Facts to Consider in Developing Materials That Emulate the Upper Jawbone: A Microarchitecture Study Showing Unique Characteristics at Four Different Sites
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheah, C.W.; Al-Namnam, N.M.; Lau, M.N.; Lim, G.S.; Raman, R.; Fairbairn, P.; Ngeow, W.C. Synthetic Material for Bone, Periodontal, and Dental Tissue Regeneration: Where Are We Now, and Where Are We Heading Next? Materials 2021, 14, 6123. [Google Scholar] [CrossRef]
- Labrés, X.R.; Camps, À.R.; Salas, E.J.; Alburquerque, R.; Ortega, E.V.; López, J.L. Graft materials in oral surgery: Revision. Biomim. Biomater. Tissue Eng. 2014, 19, 150–154. [Google Scholar]
- Misch, C.M. Autogenous Bone is Still the Gold Standard of Graft Materials in 2022; The American Academy of Implant Dentistry: Chicago, IL, USA, 2022; Volume 48, pp. 169–170. [Google Scholar]
- Wu, Y.; Chen, R.; Chen, X.; Yang, Y.; Qiao, J.; Liu, Y. Development of Strong and Tough β-TCP/PCL Composite Scaffolds with Interconnected Porosity by Digital Light Processing and Partial Infiltration. Materials 2023, 16, 947. [Google Scholar] [CrossRef]
- Zins, J.E.; Whitaker, L.A.; Enlow, D.H. Membranous versus endochondral bone: Implications for craniofacial reconstruction. Plast. Reconstr. Surg. 1983, 72, 785. [Google Scholar] [CrossRef]
- Sàndor, G.K.; Nish, I.A.; Carmichael, R.P. Comparison of conventional surgery with motorized trephine in bone harvest from the anterior iliac crest. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2003, 95, 150–155. [Google Scholar] [CrossRef]
- Borstlap, W.A.; Heidbuchel, K.L.; Freihofer, H.P.M.; Kuijpers-Jagtman, A.M. Early secondary bone grafting of alveolar cleft defects: A comparison between chin and rib grafts. J. Cranio-Maxillofac. Surg. 1990, 18, 201–205. [Google Scholar] [CrossRef]
- Misch, C.M. Comparison of intraoral donor sites for onlay grafting prior to implant placement. Int. J. Oral Maxillofac. Implant. 1997, 12, 767–776. [Google Scholar]
- Bassil, J.; Abi Sleiman, A.; Mrad, S.; Noujeim, Z. The Zygomatic Buttress as an Efficient Intraoral Donor Site for Limited Maxillary Reconstructions: A Case Series and Brief Literature Review. Case Rep. Dent. 2021, 2021, 5539185. [Google Scholar] [CrossRef] [PubMed]
- Abdeltawab, A.R.; Dahaba, M.; Belal, S. Volumetric and linear assessment of maxillary, mandibular and zygomatic bone as donor sites for alveolar ridge augmentation using CBCT: A cross sectional study. Int. J. Health Sci. 2022, 6 (Suppl. S4), 1185–1193. [Google Scholar] [CrossRef]
- Emodi, O.; Nseir, S.; Shilo, D.; Srouji, H.; Rachmiel, A. Antral Wall Approach for Reconstruction of Orbital Floor Fractures Using Anterior Maxillary Sinus Bone Grafts. J. Craniofacial Surg. 2018, 29, e421–e426. [Google Scholar] [CrossRef]
