The Education Pipeline of Biomimetics and Its Challenges
Abstract
:1. Introduction
1.1. Motivation
1.2. Biomimetics and Education
2. The Biom* Education Pipeline
2.1. Biom* Training in K-12
2.1.1. BIRDEE, Georgia Institute of Technology
- familiarization with biom* as a design technique,
- integration of the processes and tools of biom* into standard design methodologies taught in high school, for instance, integrating biological inspiration into the ideation step of the standard engineering design process,
- using Structure-Function-Mechanism (SFM) analysis for understanding biology in the context of engineering,
- and conceptual transfer from biology to design.
2.1.2. Deggendorf Institute of Technology
2.1.3. Be Bio-inspired, Deggendorf Institute of Technology
2.2. Biom* Training in Higher Education
2.3. Biom* Training in Industry
3. Industry Challenges and Pipeline Solutions
3.1. Industry Challenges
3.2. Pipeline Solutions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Standardization Organization: Biomimetics—Terminology, Concepts and Methodology (18458). 2015. Available online: https://www.sis.se/api/document/preview/918837/ (accessed on 25 April 2022).
- Wanieck, K.; Ritzinger, D.; Zollfrank, C.; Jacobs, S. Biomimetics: Teaching the tools of the trade. FEBS Open Bio 2020, 10, 2250–2267. [Google Scholar] [CrossRef] [PubMed]
- Graeff, E.; Letard, A.; Raskin, K.; Maranzana, N.; Aoussat, A. Biomimetics from practical feedback to an interdisciplinary process. Res. Eng. Design 2021, 32, 349–375. [Google Scholar] [CrossRef]
- Jacobs, S.R.; Nichol, E.C.; Helms, M.E. “Where Are We Now and Where Are We Going?” The BioM Innovation Database. J. Mech. Des. 2014, 136, 111101. [Google Scholar] [CrossRef]
- Choi, B.; Pak, A. Multidisciplinarity, interdisciplinarity and transdis-ciplinarity in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clin. Investig. Med. 2006, 29, 351–364. [Google Scholar] [PubMed]
- Stock, P.; Burton, R.J. Defining Terms for Integrated (Multi-Inter-Trans-Disciplinary) Sustainability Research. Sustainability 2011, 3, 1090–1113. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, S.; Wanieck, K. Biom*: On becoming a teachable discipline. In Biomimicry for Materials, Design and Habitats; Elsevier: Amsterdam, The Netherlands, 2022; pp. 3–23. [Google Scholar]
- Speck, O.; Speck, T. Biomimetics and Education in Europe: Challenges, Opportunities, and Variety. Biomimetics 2021, 6, 49. [Google Scholar] [CrossRef]
- Graeff, E.; Maranzana, N.; Aoussat, A. Biological Practices and Fields, Missing Pieces of the Biomimetics’ Methodological Puzzle. Biomimetics 2020, 5, 62. [Google Scholar] [CrossRef]
- Graeff, E.; Maranzana, N.; Aoussat, A. Engineers’ and Biologists’ Roles during Biomimetic Design Processes, Towards a Methodological Symbiosis. Proc. Int. Conf. Eng. Des. 2019, 1, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Graeff, E.; Maranzana, N.; Aoussat, A. Biomimetics, where are the biologists? J. Eng. Des. 2019, 30, 289–310. [Google Scholar] [CrossRef]
- Stevens, L.L.; Fehler, M.; Bidwell, D.; Singhal, A.; Baumeister, D. Building from the Bottom Up: A Closer Look into the Teaching and Learning of Life’s Principles in Biomimicry Design Thinking Courses. Biomimetics 2022, 7, 25. [Google Scholar] [CrossRef]
- Wanieck, K.; Fayemi, P.-E.; Maranzana, N.; Zollfrank, C.; Jacobs, S. Biomimetics and its tools. Bioinspired Biomim. Nanobiomater. 2017, 6, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Snell-Rood, E. Interdisciplinarity: Bring biologists into biomimetics. Nature 2016, 529, 277–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagel, J.K.; Pittman, P.; Pidaparti, R.; Rose, C.; Beverly, C. Teaching bioinspired design using C–K theory. Bioinspired Biomim. Nanobiomater. 2017, 6, 77–86. [Google Scholar] [CrossRef]
