Trichosanthes kirilowii Extract Promotes Wound Healing through the Phosphorylation of ERK1/2 in Keratinocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extraction
2.2. Cell Culture Conditions and TK Extract Treatment
2.3. MTT Assay
2.4. In Vitro Wound Healing Assay
2.5. Western Blot
2.6. Quantitative Real-Time PCR
2.7. In Vivo Wound-Healing Assay
2.8. Statistical Analysis
3. Results
3.1. TK Extract Induced the Proliferation of the Keratinocyte Cell
3.2. TK Extract Promoted In Vitro Wound-Healing Activity
3.3. TK Extract Induced ERK1/2 Phosphorylation
3.4. TK Extract Induced the mRNA Expression of Proliferation Regulatory Genes
3.5. TK Extract Influenced Fibroblast mRNA Expression
3.6. TK Extract Promoted In Vivo Wound-Healing Activity
3.7. Effect of Constituent Compounds of TK Extract on the Proliferation of HaCaT Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walters, K.A.; Roberts, M.S. The Structure and Function of Skin. In Dermatological and Transdermal Formulations; CRC Press: Boca Raton, FL, USA, 2002; pp. 19–58. ISBN 0429164327. [Google Scholar]
- Velnar, T.; Bailey, T.; Smrkolj, V. The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef] [PubMed]
- Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-Canic, M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care 2014, 3, 445–464. [Google Scholar] [CrossRef] [Green Version]
- Duronio, R.J.; Xiong, Y. Signaling Pathways That Control Cell Proliferation. Cold Spring Harb. Perspect. Biol. 2013, 5, a008904. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.K. MAP Kinase Pathways. Cold Spring Harb. Perspect. Biol. 2012, 4, a011254. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.R.; Nigh, E.; Lee, R.J.; Ye, H.; Thompson, M.A.; Saudou, F.; Pestell, R.G.; Greenberg, M.E. Fos Family Members Induce Cell Cycle Entry by Activating Cyclin D1. Mol. Cell. Biol. 1998, 18, 5609–5619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerkhoff, E.; Rapp, U.R. Cell Cycle Targets of Ras/Raf Signalling. Oncogene 1998, 17, 1457–1462. [Google Scholar] [CrossRef] [PubMed]
- Dumesic, P.A.; Scholl, F.A.; Barragan, D.I.; Khavari, P.A. Erk1/2 MAP Kinases Are Required for Epidermal G2/M Progression. J. Cell Biol. 2009, 185, 409–422. [Google Scholar] [CrossRef] [Green Version]
- Fain, G.L.; Hardie, R.; Laughlin, S.B. Phototransduction and the Evolution of Photoreceptors. Curr. Biol. 2010, 20, R114–R124. [Google Scholar] [CrossRef] [Green Version]
- Hemmings, B.A.; Restuccia, D.F. Pi3k-Pkb/Akt Pathway. Cold Spring Harb. Perspect. Biol. 2012, 4, a011189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, J.; Angel, P.; Schorpp-Kistner, M. AP-1 Subunits: Quarrel and Harmony among Siblings. J. Cell Sci. 2004, 117, 5965–5973. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, J.; McCauley, L.K. The Activating Protein-1 Transcriptional Complex. Clin. Rev. Bone Miner. Metab. 2006, 4, 107–122. [Google Scholar] [CrossRef]
- Angel, P.; Imagawa, M.; Chiu, R.; Stein, B.; Imbra, R.J.; Rahmsdorf, H.J.; Jonat, C.; Herrlich, P.; Karin, M. Phorbol Ester-Inducible Genes Contain a Common Cis Element Recognized by a TPA-Modulated Trans-Acting Factor. Cell 1987, 49, 729–739. [Google Scholar] [CrossRef]
- Bensky, D.; Clavey, S.; Stõger, E. Materia Medica. Chin. Herb. Med, 3rd ed.; Eastland Press: Seattle, WA, USA, 2015; pp. 3–6. [Google Scholar]