- Hwang, J.W.; Han, M.S.; Kang, S.H.; Kwak, J.W.; Kim, H.K.; Kim, T.H.; Lee, S.H. Long-term outcomes of nasoseptal perforation repair using anterior maxillary sinus wall as an interpositional graft. Am. J. Rhinol. Allergy 2022, 36, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.S.; Hwang, K.G.; Park, C.J. Postoperative effects of anterior nasal spine bone harvesting on overall nasal shape. Clin. Oral Implant. Res. 2013, 24, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Mayordomo, R.B.; Martínez, R.G.; Alfaro, F.H. The anterior maxilla as a potential source of bone grafts: A morphometric cone beam computed tomography analysis of different anatomical areas. Int. J. Oral Maxillofac. Surg. 2016, 45, 1049–1056. [Google Scholar] [CrossRef]
- Safi, Y.; Behzadi, S.; Shafizadeh, M.; Amid, R.; Kadkhodazadeh, M. CBCT Evaluation of the maxillary palatine process as a donor site for the regeneration of periodontal defects. J. Adv. Periodontol. Implant. Dent. 2022, 14, 20. [Google Scholar] [CrossRef]
- Joshi, S.; Desai, S.; Mudda, J.; Patil, V.; Mustafa, M. Estimation of height and width of bone in anterior hard palate as a donor site for autogenous bone graft using IOPA by long cone paralleling technique. Niger. J. Clin. Pract. 2020, 23, 1487. [Google Scholar] [PubMed]
- Misch, C.E.; Qu, Z.; Bidez, M.W. Mechanical properties of trabecular bone in the human mandible: Implications for dental implant treatment planning and surgical placement. J. Oral Maxillofac. Surg. 1999, 57, 700–706. [Google Scholar] [CrossRef]
- Burghardt, A.J.; Link, T.M.; Majumdar, S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin. Orthop. Relat. Res. 2011, 469, 2179–2193. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, H.J.; Yun, J.H. Three-dimensional microstructure of human alveolar trabecular bone: A micro-computed tomography study. J. Periodontal Implant. Sci. 2017, 47, 20–29. [Google Scholar] [CrossRef]
- Misch, C.E. Contemporary Implant Dentistry; Elsevier Health Sciences: New York, NY, USA, 2007. [Google Scholar]
- Müller, R.; Van Campenhout, H.; Van Damme, B.; Van der Perre, G.; Dequeker, J.; Hildebrand, T.; Rüegsegger, P. Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and micro-computed tomography. Bone 1998, 23, 59–66. [Google Scholar] [CrossRef]
- Giesen, E.; Van Eijden, T. The three-dimensional cancellous bone architecture of the human mandibular condyle. J. Dent. Res. 2000, 79, 957–963. [Google Scholar] [CrossRef]
- Moon, H.-S.; Won, Y.-Y.; Kim, K.-D.; Ruprecht, A.; Kim, H.-J.; Kook, H.-K.; Chung, M.-K. The three-dimensional microstructure of the trabecular bone in the mandible. Surg. Radiol. Anat. 2004, 26, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Kizu, Y.; Tonogi, M.; Ide, Y.; Yamane, G.-Y. Internal structure of zygomatic bone related to zygomatic fixture. J. Oral Maxillofac. Surg. 2005, 63, 1325–1329. [Google Scholar] [CrossRef]
- Siddiqi, A.; Kieser, J.A.; De Silva, R.K.; McNaughton, A.; Zafar, S.; Duncan, W.J. Trabecular bone microarchitecture in the median palate and maxillary premolar alveolar sites of edentulous elderly cadavers. J. Oral Maxillofac. Surg. 2013, 71, 1852.e1–1852.e11. [Google Scholar] [CrossRef] [PubMed]
