Preparation of 2D Materials and Their Application in Oil–Water Separation
Abstract
:1. Introduction
2. Classification and Separation Mechanisms of Oil–Water Mixtures
2.1. Classification
2.2. Separation Mechanism
3. Two-Dimensional Materials in Oil–Water Separation
3.1. MXene
3.2. 2D MOF
3.3. 2D COF
3.4. LDH
3.5. Graphene
3.6. Two-Dimensional TMD
4. The 2D to 3D Transformation Method
4.1. Mixed Method
4.2. Adhesion Method
4.3. Growth Method
4.4. Assembly Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Y.; Zhang, X.; Zhang, M.; Ge, M.; Wang, J.; Tang, Y.; Zhang, Y.; Mi, J.; Cai, W.; Lai, Y.; et al. Rational design of electrospun nanofibers for gas purification: Principles, opportunities, and challenges. Chem. Eng. J. 2022, 446, 137099. [Google Scholar] [CrossRef]
- Sun, C.; Wei, S.; Tan, H.; Huang, Y.; Zhang, Y. Progress in upcycling polylactic acid waste as an alternative carbon source: A review. Chem. Eng. J. 2022, 446, 136881. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Y.; Liao, L.; Li, Z.; Pan, S.; Puyang, C.; Su, Y.; Zhang, Y.; Wang, T.; Ren, J.; et al. Review on remediation of organic-contaminated soil by discharge plasma: Plasma types, impact factors, plasma-assisted catalysis, and indexes for remediation. Chem. Eng. J. 2022, 436, 135239. [Google Scholar] [CrossRef]
- Lv, S.-W.; Cong, Y.; Chen, X.; Wang, W.; Che, L. Developing fine-tuned metal–organic frameworks for photocatalytic treatment of wastewater: A review. Chem. Eng. J. 2022, 433, 133605. [Google Scholar] [CrossRef]
- Mainardis, M.; Cecconet, D.; Moretti, A.; Callegari, A.; Goi, D.; Freguia, S.; Capodaglio, A. Wastewater fertigation in agriculture: Issues and opportunities for improved water management and circular economy. Environ. Pollut. 2022, 296, 118755. [Google Scholar] [CrossRef] [PubMed]
- De Donno Novelli, L.; Sayavedra, S.M.; Rene, E. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives. Bioresour. Technol. 2021, 331, 124985. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R. Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives. Chemosphere 2021, 263, 128005. [Google Scholar] [CrossRef]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.; Hussain, M. A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environ. Sci. Pollut. Res. Int. 2021, 28, 9050–9066. [Google Scholar] [CrossRef]
- Kavitha, E.; Poonguzhali, E.; Nanditha, D.; Kapoor, A.; Arthanareeswaran, G.; Prabhakar, S. Current status and future prospects of membrane separation processes for value recovery from wastewater. Chemosphere 2022, 291, 132690. [Google Scholar] [CrossRef]
- Das, R.; Ahmad, Z.; Nauruzbayeva, J.; Mishra, H. Biomimetic Coating-free Superomniphobicity. Sci. Rep. 2020, 10, 7934. [Google Scholar] [CrossRef]
- Liu, T.L.; Kim, C.J.C. Turning a surface superrepellent even to completely wetting liquids. Science 2014, 346, 1096–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, R.; Arunachalam, S.; Ahmad, Z.; Manalastas, E.; Mishra, H. Bio-inspired gas-entrapping membranes (GEMs) derived from common water-wet materials for green desalination. J. Membr. Sci. 2019, 588, 117185. [Google Scholar] [CrossRef]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.; Sun, Z.; De, S.; McGovern, I.; Holland, B.; Byrne, M.; Gun, Y.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Chen, W.; Chen, Y.; Chen, Y.; Chen, Y.; Ding, F.; Fan, C.; Fan, H.J.; Fan, Z.; Gong, C.; et al. Recent Progress on Two-Dimensional Materials. Acta Phy. Chim. Sin. 2021, 0, 2108017. [Google Scholar] [CrossRef]
- Peng, J.; Shen, J.; Yu, X.; Tang, H.; Liu, Q. Construction of LSPR-enhanced 0D/2D CdS/MoO3−x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 87–96. [Google Scholar] [CrossRef]
- Wang, R.; He, C.; Chen, W.; Fu, L.; Zhao, C.; Huo, J.; Sun, C. Design strategies of two-dimensional metal-organic frameworks toward efficient electrocatalysts for N2 reduction: Cooperativity of transition metals and organic linkers. Nanoscale 2021, 13, 19247–19254. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Wang, Y.; Dong, C.-L.; Huang, Y.-C.; Chen, J.; Xue, F.; Shen, S.; Guo, L. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397. [Google Scholar] [CrossRef]
- Xiang, Z.; Shi, Y.; Zhu, X.; Cai, L.; Lu, W. Flexible and Waterproof 2D/1D/0D Construction of MXene-Based Nanocomposites for Electromagnetic Wave Absorption, EMI Shielding, and Photothermal Conversion. Nanomicro. Lett. 2021, 13, 150. [Google Scholar] [CrossRef]