- Han, X.; Jiang, X.; Guo, L.; Wang, Y.; Veeraraghavan, V.P.; Krishna Mohan, S.; Wang, Z.; Cao, D. Anticarcinogenic Potential of Gold Nanoparticles Synthesized from Trichosanthes kirilowii in Colon Cancer Cells through the Induction of Apoptotic Pathway. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3577–3584. [Google Scholar] [CrossRef] [Green Version]
- Jang, K.-C.; Lee, J.-H.; Kim, S.-C.; Song, E.-Y.; Ro, N.-Y.; Moon, D.-Y.; Um, Y.-C.; Park, K.-H. Antibacterial and Radical Scavenging Activities of 1-C-(p-Hydroxyphenyl)-Glycerol from Trichosanthes kirilowii. J. Appl. Biol. Chem. 2007, 50, 17–21. [Google Scholar]
- OZAKI, Y.; XING, L.; SATAKE, M. Antiinflammatory Effect of Trichosanthes kirilowii Maxim. and Its Effective Parts. Biol. Pharm. Bull. 1996, 19, 1046–1048. [Google Scholar] [CrossRef] [Green Version]
- Park, M.J.; Kang, Y.-H. Anti-Oxidant and Anti-Inflammatory Activities of Various Organ Extracts from Trichosanthes kirilowii Maxim. Korean J. Pharmacogn. 2016, 47, 327–332. [Google Scholar]
- Wang, S.; Zheng, Z.; Weng, Y.; Yu, Y.; Zhang, D.; Fan, W.; Dai, R.; Hu, Z. Angiogenesis and Anti-Angiogenesis Activity of Chinese Medicinal Herbal Extracts. Life Sci. 2004, 74, 2467–2478. [Google Scholar] [CrossRef]
- Mohammad Azmin, S.N.H.; Abdul Manan, Z.; Wan Alwi, S.R.; Chua, L.S.; Mustaffa, A.A.; Yunus, N.A. Herbal Processing and Extraction Technologies. Sep. Purif. Rev. 2016, 45, 305–320. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Kim, K. Inhibition of Proinflammatory Cytokines in Cutibacterium Acnes-Induced Inflammation in HaCaT Cells by Using Buddleja davidii Aqueous Extract. Int. J. Inflam. 2020, 2020, 8063289. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Kim, J.; Shin, Y.-K.; Kim, K.-Y. Gentisic Acid Stimulates Keratinocyte Proliferation through ERK1/2 Phosphorylation. Int. J. Med. Sci. 2020, 17, 626. [Google Scholar] [CrossRef] [Green Version]
- Mosdam, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxic Assay. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Li, C.-H.; Pan, L.-H.; Liu, H.-W.; Sahi, R.; Zhao, X.; Cheng, Y. The Expression of Cx43, TGFβ/Smads Signaling Pathways and PCNA in the Occurrence and Development of Gastric Carcinoma and the Relationship among Them. Asian J. Med. Sci. 2016, 7, 6–13. [Google Scholar] [CrossRef]
- Koh, K.D.; Siddiqui, S.; Cheng, D.; Bonser, L.R.; Sun, D.I.; Zlock, L.T.; Finkbeiner, W.E.; Woodruff, P.G.; Erle, D.J. Efficient RNP-Directed Human Gene Targeting Reveals SPDEF Is Required for IL-13–Induced Mucostasis. Am. J. Respir. Cell Mol. Biol. 2020, 62, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Guenou, H.; Nissan, X.; Larcher, F.; Feteira, J.; Lemaitre, G.; Saidani, M.; Del Rio, M.; Barrault, C.C.; Bernard, F.X.; Peschanski, M.; et al. Human Embryonic Stem-Cell Derivatives for Full Reconstruction of the Pluristratified Epidermis: A Preclinical Study. Lancet 2009, 374, 1745–1753. [Google Scholar] [CrossRef]