- Ulm, C.; Tepper, G.; Blahout, R.; Rausch-Fan, X.; Hienz, S.; Matejka, M. Characteristic features of trabecular bone in edentulous mandibles. Clin. Oral Implant. Res. 2009, 20, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Blok, Y.; Gravesteijn, F.; Van Ruijven, L.; Koolstra, J. Micro-architecture and mineralization of the human alveolar bone obtained with microCT. Arch. Oral Biol. 2013, 58, 621–627. [Google Scholar] [CrossRef]
- Kim, J.E.; Shin, J.M.; Oh, S.O.; Yi, W.J.; Heo, M.S.; Lee, S.S.; Choi, S.C.; Huh, K.H. The three-dimensional microstructure of trabecular bone: Analysis of site-specific variation in the human jaw bone. Imaging Sci. Dent. 2013, 43, 227–233. [Google Scholar] [CrossRef]
- González-García, R.; Monje, F. Is micro-computed tomography reliable to determine the microstructure of the maxillary alveolar bone? Clin. Oral Implant. Res. 2013, 24, 730–737. [Google Scholar] [CrossRef]
- Kim, Y.J.; Henkin, J. Micro-computed tomography assessment of human alveolar bone: Bone density and three-dimensional micro-architecture. Clin. Implant. Dent. Relat. Res. 2015, 17, 307–313. [Google Scholar] [CrossRef]
- Bertl, K.; Heimel, P.; Rökl-Riegler, M.; Hirtler, L.; Ulm, C.; Zechner, W. MicroCT-based evaluation of the trabecular bone quality of different implant anchorage sites for masticatory rehabilitation of the maxilla. J. Cranio-Maxillofac. Surg. 2015, 43, 961–968. [Google Scholar] [CrossRef]
- Parsa, A.; Ibrahim, N.; Hassan, B.; van der Stelt, P.; Wismeijer, D. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clin. Oral Implant. Res. 2015, 26, e1–e7. [Google Scholar] [CrossRef]
- Kim, J.-E.; Yi, W.-J.; Heo, M.-S.; Lee, S.-S.; Choi, S.-C.; Huh, K.-H. Three-dimensional evaluation of human jaw bone microarchitecture: Correlation between the microarchitectural parameters of cone beam computed tomography and micro-computer tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 120, 762–770. [Google Scholar] [CrossRef]
- Hsu, P.-Y.; Tsai, M.-T.; Wang, S.-P.; Chen, Y.-J.; Wu, J.; Hsu, J.-T. Cortical bone morphological and trabecular bone microarchitectural changes in the mandible and femoral neck of ovariectomized rats. PLoS ONE 2016, 11, e0154367. [Google Scholar] [CrossRef]
- Suttapreyasri, S.; Suapear, P.; Leepong, N. The accuracy of cone-beam computed tomography for evaluating bone density and cortical bone thickness at the implant site: Micro-computed tomography and histologic analysis. J. Craniofacial Surg. 2018, 29, 2026–2031. [Google Scholar] [CrossRef]