- Zhao, H.; Cheng, Y.; Zhang, Z.; Zhang, B.; Pei, C.; Fan, F.; Ji, G. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 2021, 173, 501–511. [Google Scholar] [CrossRef]
- Ko, K.; Yoon, D.; Yang, S.; Lee, H. Brush-painted superhydrophobic silica coating layers for self-cleaning solar panels. J. Ind. Eng. Chem. 2022, 106, 460–468. [Google Scholar] [CrossRef]
- Lim, C.; Lau, E.; Kee, K.; Hung, Y. A comparative study of superhydrophobicity of 0D/1D/2D thermally functionalized carbon nanomaterials. Ceram. Int. 2021, 47, 30331–30342. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Lu, Y.; Shi, W.; Tian, H. PDMS/PVDF Electrospinning Membranes for Water-in-Oil Emulsion Separation and UV Protection. Biomimetics 2022, 7, 217. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Lu, Y.; Shi, W.; Tian, H. Starch @ PDMS @ PU sponge for organic solvent separation. Polymer 2022, 262, 125505. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, W.; Liu, J.; Yang, J.; Song, H.; Zhu, X. 2D/2D Covalent triazine-based heterostructure membrane for highly enhanced photoactivity and anti-fouling ability. Chem. Eng. J. 2021, 424, 129829. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, J.; Yuan, Z.; Zhao, L.; Wang, L.; Han, W. Assembling Co3O4 Nanoparticles into MXene with Enhanced electrochemical performance for advanced asymmetric supercapacitors. J. Colloid Interface Sci. 2021, 599, 109–118. [Google Scholar] [CrossRef]
- Liang, L.; Li, Q.; Yan, X.; Feng, Y.; Wang, Y.; Zhang, H.; Zhou, X.; Liu, C.; Shen, C.; Xie, X. Multifunctional Magnetic Ti3C2Tx MXene/Graphene Aerogel with Superior Electromagnetic Wave Absorption Performance. ACS Nano 2021, 15, 6622–6632. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghidiu, M.; Lukatskaya, M.; Zhao, M.; Gogotsi, Y.; Barsoum, M. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef]
- Naguib, M.; Barsoum, M.; Gogotsi, Y. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021, 33, e2103393. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Shen, Y.; Mu, P.; Wang, Q.; Li, J. Ultrathin 2D Ti3C2Tx MXene membrane for effective separation of oil-in-water emulsions in acidic, alkaline, and salty environment. J. Colloid Interface Sci. 2020, 561, 861–869. [Google Scholar] [CrossRef]
- Li, Z.-K.; Liu, Y.; Li, L.; Wei, Y.; Caro, J.; Wang, H. Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation. J. Membr. Sci. 2019, 592, 117361. [Google Scholar] [CrossRef]
- Saththasivam, J.; Wang, K.; Yiming, W.; Liu, Z.; Mahmoud, K. A flexible Ti3C2T x (MXene)/paper membrane for efficient oil/water separation. RSC Adv. 2019, 9, 16296–16304. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Wang, Y.; Wang, F.; Deng, H.; Song, Y.; Li, C.; Ling, Z. Water permeability in MXene membranes: Process matters. Chin. Chem. Lett. 2020, 31, 1665–1669. [Google Scholar] [CrossRef]
- Feng, X.; Yu, Z.; Long, R.; Sun, Y.; Wang, M.; Li, X.; Zeng, G. Polydopamine intimate contacted two-dimensional/two-dimensional ultrathin nylon basement membrane supported RGO/PDA/MXene composite material for oil-water separation and dye removal. Sep. Purif. Technol. 2020, 247, 116945. [Google Scholar] [CrossRef]
- Long, X.; Zhao, G.; Hu, J.; Zheng, Y.; Zhang, J.; Zuo, Y.; Jiao, F. Cracked-earth-like titanium carbide MXene membranes with abundant hydroxyl groups for oil-in-water emulsion separation. J. Colloid Interface Sci. 2022, 607, 378–388. [Google Scholar] [CrossRef]
- Du, Y.; Si, P.; Wei, L.; Wang, Y.; Tu, Y.; Zuo, G.; Yu, B.; Zhang, X.; Ye, S. Demulsification of acidic oil-in-water emulsions driven by chitosan loaded Ti3C2Tx. Appl. Surf. Sci. 2019, 476, 878–885. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, F.; Wang, Y.; Li, C.; Shi, C.; Liu, Y.; Ling, Z. Study on contact angles and surface energy of MXene films. RSC Adv. 2021, 11, 5512–5520. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhan, Y.; Hu, J.; Zhang, G.; Zhao, S.; Feng, Q.; Yang, W. Chemically stable two-dimensional MXene@UIO-66-(COOH)2 composite lamellar membrane for multi-component pollutant-oil-water emulsion separation. Compos. Part B Eng. 2020, 197, 108188. [Google Scholar] [CrossRef]
- Lin, Q.; Zeng, G.; Yan, G.; Luo, J.; Cheng, X.; Zhao, Z.; Li, H. Self-cleaning photocatalytic MXene composite membrane for synergistically enhanced water treatment: Oil/water separation and dyes removal. Chem. Eng. J. 2022, 427, 131668. [Google Scholar] [CrossRef]