- Yu, J.; Yu, J.; Rhodes, D.R.; Tomlins, S.A.; Cao, X.; Chen, G.; Mehra, R.; Wang, X.; Ghosh, D.; Shah, R.B.; et al. A Polycomb Repression Signature in Metastatic Prostate Cancer Predicts Cancer Outcome. Cancer Res. 2007, 67, 10657–10663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, J.; Donelan, W.; Hayner, J.N.; Zhang, F.; Dudenhausen, E.E.; Kilberg, M.S. MAPK Signaling Triggers Transcriptional Induction of CFOS during Amino Acid Limitation of HepG2 Cells. Biochim. Biophys. Acta–Mol. Cell Res. 2015, 1853, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Chiappetta, G.; Ferraro, A.; Botti, G.; Monaco, M.; Pasquinelli, R.; Vuttariello, E.; Arnaldi, L.; Di Bonito, M.; D’aiuto, G.; Pierantoni, G.M. FRA-1 Protein Overexpression Is a Feature of Hyperplastic and Neoplastic Breast Disorders. BMC Cancer. 2007, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.-C.; Song, J.; Lee, A.; Cho, D.; Kim, T.S. Visfatin Promotes Wound Healing through the Activation of ERK1/2 and JNK1/2 Pathway. Int. J. Mol. Sci. Artic. 2018, 19, 3642. [Google Scholar] [CrossRef] [Green Version]
- Kawano, Y.; Patrulea, V.; Sublet, E.; Borchard, G.; Iyoda, T.; Kageyama, R.; Morita, A.; Seino, S.; Yoshida, H.; Jordan, O.; et al. Wound Healing Promotion by Hyaluronic Acid: Effect of Molecular Weight on Gene Expression and In Vivo Wound Closure. Pharmaceuticals 2021, 14, 301. [Google Scholar] [CrossRef]
- Kung, H.-N.; Yang, M.-J.; Chang, C.-F.; Chau, Y.-P.; Lu, K.-S. In Vitro and in Vivo Wound Healing-Promoting Activities of β-Lapachone. Am. J. Physiol. Physiol. 2008, 295, C931–C943. [Google Scholar] [CrossRef]
- Juríková, M.; Danihel, Ľ.; Polák, Š.; Varga, I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochemica. 2016, 118, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Rousselle, P.; Gentilhomme, E.; Neveux, Y. Markers of Epidermal Proliferation and Differentiation. Agache’s Meas Ski. Non-Invasive Investig. Physiol. Norm. Constants 2017, 35, 407–415. [Google Scholar] [CrossRef]
- Homberg, E.E.; Seher, A. Sterine in Trichosanthes kirilowii. Phytochemistry 1977, 16, 288–290. [Google Scholar] [CrossRef]
- Sun, X.-Y.; Wu, H.-H.; Fu, A.-Z.; Zhang, P. Chemical constituents of Trichosanthes kirilowii Maxim. Acta Pharm. Sin. 2012, 47, 922–925. [Google Scholar]
- Zhang, R.-C. Chemical Constitutes from Flesh of Trichosanthes Kirilowii. Chin. Tradit. Herb. Drugs 2019, 24, 3284–3290. [Google Scholar]
- Ruttanapattanakul, J.; Wikan, N.; Okonogi, S.; Takuathung, M.N.; Buacheen, P.; Pitchakarn, P.; Potikanond, S.; Nimlamool, W. Boesenbergia rotunda Extract Accelerates Human Keratinocyte Proliferation through Activating ERK1/2 and PI3K/Akt Kinases. Biomed. Pharmacother. 2021, 133, 111002. [Google Scholar] [CrossRef] [PubMed]
- Zar’ah, N.A.; Syachruddin, S.; Kusmiyati, K. The Effect of Green Betel Leaves (Piper betle L.) Extract on Wounding Healing in Mice (Mus musculus L.). J. Biol. Trop. 2021, 21, 103–111. [Google Scholar] [CrossRef]
- Arnold, F.; West, D.C. Angiogenesis in Wound Healing. Pharmacol. Ther. 1991, 52, 407–422. [Google Scholar] [CrossRef]
- Barrientos, S.; Stojadinovic, O.; Golinko, M.S.; Brem, H. Tomic-Canic, M.J.W. Regeneration. Growth Factors Cytokines Wound Health 2008, 16, 585–601. [Google Scholar] [CrossRef]
- Saunders, W. Dorland’s Illustrated Medical Dictionary, 2007; Saunders Elsevier: Philadelphia, PA, USA, 2011. [Google Scholar]