- Kulah, K.; Gulsahi, A.; Kamburoğlu, K.; Geneci, F.; Ocak, M.; Celik, H.H.; Ozen, T. Evaluation of maxillary trabecular microstructure as an indicator of implant stability by using 2 cone beam computed tomography systems and micro-computed tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.; Parsa, A.; Hassan, B.; van der Stelt, P.; Rahmat, R.A.; Ismail, S.M.; Aartman, I.H. Comparison of anterior and posterior trabecular bone microstructure of human mandible using cone-beam CT and micro CT. BMC Oral Health 2021, 21, 249. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, A.; Chainchel Singh, M.K.; Ibrahim, N.; Ramanarayanan, S.; Mohd Yusof, M.Y.P. Quantifications of Mandibular Trabecular Bone Microstructure Using Cone Beam Computed Tomography for Age Estimation: A Preliminary Study. Biology 2022, 11, 1521. [Google Scholar] [CrossRef] [PubMed]
- Tayman, M.A.; Kamburoğlu, K.; Ocak, M.; Özen, D. Effect of different voxel sizes on the accuracy of CBCT measurements of trabecular bone microstructure: A comparative micro-CT study. Imaging Sci. Dent. 2022, 52, 171. [Google Scholar] [CrossRef] [PubMed]
- El-Gizawy, A.S.; Ma, X.; Pfeiffer, F.; Schiffbauer, J.D.; Selly, T. Characterization of Microarchitectures, Stiffness and Strength of Human Trabecular Bone Using Micro-Computed Tomography (Micro-CT) Scans. BioMed 2023, 3, 89–100. [Google Scholar] [CrossRef]
- Al-Khatib, A.; Rajion, Z.; Masudi, S.; Hassan, R.; Anderson, P.; Townsend, G. Tooth size and dental arch dimensions: A stereophotogrammetric study in Southeast Asian Malays. Orthod. Craniofacial Res. 2011, 14, 243–253. [Google Scholar] [CrossRef]
- Lim, E.L.; Ngeow, W.C.; Lim, D. The implications of different lateral wall thicknesses on surgical access to the maxillary sinus. Braz. Oral Res. 2017, 31, e97. [Google Scholar] [CrossRef]
- Hassani, A.; Khojasteh, A.; Shamsabad, A.N. The anterior palate as a donor site in maxillofacial bone grafting: A quantitative anatomic study. J. Oral Maxillofac. Surg. 2005, 63, 1196–1200. [Google Scholar] [CrossRef]
- Carter, D.R.; Spengler, D.M. Mechanical properties and composition of cortical bone. Clin. Orthop. Relat. Res. (1976–2007) 1978, 135, 192–217. [Google Scholar] [CrossRef]
- Parfitt, A.M.; Drezner, M.K.; Glorieux, F.H.; Kanis, J.A.; Malluche, H.; Meunier, P.J.; Ott, S.M.; Recker, R.R. Bone histomorphometry: Standardization of nomenclature, symbols, and units: Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 1987, 2, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Cömert, A.; Kökat, A.M.; Akkocaoğlu, M.; Tekdemir, İ.; Akça, K.; Çehreli, M.C. Fresh-frozen vs. embalmed bone: Is it possible to use formalin-fixed human bone for biomechanical experiments on implants? Clin. Oral Implant. Res. 2009, 20, 521–525. [Google Scholar] [CrossRef]
- Holm, M.A.; Iaizzo, P.A. Importance of Human Cadaver Studies in Education and Medical Device Research: Insights Derived from Various Imaging Studies and Modalities. In Engineering in Medicine; Elsevier: Amsterdam, The Netherlands, 2019; pp. 255–280. [Google Scholar]
- Viidik, A.; Lewin, T. Changes in tensile strength characteristics and histology of rabbit ligaments induced by different modes of postmortal storage. Acta Orthop. Scand. 1966, 37, 141–155. [Google Scholar] [CrossRef]