- Ellis, E.C.; Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 2008, 6, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Sustainability. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sala, O.E.; Chapin, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Crutzen, P.J. Geology of Mankind. In Paul J. Crutzen: A Pioneer on Atmospheric Chemistry and Climate Change in the Anthropocene; Crutzen, P.J., Brauch, H.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 211–215. [Google Scholar]
- Gilbert, N. UK ecosystem services declining. Nature 2011, 24, 7–11. [Google Scholar] [CrossRef]
- Oliver, T.H.; Isaac, N.J.B.; August, T.A.; Woodcock, B.A.; Roy, D.B.; Bullock, J.M. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 2015, 6, 10122. [Google Scholar] [CrossRef] [Green Version]
- Urban, M.C. Climate change. Accelerating extinction risk from climate change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef] [Green Version]
- Stokes, G.L.; Lynch, A.J.; Lowe, B.S.; Funge-Smith, S.; Valbo-Jørgensen, J.; Smidt, S.J. COVID-19 pandemic impacts on global inland fisheries. Proc. Natl. Acad. Sci. USA 2020, 117, 29419–29421. [Google Scholar] [CrossRef]
- Pearson, R.M.; Sievers, M.; McClure, E.C.; Turschwell, M.P.; Connolly, R.M. COVID-19 recovery can benefit biodiversity. Science 2020, 368, 838–839. [Google Scholar] [CrossRef] [PubMed]
- Pacaol, N.F. Improvement of water quality amidst COVID-19 pandemic: A paradoxical picture. J. Public Health 2021, 43, e383–e384. [Google Scholar] [CrossRef] [PubMed]
- Coll, M. Environmental effects of the COVID-19 pandemic from a (marine) ecological perspective. Ethics. Sci. Environ. Polit. 2020, 20, 41–55. [Google Scholar] [CrossRef]
- Ammendolia, J.; Saturno, J.; Brooks, A.L.; Jacobs, S.; Jambeck, J.R. An emerging source of plastic pollution: Environmental presence of plastic personal protective equipment (PPE) debris related to COVID-19 in a metropolitan city. Environ. Pollut. 2021, 269, 116160. [Google Scholar] [CrossRef]
- Kennedy, E.B.; Marting, T.A. Biomimicry: Streamlining the Front End of Innovation for Environmentally Sustainable Products. Res.-Technol. Manag. 2016, 59, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-Based Solutions: New Influence for Environmental Management and Research in Europe. GAIA-Ecol. Perspect. Sci. Soc. 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; et al. Safeguarding pollinators and their values to human well-being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef] [Green Version]
- Mead, T.; Jeanrenaud, S. The elephant in the room: Biomimetics and sustainability? Bioinspired Biomim. Nanobiomater. 2017, 6, 113–121. [Google Scholar] [CrossRef]
- Zari, M.P. Ecosystem services analysis for the design of regenerative built environments. Build. Res. Inf. 2012, 40, 54–64. [Google Scholar] [CrossRef]
- Zari, M.P. Biomimetic design for climate change adaptation and mitigation. Archit. Sci. Rev. 2010, 53, 172–183. [Google Scholar] [CrossRef]
- Vincent, J.F.V. Biomimetics—A review. Proc. Inst. Mech. Eng. H 2009, 223, 919–939. [Google Scholar] [CrossRef] [PubMed]
- Lepora, N.F.; Verschure, P.; Prescott, T.J. The state of the art in biomimetics. Bioinspir. Biomim. 2013, 8, 13001. [Google Scholar] [CrossRef]
- Zollfrank, C. Bioinspired material surfaces—Science or engineering? Scr. Mater. 2014, 74, 3–8. [Google Scholar] [CrossRef]
- Mead, T.L. Biologically-Inspired innovation in large companies: A path for corporate participation in biophysical systems? Int. J. Des. Nat. Ecodyn. 2014, 9, 216–229. [Google Scholar] [CrossRef] [Green Version]
- Helfman Cohen, Y.; Cohen, Y.H.; Reich, Y. Biomimetic Design Method for Innovation and Sustainability; Springer: Cham, Switzerland, 2016; ISBN 9783319339962. [Google Scholar]
- Ahmed-Kristensen, S.; Christensen, B.T.; Lenau, T. Naturally original: Stimulating creative design through biological analogies and random images. In Proceedings of the DESIGN 2014 13th International Design Conference, Dubrovnic, Croatia, 19–22 May 2014; pp. 427–436. [Google Scholar]