- Feng, Q.; Zhan, Y.; Yang, W.; Sun, A.; Dong, H.; Chiao, Y.-H.; Liu, Y.; Chen, X.; Chen, Y. Bi-functional super-hydrophilic/underwater super-oleophobic 2D lamellar Ti3C2Tx MXene/poly (arylene ether nitrile) fibrous composite membrane for the fast purification of emulsified oil and photodegradation of hazardous organics. J. Colloid Interface Sci. 2022, 612, 156–170. [Google Scholar] [CrossRef]
- Zeng, G.; Wei, K.; Zhang, H.; Zhang, J.; Lin, Q.; Cheng, X.; Sengupta, A.; Chiao, Y.-H. Ultra-high oil-water separation membrane based on two-dimensional MXene(Ti3C2Tx) by co-incorporation of halloysite nanotubes and polydopamine. Appl. Clay Sci. 2021, 211, 106177. [Google Scholar] [CrossRef]
- Hu, J.; Zhan, Y.; Zhang, G.; Feng, Q.; Yang, W.; Chiao, Y.-H.; Zhang, S.; Sun, A. Durable and super-hydrophilic/underwater super-oleophobic two-dimensional MXene composite lamellar membrane with photocatalytic self-cleaning property for efficient oil/water separation in harsh environments. J. Membr. Sci. 2021, 637, 119627. [Google Scholar] [CrossRef]
- Yaghi, O.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378, 703–706. [Google Scholar] [CrossRef]
- Jiang, L.; Qin, Q.; Wang, Y.; Su, Y.; Xia, L.; Lin, S.; Yao, W.; Wu, Q.; Min, Y.; Xu, Q. High-performance BiVO4 photoanodes cocatalyzed with bilayer metal-organic frameworks for photoelectrochemical application. J. Colloid Interface Sci. 2022, 619, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Yue, D.; Zhu, J.; Chen, D.; Li, W.; Wang, Z. Turn-on luminescent sensing of glutathione and cysteine based on post-modified Bio-MOF-1. Z. Für Anorg. Und Allg. Chem. 2022, 648, e202100352. [Google Scholar] [CrossRef]
- Kasula, M.; Le, T.; Thomsen, A.; Esfahani, M.R. Silver metal organic frameworks and copper metal organic frameworks immobilized on graphene oxide for enhanced adsorption in water treatment. Chem. Eng. J. 2022, 439, 135542. [Google Scholar] [CrossRef]
- Zhao, M.; Lu, Q.; Ma, Q.; Zhang, H. Two-Dimensional Metal-Organic Framework Nanosheets. Small Methods 2017, 1, 1600030. [Google Scholar] [CrossRef]
- Sang, X.; Liu, D.; Song, J.; Wang, C.; Nie, X.; Shi, G.; Xia, X.; Ni, C.; Wang, D. High-efficient liquid exfoliation of 2D metal-organic framework using deep-eutectic solvents. Ultrason. Sonochem 2021, 72, 105461. [Google Scholar] [CrossRef]
- Liu, L.-L.; Chen, J.; Zhang, Y.; Yu, C.-X.; Du, W.; Sun, X.-Q.; Zhang, J.-L.; Hu, F.-L.; Mi, Y.; Ma, L.-F. Fabrication of ultrathin single-layer 2D metal–organic framework nanosheets with excellent adsorption performance via a facile exfoliation approach. J. Mater. Chem. A 2021, 9, 546–555. [Google Scholar] [CrossRef]
- Jian, M.; Liu, H.; Williams, T.; Ma, J.; Wang, H.; Zhang, X. Temperature-induced oriented growth of large area, few-layer 2D metal-organic framework nanosheets. Chem. Commun. 2017, 53, 13161–13164. [Google Scholar] [CrossRef]
- Li, C.; Tang, H.; Fang, Y.; Xiao, Z.; Wang, K.; Wu, X.; Niu, H.; Zhu, C.; Zhou, H. Bottom-Up Assembly of a Highly Efficient Metal-Organic Framework for Cooperative Catalysis. Inorg. Chem. 2018, 57, 13912–13919. [Google Scholar] [CrossRef]
- Tu, B.; Diestel, L.; Shi, Z.; Bandara, W.; Chen, Y.; Lin, W.; Zhang, Y.; Telfer, S.; Li, Q. Harnessing Bottom-Up Self-Assembly to Position Five Distinct Components in an Ordered Porous Framework. Angew. Chem. Int. Ed. 2019, 58, 5348–5353. [Google Scholar] [CrossRef]
- Wen, J.; Li, Y.; Gao, J. Two-dimensional Metal-organic Frameworks and Derivatives for Electrocatalysis. Chem. Res. Chin. Univ. 2020, 36, 662–679. [Google Scholar] [CrossRef]
- Jia, J.; Wei, L.; Li, F.; Yu, C.; Yang, K.; Liang, T. In situ growth of NiFe MOF/NF by controlling solvent mixtures as efficient electrocatalyst in oxygen evolution. Inorg. Chem. Commun. 2021, 128, 108605. [Google Scholar] [CrossRef]
- Deng, J.; Wen, Y.; Willman, J.; Liu, W.; Gong, Y.; Zhong, D.; Lu, T.; Zhou, H. Facile Exfoliation of 3D Pillared Metal-Organic Frameworks (MOFs) to Produce MOF Nanosheets with Functionalized Surfaces. Inorg. Chem. 2019, 58, 11020–11027. [Google Scholar] [CrossRef]
- Gai, S.; Fan, R.; Zhang, J.; Zhou, X.; Xing, K.; Zhu, K.; Jia, W.; Sui, W.; Wang, P.; Yang, Y. Fabrication of highly stable metal–organic frameworks and corresponding hydrophobic foam through a reticular chemistry strategy for simultaneous organic micropollutant and insoluble oil removal from wastewater. J. Mater. Chem. A 2021, 9, 3369–3378. [Google Scholar] [CrossRef]