- Kivovics, M.; Szabó, B.T.; Németh, O.; Tari, N.; Dőri, F.; Nagy, P.; Dobó-Nagy, C.; Szabó, G. Microarchitectural study of the augmented bone following ridge preservation with a porcine xenograft and a collagen membrane: Preliminary report of a prospective clinical, histological, and micro-computed tomography analysis. Int. J. Oral Maxillofac. Surg. 2017, 46, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Trimmel, B.; Gyulai-Gaál, S.; Kivovics, M.; Jákob, N.P.; Hegedűs, C.; Szabó, B.T.; Dobó-Nagy, C.; Szabó, G. Evaluation of the histomorphometric and micromorphometric performance of a serum albumin-coated bone allograft combined with A-PRF for early and conventional healing protocols after maxillary sinus augmentation: A randomized clinical trial. Materials 2021, 14, 1810. [Google Scholar] [CrossRef] [PubMed]
- Vasconcellos, L.M.R.D.; Leite, D.O.; Oliveira, F.N.D.; Carvalho, Y.R.; Cairo, C.A.A. Evaluation of bone ingrowth into porous titanium implant: Histomorphometric analysis in rabbits. Braz. Oral Res. 2010, 24, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, T.; Rüegsegger, P. Quantification of bone microarchitecture with the structure model index. Comput. Methods Biomech. Bio Med. Eng. 1997, 1, 15–23. [Google Scholar] [CrossRef]
- Singh, I. The architecture of cancellous bone. J. Anat. 1978, 127, 305. [Google Scholar] [PubMed]
- Goodchild, S.; Black, D.S.; Cunningham, C. A Qualitative and Quantitative Analysis of the Developing Human Lumbar Vertebral Column. Ph.D. Thesis, University of Dundee, Dundee, UK, 2019. [Google Scholar]
- Ngeow, W.C.; Lim, D.; Tan, C.C.; Shetty, N.; Marla, V. 14-Dental Implant modifications for medically compromised patients. In Dental Implants: Materials, Coatings, Surface Modifications and Interfaces with Oral Tissues; Series in Biomaterials; Woodhead Publishing: Cambridge, UK, 2020; pp. 255–286. [Google Scholar]
- Fanuscu, M.I.; Chang, T.L. Three-dimensional morphometric analysis of human cadaver bone: Microstructural data from maxilla and mandible. Clin. Oral Implant. Res. 2004, 15, 213–218. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Variable | Description | Standard Unit |
---|---|---|---|
TV | Total volume | Volume of the entire region of interest | mm3 |
BV | Bone volume | Volume of the region segmented as bone | mm3 |
BV/TV | Bone volume fraction | Ratio of the segmented bone volume to the total volume of the region of interest | % |
Tb.N | Trabecular number | Measure of the average number of trabeculae per unit length | mm−1 |
Tb.Th | Trabecular thickness | Mean thickness of trabeculae, assessed using direct 3D methods | mm |
Tb.Sp | Trabecular separation | Mean distance between trabeculae, assessed using direct 3D methods | mm |
SMI | Structure model index | An indicator of the structure of trabeculae | none |
Donor Site | Mean ± SD | Minimum | Maximum | F | p-Value |
---|---|---|---|---|---|
Tissue Volume (mm3) | 1.310 | 0.304 | |||
ZYGOMA | 102.07 ± 52.83 | 27.21 | 199.57 | ||
AMSW | 76.31 ± 31.92 | 49.09 | 135.50 | ||