- Keshwani, S.; Lenau, T.A.; Ahmed-Kristensen, S.; Chakrabarti, A. Comparing novelty of designs from biological-inspiration with those from brainstorming. J. Eng. Des. 2017, 28, 654–680. [Google Scholar] [CrossRef] [Green Version]
- Graham, I.D.; Logan, J.; Harrison, M.B.; Straus, S.E.; Tetroe, J.; Caswell, W.; Robinson, N. Lost in knowledge translation: Time for a map? J. Contin. Educ. Health Prof. 2006, 26, 13–24. [Google Scholar] [CrossRef]
- Goel, A.K.; McAdams, D.A.; Stone, R.B. Biologically Inspired Design: Computational Methods and Tools; Springer: London, UK, 2014; ISBN 9781447152477. [Google Scholar]
- Gillis, D.; Nelson, J.; Driscoll, B.; Hodgins, K.; Fraser, E.; Jacobs, S. Interdisciplinary and Transdisciplinary Research and Education in Canada: A Review and Suggested Framework. CELT 2017, 10, 203–222. [Google Scholar] [CrossRef]
- Nagel, J.K.S.; Pidaparti, R.M. Significance, Prevalence and Implications for Bio-Inspired Design Courses in the Undergraduate Engineering Curriculum. In Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC, USA, 21–24 August 2016. [Google Scholar]
- Nagel, J.K.S.; Rose, C.; Beverly, C.; Pidaparti, R. Bio-inspired Design Pedagogy in Engineering. In Design Education Today; Springer: Cham, Switzerland, 2019; pp. 149–178. [Google Scholar]
- Yen, J.; Helms, M.; Goel, A.; Tovey, C.; Weissburg, M. Adaptive Evolution of Teaching Practices in Biologically Inspired Design. In Biologically Inspired Design; Springer: London, UK, 2014; pp. 153–199. [Google Scholar]
- Fu, K.; Moreno, D.; Yang, M.; Wood, K.L. Bio-Inspired Design: An Overview Investigating Open Questions From the Broader Field of Design-by-Analogy. J. Mech. Des. 2014, 136, 111102. [Google Scholar] [CrossRef] [Green Version]
- Chirazi, J.; Wanieck, K.; Fayemi, P.-E.; Zollfrank, C.; Jacobs, S. What Do We Learn from Good Practices of Biologically Inspired Design in Innovation? Appl. Sci. 2019, 9, 650. [Google Scholar] [CrossRef] [Green Version]
- Maltese, A.V.; Tai, R.H. Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among U.S. students. Sci. Ed. 2011, 95, 877–907. [Google Scholar] [CrossRef]
- Kesel, A.B.; Blank, B. Entwicklungseinschätzungen für das Ausbildungs- und Berufsfeld Bionik: Delphi-studie 2018. In Proceedings of the Bionik: Patente aus der Natur. Tagungsbeiträge 9. Bionik-Kongress, Bremen, Germany, 26–27 October 2018; Kesel, A.B., Zehren, D., Eds.; Bionik-Innovations-Centrum Bremen: Bremen, Germany, 2018. [Google Scholar]
- Hunley, S.; Whitman, J.; Baek, S.; Tan, X.; Kim, D. Incorporating The Importance of Interdisciplinary Understanding in K 12 Engineering Outreach Programs Using A Biomimetic Device. In Proceedings of the 2010 Annual Conference & Exposition Proceedings, Louisville, Kentucky, 20–23 June 2010. [Google Scholar]
- Blum, M.; Cadwell, K.; Hasenwinkel, J. A Mechanics of Materials Outreach Activity—Reconstructing the Human Body: Biomaterials and Biomimicry. In Proceedings of the 2015 ASEE Annual Conference and Exposition Proceedings, Seattle, WA, USA, 14–17 June 2015. [Google Scholar]
- Sabo, C.; Mullen, M.; Burrows, A. Teaching Bio-Inspired Engineering in K-12 Schools. In Proceedings of the Infotech@Aerospace 2011, St. Louis, MO, USA, 29–31 March 2011; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2011. [Google Scholar]
- Allameh, S.; Brackman, T.; Elifrits, C.D.; Sadat-Hossieny, M. Assessing The Outcomes Of Two Summer Camps At Nku. In Proceedings of the 2008 Annual Conference & Exposition Proceedings, Pittsburgh, PA, USA, 22–25 June 2008. [Google Scholar]
- Williams, D.; Barber, A.; Sheppard, P. Making Inspired by Nature: Engaging Preservice Elementary Teachers and Children in Maker-centered Learning and Biomimicry. In Proceedings of the Society for Information Technology & Teacher Education International Conference; Association for the Advancement of Computing in Education (AACE), Las Vegas, NV, USA, 18 March 2019; pp. 1660–1665, ISBN 978-1-939797-37-7. [Google Scholar]