- Gao, D.-Y.; Liu, Z.; Cheng, Z.-L. Superhydrophilic and underwater superoleophobic in-situ derived 2D Ni-Fe MOF/HNTs composite-enhanced polyvinyl alcohol (PVA) hydrogel membrane for gravity-driven oil/water separation. J. Environ. Chem. Eng. 2022, 10, 107904. [Google Scholar] [CrossRef]
- Côté, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef] [Green Version]
- Castano, I.; Evans, A.; Reis, R.D.; Dravid, V.; Gianneschi, N.; Dichtel, W. Mapping Grains, Boundaries, and Defects in 2D Covalent Organic Framework Thin Films. Chem. Mater. 2021, 33, 1341–1352. [Google Scholar] [CrossRef]
- Wang, R.; Wei, M.; Wang, Y. Secondary growth of covalent organic frameworks (COFs) on porous substrates for fast desalination. J. Membr. Sci. 2020, 604, 118090. [Google Scholar] [CrossRef]
- Hao, H.; Zhang, F.; Dong, X.; Lang, X. 2D sp2 carbon-conjugated triazine covalent organic framework photocatalysis for blue light-induced selective oxidation of sulfides with O2. Appl. Catal. B Environ. 2021, 299, 120691. [Google Scholar] [CrossRef]
- Zhang, Z.; Yin, C.; Yang, G.; Xiao, A.; Shi, X.; Xing, W.; Wang, Y. Stitching nanosheets of covalent organic frameworks to build aligned nanopores in nanofiltration membranes for precise ion separations. J. Membr. Sci. 2021, 618, 118754. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, C.; Yang, H.; Lin, J.; Ge, Y.; Zhou, W.; Lu, C.; Tan, L.; Dong, L. Room-temperature fabrication of superhydrophobic covalent organic framework (COF) decorated cotton fabric for high-flux water-in-oil emulsion separation. Chem. Commun. 2021, 57, 11533–11536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, S.; Yang, Y.; Li, W.; Liu, P.; Wang, W. Hierarchical Assembly of Two-Dimensional Polymers into Colloidosomes and Microcapsules. ACS Macro. Lett. 2021, 10, 933–939. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Wang, L.; Xu, Y.; Nie, A.; Li, Q.; Wu, F.; Sun, W.; Zhang, X.; Vajtai, R.; et al. High-Lithium-Affinity Chemically Exfoliated 2D Covalent Organic Frameworks. Adv. Mater. 2019, 31, e1901640. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Zhao, C.; Sun, B.; Lu, C.; Liu, J.; Liu, M.; Wan, L.; Wang, D. Confined Synthesis of Two-Dimensional Covalent Organic Framework Thin Films within Superspreading Water Layer. J. Am. Chem. Soc. 2018, 140, 12152–12158. [Google Scholar] [CrossRef]
- Biswal, B.; Kandambeth, S.; Chandra, S.; Shinde, D.; Bera, S.; Karak, S.; Garai, B.; Kharul, U.; Banerjee, R. Pore surface engineering in porous, chemically stable covalent organic frameworks for water adsorption. J. Mater. Chem. A 2015, 3, 23664–23669. [Google Scholar] [CrossRef]
- Huang, N.; Zhai, L.; Xu, H.; Jiang, D. Stable Covalent Organic Frameworks for Exceptional Mercury Removal from Aqueous Solutions. J. Am. Chem. Soc. 2017, 139, 2428–2434. [Google Scholar] [CrossRef]
- Chen, L.; Du, J.; Zhou, W.; Shen, H.; Tan, L.; Zhou, C.; Dong, L. Microwave-Assisted Solvothermal Synthesis of Covalent Organic Frameworks (COFs) with Stable Superhydrophobicity for Oil/Water Separation. Chem. Asian J. 2020, 15, 3421–3427. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Yuan, C.; Jia, L.; Liu, Y.; Huang, A.; Cui, Y. Two-Dimensional Fluorinated Covalent Organic Frameworks with Tunable Hydrophobicity for Ultrafast Oil-Water Separation. Angew. Chem. 2022, 61, e202113348. [Google Scholar]
- Lu, P.; Liu, Y.; Zhou, T.; Wang, Q.; Li, Y. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. J. Membr. Sci. 2018, 567, 89–103. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, W.; Zhang, C.; Chen, X.; Duan, S.; Fu, H. Synthesis and electrospinning of multiscale-ordered PLA/LDH@AgGB composite nanofibrous membrane for antibacterial and oil–water separation. J. Appl. Polym. Sci. 2022, 139, e52621. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, W.; Jia, X.; Chen, B.; An, S.; Xie, X.; Huang, L. Ca–Al layered double hydroxides-derived Ni-based catalysts for hydrogen production via auto-thermal reforming of acetic acid. Int. J. Hydrog. Energy 2019, 44, 20007–20016. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, J.; Xiao, T.; Tang, Z.; Shen, J.; Li, H.; Zhou, Y.; Zou, Z. Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction. Appl. Catal. B Environ. 2019, 255, 117771. [Google Scholar] [CrossRef]
- Li, F.; Gao, R.; Wu, T.; Li, Y. Role of layered materials in emulsified oil/water separation and anti-fouling performance of modified cellulose acetate membranes with hierarchical structure. J. Membr. Sci. 2017, 543, 163–171. [Google Scholar] [CrossRef]