AP | 83.56 ± 26.79 | 51.09 | 113.23 | ||
ANS | 50.96 ± 24.63 | 27.21 | 76.38 | ||
Overall | 82.1 ± 38.32 | 27.21 | 199.57 | ||
Bone Volume (mm3) | 2.959 | 0.062 | |||
ZYGOMA | 58.98 ± 29.17 | 23.25 | 93.17 | ||
AMSW | 44.31 ± 13.48 | 29.23 | 64.21 | ||
AP | 37.37 ± 12.09 | 23.27 | 51.47 | ||
ANS | 21.29 ± 8.08 | 15.03 | 30.40 | ||
Overall | 43.23 ± 21.41 | 15.03 | 93.17 | ||
Bone Volume/Tissue Volume (%) | 2.179 | 0.128 | |||
ZYGOMA | 58.67 ± 21.16 | 38.59 | 85.83 | ||
AMSW | 60.11 ± 9.30 | 47.38 | 70.01 | ||
AP | 44.79 ± 4.43 | 38.38 | 52.08 | ||
ANS | 44.14 ± 9.68 | 37.38 | 55.23 | ||
Overall | 53.04 ±14.31 | 37.38 | 85.83 | ||
Structural Model Index | 3.248 | 0.048 * | |||
ZYGOMA | −2.51 ± 3.60 | −7.11 | 0.46 | ||
AMSW | −0.80 ± 0.83 | −1.47 | 0.52 | ||
AP | 0.80 ± 0.31 | 0.46 | 1.27 | ||
ANS | 0.79 ± 0.14 | 0.63 | 0.87 | ||
Overall | −0.63 ± 2.33 | −7.11 | 1.27 | ||
Trabecular Thickness (mm) | |||||
ZYGOMA | 0.44 ± 0.14 | 0.25 | 0.57 | 0.669 | 0.583 |
AMSW | 0.44 ± 0.09 | 0.33 | 0.56 | ||
AP | 0.41 ± 0.09 | 0.27 | 0.53 | ||
ANS | 0.34 ± 0.11 | 0.24 | 0.45 | ||
Overall | 0.42 ± 0.11 | 0.24 | 0.57 | ||
Trabecular Number (mm−1) | 1.238 | 0.327 | |||
ZYGOMA | 1.39 ± 0.36 | 0.71 | 1.74 | ||
AMSW | 1.41 ± 0.36 | 1.03 | 1.86 | ||
AP | 1.12 ± 0.21 | 0.86 | 1.40 | ||
ANS | 1.22 ± 0.03 | 1.19 | 1.23 | ||
Overall | 1.29 ± 0.30 | 0.71 | 1.86 | ||
Trabecular Separation (mm) | 0.692 | 0.570 | |||
ZYGOMA | 0.44 ± 0.26 | 0.22 | 0.92 | ||
AMSW | 0.35 ± 0.10 | 0.23 | 0.50 | ||
AP | 0.47 ± 0.06 | 0.39 | 0.55 | ||
ANS | 0.41 ± 0.04 | 0.39 | 0.46 | ||
Overall | 0.42 ± 0.15 | 0.22 | 0.92 |
Authors (Year) | Population | Mean Age (Range) | n */N ** | Method | Site(s) | Variable (If Any) | BV/TV (%) | Tb.N (1/mm) | Tb.Th (mm) | Tb.Sp (mm) |
---|---|---|---|---|---|---|---|---|---|---|
Muller et al., 1998 [21] | American | 68 ± 16 (23–92) | 70 | micro-CT | Transiliac bone | 14.48 ± 5.34 | - | 0.11 ± 0.02 | 0.77 ± 0.35 | |
Giesen & Van Eijden, 2000 [22] | Dutch | 72.6 ± 11.2 (56–89) | 99 (11) | micro-CT | Condyles | 17.00 ± 5.00 | 1.66 ± 0.26 | 0.10 ± 0.02 | 0.52 ± 0.13 | |
Moon et al., 2004 [23] | Korean | 55.1 (29–75) | 10 | micro-CT | Mandible (Alveolar Bone) | 43.74 ± 16.04 | 1.27 ± 0.24 | 0.31 ± 0.08 | 0.51 ± 0.14 | |
Mandible (Basal Bone superior to mandibular canal) | 20.39 ± 6.45 | 0.90 ± 0.23 | 0.28 ± 0.09 | 0.88 ± 0.20 | ||||||
Mandible (Basal Bone inferior to mandibular canal) | 9.24 ± 7.11 | 0.70 ± 0.20 | 0.22 ± 0.05 | 1.31 ± 0.42 | ||||||
Kato et al., 2005 [24] | Japanese | 79.6 | 56 (28) | micro-CT | Jugale | 23.2 ± 4.3 | 0.16 ± 0.05 | 1.53 ± 0.48 | 0.56 ± 0.20 | |
Middle point | 19.9 ± 5.4 | 0.15 ± 0.05 | 1.38 ± 0.33 | 0.62 ± 0.28 | ||||||
Zygomaxillae | 20.5 ± 6.5 | 0.15 ± 0.06 | 1.49 ± 0.40 | 0.58 ± 0.20 | ||||||
Siddiqi et al., 2013 [25] | New Zealander | 80 (65–94) | 16 | micro-CT | Median Palate | Palate | 42.9 ± 13.8 | 1.1 ± 0.3 | 0.4 ± 0.2 | 7.5 ± 4.7 |
Maxillary Premolar | Premolar | 38.1 ± 12.5 | 1.0 ± 0.6 | 0.5 ± 0.3 | 8.1 ± 5.6 | |||||