- Amjad, S.B.; Carachi, R.; Edward, M. Keratinocyte Regulation of TGF-β and Connective Tissue Growth Factor Expression: A Role in Suppression of Scar Tissue Formation. Wound Repair Regen 2007, 15, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Birkenhauer, E.; Neethirajan, S. A Double-Edged Sword: The Role of VEGF in Wound Repair and Chemoattraction of Opportunist Pathogens. Int. J. Mol. Sci. 2015, 16, 7159–7172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, N.-K.; Jeong, Y.J.; Pyun, B.-J.; Lee, Y.-J.; Kim, S.-H.; Lee, H.-J. Geranylgeranylacetone Ameliorates Intestinal Radiation Toxicity by Preventing Endothelial Cell Dysfunction. Int. J. Mol. Sci. 2017, 18, 2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; Xu, S. ERK1/2 MAP Kinases in Cell Survival and Apoptosis. IUBMB Life. 2006, 58, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Ebisuya, M.; Ashida, F.; Okamoto, K.; Yonehara, S.; Nishida, E. Continuous ERK Activation Downregulates Antiproliferative Genes throughout G1 Phase to Allow Cell-Cycle Progression. Curr. Biol. 2006, 16, 1171–1182. [Google Scholar] [CrossRef]
- Recchia, A.G.; Filice, E.; Pellegrino, D.; Dobrina, A.; Cerra, M.C.; Maggiolini, M. Endothelin-1 Induces Connective Tissue Growth Factor Expression in Cardiomyocytes. J. Mol. Cell. Cardiol. 2009, 46, 352–359. [Google Scholar] [CrossRef]
- Orlandini, M.; Marconcini, L.; Ferruzzi, R.; Oliviero, S. Identification of a C-Fos-Induced Gene That Is Related to the Platelet-Derived Growth Factor/Vascular Endothelial Growth Factor Family. Proc. Natl. Acad. Sci. USA 1996, 93, 11675–11680. [Google Scholar] [CrossRef] [Green Version]
- Marconcini, L.; Marchiò, S.; Morbidelli, L.; Cartocci, E.; Albini, A.; Ziche, M.; Bussolino, F.; Oliviero, S. C-Fos-Induced Growth Factor/Vascular Endothelial Growth Factor D Induces Angiogenesis in Vivo and in Vitro. Proc. Natl. Acad. Sci. USA 1999, 96, 9671–9676. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Yang, M.; Xu, F.; Chen, J.; Ma, S. Acceleration of Wound Healing Activity with Syringic Acid in Streptozotocin Induced Diabetic Rats. Life Sci. 2019, 233, 116728. [Google Scholar] [CrossRef]
- Süntar, I.; Akkol, E.K.; Keles, H.; Yesilada, E.; Sarker, S.D. Exploration of the Wound Healing Potential of Helichrysum Graveolens (Bieb.) Sweet: Isolation of Apigenin as an Active Component. J. Ethnopharmacol. 2013, 149, 103–110. [Google Scholar] [CrossRef]
- Moghadam, S.E.; Ebrahimi, S.N.; Salehi, P.; Moridi Farimani, M.; Hamburger, M.; Jabbarzadeh, E. Wound Healing Potential of Chlorogenic Acid and Myricetin-3-O-β-Rhamnoside Isolated from Parrotia Persica. Molecules 2017, 22, 1501. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wen, X.; Liu, B.; Zhang, Q.; Zhang, J.; Miao, H.; Zhu, R. Diosmetin Inhibits the Metastasis of Hepatocellular Carcinoma Cells by Downregulating the Expression Levels of MMP-2 and MMP-9. Mol. Med. Rep. 2016, 13, 2401–2408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, A.; Ashida, H.; Terao, J. Multitargeted Cancer Prevention by Quercetin. Cancer Lett. 2008, 269, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Lepley, D.M.; Li, B.; Birt, D.F.; Pelling, J.C. The Chemopreventive Flavonoid Apigenin Induces G2/M Arrest in Keratinocytes. Carcinogenesis 1996, 17, 2367–2375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Na, E.J.; Yang, H.O.; Choi, Y.E.; Han, H.S.; Rhie, S.J.; Ryu, J.Y.; Na, E.J.; Yang, H.O.; Choi, Y.E.; Han, H.S. Anti-Inflammatory and Collagen Production Effect of Syringic Acid on Human Keratinocyte (HaCaT) Damaged by Ultraviolet B. Asian J. Beauty Cosmetol. 2018, 16, 523–531. [Google Scholar] [CrossRef]