- Gomez, N.; Rinehart, J.; Autenrieth, R.; Butler-Purry, K.; Hill Price, A. Enrichment Experiences In Engineering (E3) For Teachers Summer Research Program. In Proceedings of the 2004 Annual Conference Proceedings, Stellenbosch, South Africa, 4–6 October 2004. [Google Scholar]
- Ragusa, G.; Khoo, M.; Meng, E.; Cocozza, J. Engineering Outreach: Connecting Biomimetic Research To Urban K 12 Classrooms. In Proceedings of the 2008 Annual Conference & Exposition Proceedings, Pittsburgh, PA, USA, 22–25 June 2008. [Google Scholar]
- Alemdar, M.; Ehsan, H.; Cappelli, C.; Kim, E.; Moore, R.; Helms, M.; Rosen, J.; Weissburg, M. Biologically Inspired Design For Engineering Education: Online Teacher Professional Learning (Evaluation). In Proceedings of the 2021 ASEE Virtual Annual Conference Content Access Proceedings, Virtual, 26–29 July 2021. [Google Scholar]
- Humans Wanted: How Canadian Youth Can Thrive in the Age of Disruption; Royal Bank of Canada: Toronto, ON, Canada, 2018. Available online: https://www.rbc.com/dms/enterprise/futurelaunch/_assets-custom/pdf/RBC-Future-Skills-Report-FINAL-Singles.pdf?_ga=2.100167641.678287345.1656698093-776485791.1656698091 (accessed on 25 April 2022).
- Gleich, A.; Pade, C.; Petschow, U.; Pissarskoi, E. Potentials and Trends in Biomimetics, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 9783642052460. [Google Scholar]
- Helms, M. 16 Challenges for BID in Industry. In Proceedings of the NASA VINE Tools Workshop, Cleveland, OH, USA, 9 September 2019. [Google Scholar]
- Eggermont, M.J. Bio-inspired Design and Information Visualization. Ph.D. Dissertation, University of Calgary, Calgary, AB, Canada, 2018. [Google Scholar]
- Fayemi, P.E.; Wanieck, K.; Zollfrank, C.; Maranzana, N.; Aoussat, A. Biomimetics: Process, tools and practice. Bioinspir. Biomim. 2017, 12, 11002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rovalo, E.; McCardle, J. Performance Based Abstraction of Biomimicry Design Principles using Prototyping. Designs 2019, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Wanieck, K. Biomimetics for Technical Products and Innovation: An Overview for Applications, 1st ed.; Springer: Wiesbaden, Germany, 2022; ISBN 9783658331504. [Google Scholar]
- Anicic, K.P.; Buselic, V. Importance of Generic Skills of ICT Graduates—Employers, Teaching Staff, and Students Perspective. IEEE Trans. Educ. 2021, 64, 245–252. [Google Scholar] [CrossRef]
- Bennett, R. Employers’ Demands for Personal Transferable Skills in Graduates: A content analysis of 1000 job advertisements and an associated empirical study. J. Vocat. Educ. Train. 2002, 54, 457–476. [Google Scholar] [CrossRef]
- Hill, M.A.; Overton, T.; Kitson, R.R.A.; Thompson, C.D.; Brookes, R.H.; Coppo, P.; Bayley, L. ‘They help us realise what we’re actually gaining’: The impact on undergraduates and teaching staff of displaying transferable skills badges. Act. Learn. High. Educ. 2022, 23, 17–34. [Google Scholar] [CrossRef]
- Succi, C.; Canovi, M. Soft skills to enhance graduate employability: Comparing students and employers’ perceptions. Stud. High. Educ. 2020, 45, 1834–1847. [Google Scholar] [CrossRef]
- The Future of Jobs Report 2020; World Economic Forum, 2020; CH-1223 Cologny/Geneva Switzerland. Available online: https://www.weforum.org/reports/the-future-of-jobs-report-2020/ (accessed on 25 April 2022).
- Rumbens, D.; Richardson, C.; Lee, C.; Mizrahi, J.; Roche, C. The Path to Prosperity: Why the Future of Work is Human: The Future of Work Isn’t Scary. But It Is Misunderstood. Available online: https://www2.deloitte.com/au/en/pages/building-lucky-country/articles/path-prosperity-future-work.html (accessed on 25 April 2022).