Ulm et al., 2009 [26] | Austrian | 77.58 ± 10.09 | 278 (128) | micro-CT | Mandible (lateral incisor) | Female | 30.70 ± 9.91 | 1.50 ± 0.34 | 0.19 ± 0.05 | 0.46 ± 0.14 |
Male | 36.90 ± 12.40 | 1.77 ± 0.39 | 0.21 ± 0.06 | 0.38 ± 0.14 | ||||||
Mandible (first premolar) | Female | 24.50 ± 8.45 | 1.47 ± 0.43 | 0.17 ± 0.04 | 0.57 ± 0.20 | |||||
Male | 35.90 ± 13.62 | 1.58 ± 0.32 | 0.22 ± 0.06 | 0.82 ± 0.27 | ||||||
Mandible (first molar) | Female | 20.90 ± 9.65 | 1.22 ± 0.37 | 0.17 ± 0.04 | 0.72 ± 0.28 | |||||
Male | 24.50 ± 7.93 | 1.38 ± 0.30 | 0.17 ± 0.04 | 0.58 ± 0.18 | ||||||
Blok et al., 2012 [27] | Dutch | 73.7 ± 12.5 | 10 | micro-CT | Maxilla | 24.0 ± 13.0 | 1.57 ± 0.56 | 0.20 ± 0.05 | 0.69 ± 0.24 | |
Mandible | 37.0 ± 18.0 | 1.50 ± 0.42 | 0.29 ± 0.11 | 0.71 ± 0.25 | ||||||
Kim et al., 2013 [28] | Korean | NA | 69 (4) | micro-CT | Anterior Maxilla | 21.35 ± 5.18 | 0.99 ± 0.23 | 0.22 ± 0.05 | 0.72 ± 0.16 | |
Posterior Maxilla | 17.68 ± 6.21 | 0.89 ± 0.27 | 0.20 ± 0.07 | 0.79 ± 0.14 | ||||||
Anterior Mandible | 23.87 ± 7.68 | 0.72 ± 0.312 | 0.33 ± 0.05 | 0.85 ± 0.13 | ||||||
Posterior Mandible | 18.46 ± 9.44 | 0.78 ± 0.26 | 0.23 ± 0.07 | 0.82 ± 0.27 | ||||||
González-García & Monje, 2013 [29] | Spanish | 51.56 ± 13.78 (20–79) | 52 (31) | micro-CT | Maxilla | 48.70 ± 17.85 | 2.19 ± 0.71 | 0.22 ± 0.06 | 0.31 ± 0.10 | |
Kim & Henkin, 2015 [30] | American | NA | 34 (12) | micro-CT | Maxilla | 14.59 ± 7.68 | 2.07 ± 0.80 | 0.10 ± 0.02 | 0.63 ± 0.18 | |
Mandible | 27.28 ± 10.19 | 3.76 ± 1.99 | 0.09 ± 0.02 | 0.42 ± 0.18 | ||||||
Bertl et al., 2015 [31] | Austrian | NA | 36 (12) | micro-CT | Anterior Maxilla | 27.15 ± 7.90 | 1.051 ± 0.20 | 0.26 ± 0.04 | 0.59 ± 0.13 | |
Posterior Maxilla | 13.54 ± 3.40 | 0.624 ± 0.14 | 0.22 ± 0.03 | 0.89 ± 0.14 | ||||||
Zygoma | 26.79 ± 7.40 | 1.024 ± 0.20 | 0.26 ± 0.04 | 0.63 ± 0.13 | ||||||
Parsa et al., 2015 [32] | Dutch | NA | 20 | micro-CT | Mandible | micro-CT | 32.35 ± 18.81 | - | - | - |
CBCT | CBCT | 36.79 ± 23.17 | - | - | - | |||||
Kim et al., 2015 [33] | Korean | NA | 68 (4) | micro-CT | Maxilla | Imaging Protocol | ||||
Mandible | 19.37 µm | 18.53 ± 8.17 | 0.24 ± 0.07 | 0.77 ± 0.27 | 0.83 ± 0.17 | |||||
96.87 µm | 18.15 ± 8.60 | 0.38 ± 0.11 | 0.47 ± 0.17 | 0.95 ± 0.19 | ||||||
Lee et al., 2017 [19] | Korean | 75.7 | 116 | micro-CT | Maxilla | Bone Density | ||||
(67–96) | (30) | Mandible | D1 | 37.29 ± 17.96 | 1.21 ± 0.45 | 0.30 ± 0.08 | 0.59 ± 0.22 | |||
D2 | 27.46 ± 9.58 | 0.99 ± 0.24 | 0.28 ± 0.06 | 0.68 ± 0.14 | ||||||
D3 | 18.40 ± 10.20 | 0.71 ± 0.26 | 0.25 ± 0.05 | 0.82 ± 0.19 | ||||||
D4 | 9.83 ± 8.02 | 0.41± 0.27 | 0.22 ± 0.06 | 1.20 ± 0.48 | ||||||
Suttapreyasri et al., 2018 [35] | Thailand | >20 | 62 (41) | micro-CT | Maxilla | Location | ||||
CBCT | Mandible | Anterior Maxilla | 35.23 ± 10.68 | - | - | - | ||||
Posterior Maxilla | 36.11 ± 9.15 | - | - | - | ||||||
Anterior Mandible | 63.25 ± 19.85 | - | - | - | ||||||
Posterior Mandible | 46.74 ± 13.14 | - | - | - | ||||||