- Madaan, A.; Joshi, V.; Kishore, A.; Verma, R.; Singh, A.T.; Jaggi, M.; Sung, Y.K. In Vitro Hair Growth Promoting Effects of Naringenin and Hesperetin on Human Dermal Papilla Cells and Keratinocytes. Am. J. Dermatol. Venereol. 2017, 6, 51–57. [Google Scholar] [CrossRef]
- Lee, K.-H.; Do, H.-K.; Kim, D.-Y.; Kim, W. Impact of Chlorogenic Acid on Modulation of Significant Genes in Dermal Fibroblasts and Epidermal Keratinocytes. Biochem. Biophys. Res. Commun. 2021, 583, 22–28. [Google Scholar] [CrossRef]
Genes | Forward | Reverse | Reference |
---|---|---|---|
PCNA | AACCTCACCAGTATGTCCAA | ACTTTCTCCTGGTTTGGTG | [24] |
KI67 | CCAAAGAAGGCTGAGGACAA | CCCTTAAGCAGACTGACAGC | This study |
MCM2 | AATCTATGGCGACAGGCAG | ATCACATAGTCCCGCAGAT | This study |
Cyclin D1 | CTGTGCTGCGAAGTGGAAACC | GACGATCTTCCGCATGGAC | This study |
Cyclin B1 | TAAGGCGAAGATCAACATGG | GCTTCCTTCTTCATAGGCAT | This study |
Cyclin E1 | ACACCATGAAGGAGGACG | CACAGACTGCATTATTGTCCC | This study |
CDK1 | CAGGTCAAGTGGTAGCCATG | ACCTGGAATCCTGCATAAGC | This study |
CDK2 | TTCTCATCGGGTCCTCCACC | TCGGTACCACAGGGTCACCA | This study |
CDK4 | CTGAGAATGGCTACCTCTCG | CGAACTGTGCTGATGGGAAG | This study |
CDK6 | CCGAAGTCTTGCTCCAGTCC | GGGAGTCCAATCACGTCCAA | This study |
KRT5 | AGCAGTGGTACGCTTGTTGATT | GCCTGGACTCAGAGCTGAGAA | [25] |
KRT14 | GGCCTGCTGAGATCAAAGACTAC | CACTGTGGCTGTGAGAATCTTGTT | [26] |
KRT6 | CTGAGGCTGAGTCCTGGTAC | GTTCTTGGCATCCTTGAGG | This study |
KRT17 | GCTGCTACAGCTTTGGCTCT | TCACCTCCAGCTCAGTGTTG | [27] |
c-fos | GGAGGAGGGAGCTGACTGATA | GCAATCTCGGTCTGCAA | [28] |
c-jun | TTCTATGACGATGCCCTCAACGC | GCTCTGTTTCAGGATCTTGGGGTTAC | [28] |
Fra-1 | GGGCATGTTCCGAGACTTC | GCACCAGGTGGAACTTCTG | [29] |
Elk1 | CTGACCCCATCCCTGCTTCCTA | GAAGTGAATGCTAGGAGGCAGCG | [28] |
FGF2 | AAAAACGGGGGCTTCTTCCT | AGCCAGGTAACGGTTAGCAC | [30] |
EGF | AGTCCGTGACTTGCAAGAGG | CCTCTTCTTCCCTAGCCCCT | [30] |
TGF | TGGTGGAAACCCACAACGAA | GAGCAACACGGGTTCAGGTA | [30] |
CTGF | GTTTGGCCCAGACCCAACTA | GGCTCTGCTTCTCTAGCCTG | [30] |
VEGF | CTTGCCTTGCTGCTCTACCT | GCAGTAGCTGCGCTGATAGA | [30] |
COL1A1 | CATGACCGAGACGTGTGGAA | GGCAGTTCTTGGTCTCGTCA | [30] |
GAPDH | GTATCGTGGAAGGACTCATG | GAGGCAGGGATGATGTTC | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kim, J.-G.; Kim, K.-Y. Trichosanthes kirilowii Extract Promotes Wound Healing through the Phosphorylation of ERK1/2 in Keratinocytes. Biomimetics 2022, 7, 154. https://doi.org/10.3390/biomimetics7040154
Kim M, Kim J-G, Kim K-Y. Trichosanthes kirilowii Extract Promotes Wound Healing through the Phosphorylation of ERK1/2 in Keratinocytes. Biomimetics. 2022; 7(4):154. https://doi.org/10.3390/biomimetics7040154
Chicago/Turabian StyleKim, Minho, Jae-Goo Kim, and Ki-Young Kim. 2022. "Trichosanthes kirilowii Extract Promotes Wound Healing through the Phosphorylation of ERK1/2 in Keratinocytes" Biomimetics 7, no. 4: 154. https://doi.org/10.3390/biomimetics7040154
APA StyleKim, M., Kim, J. -G., & Kim, K. -Y. (2022). Trichosanthes kirilowii Extract Promotes Wound Healing through the Phosphorylation of ERK1/2 in Keratinocytes. Biomimetics, 7(4), 154. https://doi.org/10.3390/biomimetics7040154