reduction was evaluated for the different vortex generators. | [49] |
17 | Wen et al. | Shark-skin | Modification in the spacing and the arrangement of bumps (shark skin) | [50] |
18 | Mutukumar et al. | Fish skin | In the experiment, a collection of fish skin acted as a transition to the turbulent boundary layer and formed an overlapping of the fish array structure. The outcomes revealed a 27% drag reduction was observed. | [51] |
19 | Ibrahim et al. | Riblets | Riblets motivated by shark skin denticles subtended to the change in the marine vessel’s structures. The outcomes revealed that a 3.75% reduction in drag was observed. | [52] |
S. No | Material Used | Texturing Type | Periodicity (nm) and Depth (nm) | Tribo-Test and Sliding Direction | Increase in Frictional Factor | References |
---|---|---|---|---|---|---|
1. | 100Cr6 steel | Periodic Groove | 90 nm; 200 ± 30 nm | Ball on disk type test and direction is Perpendicular to LIPSS | Maximum 4 | [121] |
2. | Co-Cr-Mo alloy | Single and multi-scale groove | 800 nm | Ball on disk type test and direction is Perpendicular to LIPSS | Maximum 3 | [122] |
3. | Single Silicon (p-doped) Crystal | Periodic Groove | 730 nm; 230 nm | Ball on disk type test and direction is Perpendicular to LIPSS | Maximum 3.5 | [123] |
4. | Crystalline Silicon | Periodic Groove | 750 nm; 150 ± 50 nm | Ball on disk type test and direction is Perpendicular to LIPSS | Maximum 1.6 | [124] |
S. No | Researchers | Bioinspired Texture/Material | Experimental Evaluation/Outcomes | References |
---|---|---|---|---|
1. | Chaoyang et al. | Dopamine | Excellent tribological characteristics are exhibited by bioinspired Dopamine (DA). The best tribological properties are seen when the DA concentration in PAO 10 approaches 3%. | [201] |
2. | Zehua et al. | Fish inspired texture | Outstanding heat retention rates (98.89%), excellent wetting performance (Contact angle = 143.51°), and self-cleaning are all features of 2800FKM. | [199] |
3. | Yang et al. | Loach and pangolin scaly texture | Friction between bio-surfaces and their contracted solid/water is decreased by a scaly surface. | [193] |
4. | Junya et al. | Surface modification by bio-inspired nanoparticles | To improve interfacial adhesion, polyethyleneimine (PEI), dopamine (DA), and SiO2 nanoparticles were co-deposited onto the surface of the Basalt/PTFE fabric. To improve the tribological performance of fabric composites, CaF2 and Si3N4 were added to fabric composites | [235] |
5. | Tramsen et al. | Granular Media friction pad inspired by cockroach and grasshopper | When a load is applied, the granular medium goes through the jamming transition, changing its properties from fluid to solid. High friction forces are produced on a variety of substrate topographies by the jammed granular medium in conjunction with the deformation of the encasing elastic membrane. | [174] |
6. | Yi et al. | Colloidal hydrogel system of aluminum hydroxide nanosheets (ANHS) | Colloidal hydrogel develops excellent stiffness and elasticity, as seen by its elastic modulus of >10 MPa. It has been shown that AHNS hydrogel works well as a lubricant and an anti-corrosive. | [236] |
7. | Tian et al. | Ark Shells | Unequal lattice geometry of three typical shells in Ark Shells (Scapharca subcrenata) attributed to an excellent anti-wear characteristic | [133] |
8. | Hang and Zang et al. | Scorpian back | The outcomes depicted the anti-erosion functionality of scorpion back | [91,136,139] |
9 | Xiang et al. | Straight and Zig-Zag Texturing | Al2O3/TiC composite textured with straight and zig-zag-like structures over the surface formed by the laser surface texturing approach, maintaining variable periodicity and similar width and depth. Regardless of groove periodicity, sliding speed, and geometry, texturing marked the enhancement in the coefficient of friction with a low wear rate. | [112] |
10. | Tong et al. | Mollusk shells | The micro-cracking and micro-shoveling attributed to the abrasive wear of different mollusk shell | [134,135] |
S. No | Researcher | Bio-Inspired Texture | Experimentation/Outcomes | References |
---|---|---|---|---|
1. | Liu et al. | Lotus leaf | The presence of stable superhydrophobicity with a contact angle of 160° | [277] |
2. | Klicova et al. | Lotus leaf | Anti-adhesion surfaces of nanofibrous mats provide low adhesion inspired by the lotus leaf. | [287] |
3. | Hu et al. | Flexible Mushroom structure | Structural damage at 0.04 N/mm but a mushroom-like flexible structure can withstand without a failure at a normal load of 0.44 N/mm as well as high recovery potential in response to widespread normal and shear compression, indicating better mechanical robustness against tribological friction to approach real-world applications | [237] |
4. | Liu et al. | Silver ragwort leaf | Presence of stable superhydrophobicity with a contact angle found to be 147° with silver ragwort leaf | [277] |
5. | Barthlott et al. | Lotus leaf | Examine the self-cleaning characteristics of the lotus, developing a color façade StoLotusan, revealing a similar surface morphology to that observed in the lotus leaf. | [273] |
6. | Song et al. | Lotus, marigolds, and red rose | Superhydrophobic copper meshes were developed and prepared, followed by etching and modification with 1-dodecanethiol over the surface. The resultant copper foam removes organic solvents below and above water. The 153° ± 3° was the contact angle (static) obtained. Hence, this enhances copper cloth, a good tool for oil spill cleanup as well as oily wastewater treatment. | [288] |
7. | Li et al. | Lotus and pitcher plant | Transformable liquid-resistant fabric surfaces were formed using a simple one-pot approach. The surface of PDMS@Fe3O4 fabric was formed, with lotus leaf-like characteristics retaining slipperiness over the surface. Other than that, the lubricant-infused surface with a continuous coating resembles the rim of a pitcher plant. | [289] |
8. | Jiang et al. | Cactus spine | Fog collection characteristics of cluster-distributed trichomes and their surface structural characteristics were discovered. | [290] |
9. | Labonte et al. | Pitcher plant | The study concluded that bioinspired surfaces from pitcher plants possess omni-repellent characteristics on the surface that grant non-stickiness nature to the surface. Neither polar nor non-polar liquids would stick on the surface. | [286] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.K.; Grewal, H.S. Tribological Behavior of Bioinspired Surfaces. Biomimetics 2023, 8, 62. https://doi.org/10.3390/biomimetics8010062
Sharma SK, Grewal HS. Tribological Behavior of Bioinspired Surfaces. Biomimetics. 2023; 8(1):62. https://doi.org/10.3390/biomimetics8010062
Chicago/Turabian StyleSharma, Sachin Kumar, and Harpreet Singh Grewal. 2023. "Tribological Behavior of Bioinspired Surfaces" Biomimetics 8, no. 1: 62. https://doi.org/10.3390/biomimetics8010062
APA StyleSharma, S. K., & Grewal, H. S. (2023). Tribological Behavior of Bioinspired Surfaces. Biomimetics, 8(1), 62. https://doi.org/10.3390/biomimetics8010062