- Feng, X.; Jiao, Q.; Chen, W.; Dang, Y.; Dai, Z.; Suib, S.; Zhang, J.; Zhao, Y.; Li, H.; Feng, C. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B Environ. 2021, 286, 119869. [Google Scholar] [CrossRef]
- Wu, L.; Ding, X.; Zheng, Z.; Tang, A.; Zhang, G.; Atrens, A.; Pan, F. Doublely-doped Mg-Al-Ce-V2O74- LDH composite film on magnesium alloy AZ31 for anticorrosion. J. Mater. Sci. Technol. 2021, 64, 66–72. [Google Scholar] [CrossRef]
- Cui, J.; Zhou, Z.; Xie, A.; Wang, Q.; Liu, S.; Lang, J.; Li, C.; Yan, Y.; Dai, J. Facile preparation of grass-like structured NiCo-LDH/PVDF composite membrane for efficient oil–water emulsion separation. J. Membr. Sci. 2019, 573, 226–233. [Google Scholar] [CrossRef]
- Aladpoosh, R.; Montazer, M. Functionalization of cellulose fibers alongside growth of 2D LDH platelets through urea hydrolysis inspired Taro wettability. Carbohydr. Polym. 2022, 275, 118584. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Wang, X.; Wang, S.; Liu, X.; Qi, P.; Li, H.; Sun, J.; Tang, W.; Zhang, S.; et al. Improving flame retardancy and self-cleaning performance of cotton fabric via a coating of in-situ growing layered double hydroxides (LDHs) on polydopamine. Prog. Org. Coat. 2020, 149, 105930. [Google Scholar] [CrossRef]
- Yue, X.; Li, J.; Zhang, T.; Qiu, F.; Yang, D.; Xue, M. In situ one-step fabrication of durable superhydrophobic-superoleophilic cellulose/LDH membrane with hierarchical structure for efficiency oil/water separation. Chem. Eng. J. 2017, 328, 117–123. [Google Scholar] [CrossRef]
- Xie, Y.; Gu, Y.; Meng, J.; Yan, X.; Chen, Y.; Guo, X.; Lang, W. Ultrafast separation of oil/water mixtures with layered double hydroxide coated stainless steel meshes (LDH-SSMs). J. Hazard. Mater. 2020, 398, 122862. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, J.; Zhang, L.; Jiang, B.; Yang, X.; Yang, N.; Peng, F.; Xu, M.; Xiao, X. Dual-functional mesh with Zn-Ni-Co LDHs@NiMoO4 heterojunction nanoarrays for highly efficient oil/water separation and photocatalytic degradation. Sep. Purif. Technol. 2021, 259, 118116. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, K.; Wang, Q.; Li, G.; Wu, T.; Li, Y. Highly efficient treatment of oily wastewater using magnetic carbon nanotubes/layered double hydroxides composites. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124187. [Google Scholar] [CrossRef]
- Feng, Z.; Xu, Y.; Yue, W.; Adolfsson, K.H.; Wu, M. Recent progress in the use of graphene/po lymer composites to remove oil contaminants from water. New Carbon Mater. 2021, 36, 235–252. [Google Scholar] [CrossRef]
- Junaidi, N.; Othman, N.; Fuzil, N.; Shayuti, M.M.; Alias, N.; Shahruddin, M.; Marpani, F.; Lau, W.; Ismail, A.; Aba, N. Recent development of graphene oxide-based membranes for oil–water separation: A review. Sep. Purif. Technol. 2021, 258, 118000. [Google Scholar] [CrossRef]
- Han, X.; Guo, Z. Graphene and its derivative composite materials with special wettability: Potential application in oil-water separation. Carbon 2021, 172, 647–681. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, Y.; Chen, M.; Gan, D.; Wang, M.; Zeng, H.; Liao, M.; Chen, J.; Tu, W.; Niu, W. Ultrahigh flux of graphene oxide membrane modified with orientated growth of MOFs for rejection of dyes and oil-water separation. Chin. Chem. Lett. 2020, 31, 2683–2688. [Google Scholar] [CrossRef]
- Mangadlao, J.; Lim, K.; Danda, C.; Dalida, M.; Advincula, R. House of Cards Nanostructuring of Graphene Oxide and Montmorillonite Clay for Oil-Water Separation. Macromol. Mater. Eng. 2018, 303, 1700314. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Lai, X.; Su, X.; Liang, T.; Zeng, X. Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem. Eng. J. 2017, 316, 736–743. [Google Scholar] [CrossRef]
- Almarzooqi, K.; Ashrafi, M.; Kanthan, T.; Elkamel, A.; Pope, M. Graphene Oxide Membranes for High Salinity, Produced Water Separation by Pervaporation. Membranes 2021, 11, 475. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. A Self-Cleaning Heterostructured Membrane for Efficient Oil-in-Water Emulsion Separation with Stable Flux. Adv. Mater. 2020, 32, e2001265. [Google Scholar] [CrossRef]
- Jayaramulu, K.; Datta, K.; Rosler, C.; Petr, M.; Otyepka, M.; Zboril, R.; Fischer, R. Biomimetic Superhydrophobic/Superoleophilic Highly Fluorinated Graphene Oxide and ZIF-8 Composites for Oil-Water Separation. Angew. Chem. Int. Ed. 2016, 55, 1178–1182. [Google Scholar] [CrossRef]