- Schulz, B. The Importance of Soft Skills: Education Beyond Academic Knowledge. J. Lang. Commun. 2008, 2, 146–154. [Google Scholar]
- Gruber, P. Biodesign: Textile Hybrids. Available online: https://www.uakron.edu/bric/docs/Fall_2020_biodesign_web_syllabus.pdf (accessed on 25 April 2022).
- Gruber, P. Biomimicry Design Challenge. Available online: https://www.uakron.edu/bric/docs/Biomimicry-Design-Challenge-Syllabus-032119.pdf (accessed on 25 April 2022).
- Casadevall i Solvas Xevi. Biomachines and Biomimetics. Available online: https://onderwijsaanbod.kuleuven.be/syllabi/e/I0O79BE.htm#activetab=doelstellingen_idp1425952 (accessed on 25 April 2022).
- Gopal Nadkarni. Technology Based Startups: Biomimicry Certificate. Available online: https://www.uakron.edu/bric/docs/Technology-Based-Startups-Syllabus-032219.pdf (accessed on 25 April 2022).
- Wahl, D.C. Bionics vs. biomimicry: From control of nature to sustainable participation in nature. In Design and Nature III: Comparing Design in Nature with Science and Engineering; Brebbia, C.A., Ed.; WIT Press: Southampton, UK, 2006; pp. 289–298. ISBN 9781845641665. [Google Scholar]
- AskNature. AskNature—Innovation Inspired by Nature. Available online: https://asknature.org (accessed on 24 May 2022).
- Antony, F.; Grießhammer, R.; Speck, T.; Speck, O. Sustainability assessment of a lightweight biomimetic ceiling structure. Bioinspir. Biomim. 2014, 9, 16013. [Google Scholar] [CrossRef]
- Antony, F.; Grießhammer, R.; Speck, T.; Speck, O. The cleaner, the greener? Product sustainability assessment of the biomimetic façade paint Lotusan® in comparison to the conventional façade paint Jumbosil. Beilstein J. Nanotechnol. 2016, 7, 2100–2115. [Google Scholar] [CrossRef] [Green Version]
- Speck, O.; Speck, D.; Horn, R.; Gantner, J.; Sedlbauer, K.P. Biomimetic bio-inspired biomorph sustainable? An attempt to classify and clarify biology-derived technical developments. Bioinspir. Biomim. 2017, 12, 11004. [Google Scholar] [CrossRef]
- Kennedy, E.; Fecheyr-Lippens, D.; Hsiung, B.-K.; Niewiarowski, P.H.; Kolodziej, M. Biomimicry: A Path to Sustainable Innovation. Des. Issues 2015, 31, 66–73. [Google Scholar] [CrossRef]
Program | Level | Type | Reference |
---|---|---|---|
Cardiovascular and Tissue Mechanics Laboratory experience | Grade 7–9 | Module | [51] |
Mechanics of Materials Outreach Activity | Grade 8 | Module | [52] |
Project STEP | Grade 10 | Module | [53] |
NKU Engineering Camps | High School | Summer Camps | [54] |
Making Inspired by Nature | Pre-service teachers | Curriculum integrated lessons | [55] |
E3 for Teachers Summer Research Program | Teachers | Summer Internship | [56] |
Research Experience for Teachers Program | Teachers | Summer Internship | [57] |
BIRDEE | High School Students & Teachers | Summer training | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobs, S.; Eggermont, M.; Helms, M.; Wanieck, K. The Education Pipeline of Biomimetics and Its Challenges. Biomimetics 2022, 7, 93. https://doi.org/10.3390/biomimetics7030093
Jacobs S, Eggermont M, Helms M, Wanieck K. The Education Pipeline of Biomimetics and Its Challenges. Biomimetics. 2022; 7(3):93. https://doi.org/10.3390/biomimetics7030093
Chicago/Turabian StyleJacobs, Shoshanah, Marjan Eggermont, Michael Helms, and Kristina Wanieck. 2022. "The Education Pipeline of Biomimetics and Its Challenges" Biomimetics 7, no. 3: 93. https://doi.org/10.3390/biomimetics7030093
APA StyleJacobs, S., Eggermont, M., Helms, M., & Wanieck, K. (2022). The Education Pipeline of Biomimetics and Its Challenges. Biomimetics, 7(3), 93. https://doi.org/10.3390/biomimetics7030093