Kulah et al., 2019 [36] | Turkish | NA | 17 | micro-CT | Maxilla | 32.65 ± 7.46 | 1.83 ± 0.05 | 0.28 ± 0.05 | 0.57 ± 0.13 | |
Kivovics et al., 2020 [49] | Hungarian | 54.7 ± 6.5 | 16 (9) | micro-CT | Maxilla * Augmented sinus | micro-CT | 12.25 | - | 0.15 | 0.88 |
CBCT | (grafted with allograft) | CBCT | 81.29 | - | 1.82 | 0.85 | ||||
Ibrahim et al., 2021 [37] | Dutch | NA | 25 | micro-CT | Mandible | micro-CT | ||||
Anterior Posterior | 0.008 ± 0.003 0.007 ± 0.004 | 0.005 ± 0.008 0.004 ± 0.001 | 0.007 ± 0.008 0.009 ± 0.001 | - - | ||||||
CBCT | CBCT | |||||||||
Anterior Posterior | 0.006 ± 0.002 0.005 ± 0.003 | 0.007 ± 0.002 0.006 ± 0.002 | 0.009 ± 0.003 0.010 ± 0.004 | - - | ||||||
Tabassum et al., 2022 [38] | Malaysian | 26.6 ± 5.9 (22–43) | 20 | CBCT | Mandible | CBCT | 44.40 ± 14.77 | 0.44 ± 0.15 | 1.25 ± 0.55 | 2.05 ± 0.75 |
Tayman et al., 2022 [39] | Turkey | NA | 12 | micro-CT CBCT | Posterior mandible | Micro CT (Std) Micro CT (Hi) CBCT (Std) CBCT (Hi) | 46.01 ± 8.48 44.28 ± 8.47 57.13 ± 11.10 54.45 ± 11.98 | 2.05 ± 0.46 2.04 ± 0.47 1.43 ± 0.25 1.43 ± 0.29 | 0.24 ± 0.06 0.23 ± 0.06 0.46 ± 0.09 0.44 ± 0.09 | 0.53 ± 0.11 0.51 ± 0.11 0.48 ± 0.12 0.46 ± 0.12 |
El-Gizawy et al., 2023 [40] | USA | 21 | 4 (1) | micro-CT | Distal femoral condyle | 21.01 ± 4.72 | - | 1.25 ± 0.55 | 0.35 ± 0.03 | |
Current study | Malaysian | Elderly | 49 (7) | micro-CT | Maxilla | Location | ||||
Zygoma | 58.67 ± 21.16 | 1.39 ± 0.36 | 0.44 ± 0.14 | 0.44 ± 0.26 | ||||||
AMSW | 60.11 ± 9.30 | 1.41 ± 0.36 | 0.44 ± 0.09 | 0.35 ± 0.10 | ||||||
AP | 44.79 ± 4.43 | 1.12 ± 0.21 | 0.41 ± 0.09 | 0.47 ± 0.06 | ||||||
ANS | 44.14 ± 9.68 | 1.22 ± 0.03 | 0.34 ± 0.11 | 0.41 ± 0.04 | ||||||
Mean | 53.04 ±14.31 | 1.29 ± 0.30 | 0.42 ± 0.11 | 0.42 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, E.L.; Ngeow, W.C.; Kadir, K.; Naidu, M. Facts to Consider in Developing Materials That Emulate the Upper Jawbone: A Microarchitecture Study Showing Unique Characteristics at Four Different Sites. Biomimetics 2023, 8, 115. https://doi.org/10.3390/biomimetics8010115
Lim EL, Ngeow WC, Kadir K, Naidu M. Facts to Consider in Developing Materials That Emulate the Upper Jawbone: A Microarchitecture Study Showing Unique Characteristics at Four Different Sites. Biomimetics. 2023; 8(1):115. https://doi.org/10.3390/biomimetics8010115
Chicago/Turabian StyleLim, Ee Lian, Wei Cheong Ngeow, Kathreena Kadir, and Murali Naidu. 2023. "Facts to Consider in Developing Materials That Emulate the Upper Jawbone: A Microarchitecture Study Showing Unique Characteristics at Four Different Sites" Biomimetics 8, no. 1: 115. https://doi.org/10.3390/biomimetics8010115
APA StyleLim, E. L., Ngeow, W. C., Kadir, K., & Naidu, M. (2023). Facts to Consider in Developing Materials That Emulate the Upper Jawbone: A Microarchitecture Study Showing Unique Characteristics at Four Different Sites. Biomimetics, 8(1), 115. https://doi.org/10.3390/biomimetics8010115