- Das, A.; Maji, K.; Naskar, S.; Manna, U. Facile optimization of hierarchical topography and chemistry on magnetically active graphene oxide nanosheets. Chem. Sci. 2020, 11, 6556–6566. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Hao, G.; Zhou, X.; Jiang, W.; Wang, T.; Zhang, N.; Yu, L. One-pot synthesis of robust superhydrophobic, functionalized graphene/polyurethane sponge for effective continuous oil–water separation. Chem. Eng. J. 2016, 302, 155–162. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, J.; Lu, T.; Tang, G.; Wu, S.; Ma, W.; Huang, C. Robust, functionalized reduced graphene-based nanofibrous membrane for contaminated water purification. Chem. Eng. J. 2021, 404, 126347. [Google Scholar] [CrossRef]
- Gu, J.; Fan, H.; Li, C.; Caro, J.; Meng, H. Robust Superhydrophobic/Superoleophilic Wrinkled Microspherical MOF@rGO Composites for Efficient Oil-Water Separation. Angew. Chem. 2019, 58, 5297–5301. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; He, S.; Hu, J.; Zhao, S.; Zeng, G.; Zhou, M.; Zhang, G.; Sengupta, A. Robust super-hydrophobic/super-oleophilic sandwich-like UIO-66-F4@rGO composites for efficient and multitasking oil/water separation applications. J. Hazard. Mater. 2020, 388, 121752. [Google Scholar] [CrossRef]
- Cao, N.; Lyu, Q.; Li, J.; Wang, Y.; Yang, B.; Szunerits, S.; Boukherroub, R. Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation. Chem. Eng. J. 2017, 326, 17–28. [Google Scholar] [CrossRef]
- Song, S.; Yang, H.; Su, C.; Jiang, Z.; Lu, Z. Ultrasonic-microwave assisted synthesis of stable reduced graphene oxide modified melamine foam with superhydrophobicity and high oil adsorption capacities. Chem. Eng. J. 2016, 306, 504–511. [Google Scholar] [CrossRef]
- Zhang, W.; Chiu, M.-H.; Chen, C.-H.; Chen, W.; Li, L.-J.; Wee, A. Role of Metal Contacts in High-Performance Phototransistors Based on WSe2 Monolayers. ACS Nano 2014, 8, 8653–8661. [Google Scholar] [CrossRef] [PubMed]
- Yun, Q.; Li, L.; Hu, Z.; Lu, Q.; Chen, B.; Zhang, H. Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage. Adv. Mater. 2020, 32, e1903826. [Google Scholar] [CrossRef]
- Othman, N.; Fuzil, N.; Alias, N.; Shahruddin, M.; Shayuti, M.; Lau, W.; Ismail, A.; Abidin, S.; Sulaiman, S.; Kusworo, T. Fabrication of MoS2–rGO and MoS2–ZIF-8 membranes supported on flat alumina substrate for effective oil removal. Emergent Mater. 2022, 5, 1169–1182. [Google Scholar] [CrossRef]
- Dong, Y.; Huang, C.; Yang, X.-Y. Underwater superoleophobic and underoil superhydrophobic surface made by liquid-exfoliated MoS2 for on-demand oil-water separation. Chem. Eng. J. 2019, 361, 322–328. [Google Scholar] [CrossRef]
- Wang, W.; Jiao, S.; Wang, B.; Tan, Y.; Zhao, Y.; Zhang, Q.; Kang, Y.; Lv, X.; Cui, C.; Pang, G. MoS2/CuS nanosheets coated on brass mesh with switchable superwettability for efficient immiscible organic solvent/water separation. Appl. Surf. Sci. 2021, 570, 151128. [Google Scholar] [CrossRef]
- Gao, X.; Wang, X.; Ouyang, X.; Wen, C. Flexible Superhydrophobic and Superoleophilic MoS2 Sponge for Highly Efficient Oil-Water Separation. Sci. Rep. 2016, 6, 27207. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Mathias, D.; Lu, S.; Xu, W.; Naushad, M.; Szunerits, S.; Boukherroub, R. Functionalized MoS2/polyurethane sponge: An efficient scavenger for oil in water. Sep. Purif. Technol. 2020, 238, 116420. [Google Scholar] [CrossRef]
- Li, J.; Gao, R.; Wang, Y.; Zhang, T.; Yuan, S. Superhydrophobic palmitic acid modified Cu(OH)2/CuS nanocomposite-coated copper foam for efficient separation of oily wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128249. [Google Scholar] [CrossRef]
- Zhai, G.; Qi, L.; He, W.; Dai, J.; Xu, Y.; Zheng, Y.; Huang, J.; Sun, D. Durable super-hydrophobic PDMS@SiO2@WS2 sponge for efficient oil/water separation in complex marine environment. Environ. Pollut. 2021, 269, 116118. [Google Scholar] [CrossRef]
- Krasian, T.; Punyodom, W.; Worajittiphon, P. A hybrid of 2D materials (MoS2 and WS2) as an effective performance enhancer for poly(lactic acid) fibrous mats in oil adsorption and oil/water separation. Chem. Eng. J. 2019, 369, 563–575. [Google Scholar] [CrossRef]
- de la Barrera, S.; Sinko, M.; Gopalan, D.; Sivadas, N.; Seyler, K.; Watanabe, K.; Taniguchi, T.; Tsen, A.; Xu, X.; Xiao, D.; et al. Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 2018, 9, 1427. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, X.; Zheng, Y.; Zhang, D.; Zhao, Y.; Wang, C.; Pan, C.; Liu, C.; Shen, C. Lightweight, Superelastic, and Hydrophobic Polyimide Nanofiber /MXene Composite Aerogel for Wearable Piezoresistive Sensor and Oil/Water Separation Applications. Adv. Funct. Mater. 2021, 31, 2008006. [Google Scholar] [CrossRef]
- Wang, N.; Wang, H.; Wang, Y.; Wei, Y.; Si, J.; Yuen, A.; Xie, J.; Yu, B.; Zhu, S.; Lu, H.; et al. Robust, Lightweight, Hydrophobic, and Fire-Retarded Polyimide/MXene Aerogels for Effective Oil/Water Separation. ACS Appl. Mater. Interfaces 2019, 11, 40512–40523. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, H.; Lu, Y. An architectural exfoliated-graphene carbon aerogel with superhydrophobicity and efficient selectivity. Mater. Des. 2019, 184, 108134. [Google Scholar] [CrossRef]
- Ajibade, T.; Tian, H.; Lasisi, K.H.; Xue, Q.; Yao, W.; Zhang, K. Multifunctional PAN UF membrane modified with 3D-MXene/O-MWCNT nanostructures for the removal of complex oil and dyes from industrial wastewater. Sep. Purif. Technol. 2021, 275, 119135. [Google Scholar] [CrossRef]
- Yogapriya, R.; Datta, K. Porous Fluorinated Graphene and ZIF-67 Composites with Hydrophobic-Oleophilic Properties Towards Oil and Organic Solvent Sorption. J. Nanosci. Nanotechnol. 2020, 20, 2930–2938. [Google Scholar] [CrossRef]
- Xue, J.; Zhu, L.; Zhu, X.; Li, H.; Ma, C.; Yu, S.; Sun, D.; Xia, F.; Xue, Q. Tetradecylamine-MXene functionalized melamine sponge for effective oil/water separation and selective oil adsorption. Sep. Purif. Technol. 2021, 259, 118106. [Google Scholar] [CrossRef]
- Venkatesh, K.; Arthanareeswaran, G.; Bose, A.; Kumar, P. Hydrophilic hierarchical carbon with TiO2 nanofiber membrane for high separation efficiency of dye and oil-water emulsion. Sep. Purif. Technol. 2020, 241, 116709. [Google Scholar] [CrossRef]
- Hu, Y.; Yue, M.; Yuan, F.; Yang, L.; Chen, C.; Sun, D. Bio-inspired fabrication of highly permeable and anti-fouling ultrafiltration membranes based on bacterial cellulose for efficient removal of soluble dyes and insoluble oils. J. Membr. Sci. 2021, 621, 118982. [Google Scholar] [CrossRef]
- Wang, P.; Ma, C.; Yuan, Q.; Mai, T.; Ma, M. Novel Ti3C2Tx MXene wrapped wood sponges for fast cleanup of crude oil spills by outstanding Joule heating and photothermal effect. J. Colloid. Interface Sci. 2022, 606, 971–982. [Google Scholar] [CrossRef]
- Tian, Q.; Liu, Q.; Zhou, J.; Ju, P.; Waterhouse, G.; Zhou, S.; Ai, S. Superhydrophobic sponge containing silicone oil-modified layered double hydroxide sheets for rapid oil-water separations. Colloids Surf. A Physicochem. Eng. Asp. 2019, 570, 339–346. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Wang, J.; Wu, J.; Jiang, X.; Xu, M. Preparation of underwater superoleophobic polyimide mesh for oil/water separation via a simple Ce/Cu-MOF in-situ growth strategy. Surf. Coat. Technol. 2021, 421, 127422. [Google Scholar] [CrossRef]
- Shami, Z.; Amininasab, S.; Shakeri, P. Structure-Property Relationships of Nanosheeted 3D Hierarchical Roughness MgAl-Layered Double Hydroxide Branched to an Electrospun Porous Nanomembrane: A Superior Oil-Removing Nanofabric. ACS Appl. Mater. Interfaces 2016, 8, 28964–28973. [Google Scholar] [CrossRef]
- He, R.; Liu, S.; Wang, R.; Fu, T.; Zhang, R.; Zhang, Q.; Zhou, Y. In situ modification of melamine sponge by MgAl-LDH with super-hydrophobicity and excellent harsh environment tolerance for high flux emulsion separation. Sep. Purif. Technol. 2022, 291, 120916. [Google Scholar] [CrossRef]
- Li, S.; He, Y.; Zhang, L.; Li, J.; Nie, Y.; Li, H.; Yin, X.; Bai, Y. Designing nanofibrous membrane with biomimetic caterpillar-like structured for highly-efficient and simultaneous removal of insoluble emulsified oils and soluble dyes towards sewage remediation. J. Hazard. Mater. 2021, 414, 125442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gong, Z.; Jiang, B.; Sun, Y.; Chen, Z.; Gao, X.; Yang, N. Ni-Al layered double hydroxides (LDHs) coated superhydrophobic mesh with flower-like hierarchical structure for oil/water separation. Appl. Surf. Sci. 2019, 490, 145–156. [Google Scholar] [CrossRef]
- He, M.; Zhang, R.; Zhang, K.; Liu, Y.; Su, Y.; Jiang, Z. Reduced graphene oxide aerogel membranes fabricated through hydrogen bond mediation for highly efficient oil/water separation. J. Mater. Chem. A 2019, 7, 11468–11477. [Google Scholar] [CrossRef]
- Shi, S.; Qian, B.; Wu, X.; Sun, H.; Wang, H.; Zhang, H.; Yu, Z.; Russell, T. Self-Assembly of MXene-Surfactants at Liquid-Liquid Interfaces: From Structured Liquids to 3D Aerogels. Angew. Chem. Int. Ed. 2019, 58, 18171–18176. [Google Scholar] [CrossRef]
- Bi, H.; Xie, X.; Yin, K.; Zhou, Y.; Wan, S.; He, L.; Xu, F.; Banhart, F.; Sun, L.; Ruoff, R. Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents. Adv. Funct. Mater. 2012, 22, 4421–4425. [Google Scholar] [CrossRef]
- Tang, W.; Sun, D.; Liu, S.; Li, B.; Sun, W.; Fu, J.; Li, B.; Hu, D.; Yu, J. One step electrochemical fabricating of the biomimetic graphene skins with superhydrophobicity and superoleophilicity for highly efficient oil-water separation. Sep. Purif. Technol. 2020, 236, 116293. [Google Scholar] [CrossRef]
- Cai, C.; Wei, Z.; Huang, Y.; Fu, Y. Wood-inspired superelastic MXene aerogels with superior photothermal conversion and durable superhydrophobicity for clean-up of super-viscous crude oil. Chem. Eng. J. 2021, 421, 127772. [Google Scholar] [CrossRef]
- Zhao, S.; Li, L.; Zhang, H.-B.; Qian, B.; Luo, J.-Q.; Deng, Z.; Shi, S.; Russell, T.; Yu, Z.-Z. Janus MXene nanosheets for macroscopic assemblies. Mater. Chem. Front. 2020, 4, 910–917. [Google Scholar] [CrossRef]
- Nikzad, E.; Sabzevari, M.; Ghaedi, M.; Azqhandi, M.; Marahel, F. Graphene oxide/double-layer hydroxide hybrids for efficient crude oil-water separation. Mater. Chem. Phys. 2022, 281, 125917. [Google Scholar] [CrossRef]
Classification | Preparation Methods | Features | Advantages | Drawbacks | References |
---|---|---|---|---|---|
MXene | Selectively etching A in the MAX phase | Unique layered loose structure | Many functional groups Many voids | Easily oxidized | [25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42] |
2D MOF | Exfoliation method Synthesis method | Porous structure Exposed active points Topological structures | Controllable pore size and structure Easy to modify | Poor water stability Long preparation time | [43,44,45,46,47,48,49,50,51,52,53,54,55,56,57] |
2D COF | Exfoliation method Synthesis method | Porous structure Topological structures | Strong structure controllability | Poor water stability Long preparation time | [58,59,60,61,62,63,64,65,66,67,68,69,70] |
LDH | Coprecipitation method Hydrothermal synthesis method Anion exchange method | Interlayer anion exchangeability Thermal stability Memory effect | Multifunctional property | No pore or gap structures Poor stability | [71,72,73,74,75,76,77,78,79,80,81,82,83,84] |
Graphene and its derivatives | Exfoliation method Synthesis method Redox method | Many oxygen-containing functional groups Excellent thermal Conductivity Excellent electric conductivity Excellent light transmittance | Good hydrophilicity Easy to disperse | Poor stability | [85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100] |
2D TMD | Exfoliation method Synthesis method | ”Sandwich” structure Superconducting properties | Good hydrophilicity | Poor stability | [101,102,103,104,105,106,107,108,109,110,111] |
2D to 3D Methods | Technology and Method | Advantages | Drawbacks | References |
---|---|---|---|---|
Mixed method | Mix | Simple principle Simple preparation | Compatibility problem Weaken the characteristics and advantages of 2D materials | [112,113,114,115] |
Adhesion method | Dip coating Spray coating Chemical vapor deposition Vacuum filtration | Convenient Low Threshold Wide Application range | Poor stability | [116,117,118,119,120,121] |
Growth method | Hydrothermal | Simple process Easy operation Good stability | Time consuming | [122,123,124,125,126] |
Assembly method | Liquid–liquid interface assembly Freeze-drying assembly Electrostatic self-assembly | Controllable synthesis process Controllable structure | Complex process | [127,128,129,130,131,132,133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, Y.; Lu, Y.; Wang, Y.; Guo, Y.; Shi, W. Preparation of 2D Materials and Their Application in Oil–Water Separation. Biomimetics 2023, 8, 35. https://doi.org/10.3390/biomimetics8010035
Li J, Li Y, Lu Y, Wang Y, Guo Y, Shi W. Preparation of 2D Materials and Their Application in Oil–Water Separation. Biomimetics. 2023; 8(1):35. https://doi.org/10.3390/biomimetics8010035
Chicago/Turabian StyleLi, Jie, Yushan Li, Yiyi Lu, Yuke Wang, Yunjie Guo, and Wentian Shi. 2023. "Preparation of 2D Materials and Their Application in Oil–Water Separation" Biomimetics 8, no. 1: 35. https://doi.org/10.3390/biomimetics8010035
APA StyleLi, J., Li, Y., Lu, Y., Wang, Y., Guo, Y., & Shi, W. (2023). Preparation of 2D Materials and Their Application in Oil–Water Separation. Biomimetics, 8(1), 35. https://doi.org/10.3390/biomimetics8010035