Beyond Structure-Function: Getting at Sustainability within Biomimicry Pedagogy
Abstract
:1. Introduction
2. Pedagogical Framing
3. Conceptual Scaffolding
4. Methods
5. Results
5.1. Pre- and Post-Design Sprint Insights
5.2. Observations and Outcomes from Student Projects
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Project Descriptions
References
- Iouguina, A.; Dawson, J.; Hallgrímsson, B.; Smart, G. Biologically informed disciplines: A comparative analysis of bionics, biomimetics, biomimicry, and bio-inspiration among others. Int. J. Des. Nat. Ecodyn. 2014, 9, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Speck, O.; Speck, D.; Horn, R.; Gantner, J.; Sedlbauer, K.P. Biomimetic bio-inspired biomorph sustainable? An attempt to classify and clarify biology-derived technical developments. Bioinspir. Biomim. 2017, 12, 011004. [Google Scholar] [CrossRef] [PubMed]
- Mead, T.; Coley, D.; Borden, D. Navigating the tower of Babel: The epistemological shift of bioinspired innovation. Biomimetics 2020, 5, 60. [Google Scholar] [CrossRef] [PubMed]
- ISO 18458:2015; Biomimetics—Terminology, Concepts and Methodology. International Organization for Standardization: Geneva, Switzerland, 2015.
- Helms, M.; Vattam, S.S.; Goel, A.K. Biologically inspired design: Process and products. Des. Stud. 2009, 30, 606–622. [Google Scholar] [CrossRef]
- Baumeister, D.; Tocke, R.; Dwyer, J.; Ritter, S.; Benyus, J.M. Biomimicry Resource Handbook: A Seed Bank of Best Practices; CreateSpace: Scotts Valley, CA, USA, 2014. [Google Scholar]
- MacKinnon, R.B.; Oomen, J.; Zari, M.P. Promises and presuppositions of biomimicry. Biomimetics 2020, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Reap, J.; Baumeister, D.; Bras, B. Holism, biomimicry and sustainable engineering. In Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition, Orlando, FL, USA, 5–11 November 2005; pp. 423–431. [Google Scholar] [CrossRef]
- O’Rourke, J.M. Environmentally Sustainable Bioinspired Design: Critical Analysis and Trends. Master’s Thesis, The University of Texas at Austin, Austin, TX, USA, 2013. [Google Scholar]
- Kennedy, E.; Fecheyr-Lippens, D.; Hsiung, B.-K.; Niewiarowski, P.H.; Kolodziej, M. Biomimicry: A path to sustainable innovation. Des. Issues 2015, 31, 66–73. [Google Scholar] [CrossRef]
- Zari, M.P. Biomimetic approaches to architectural design for increased sustainability. In Proceedings of the New Zealand Sustainable Building Conference, Auckland, New Zealand, 14–16 November 2007; p. 10. [Google Scholar]
- Mead, T.; Jeanrenaud, S. The elephant in the room: Biomimetics and sustainability? Bioinspir. Biomim. Nanobiomat. 2017, 6, 113–121. [Google Scholar] [CrossRef]
- O’Rourke, J.M.; Seepersad, C.C. Toward a Methodology for systematically generating energy- and materials-efficient concepts using biological analogies. J. Mech. Des. 2015, 137, 091101. [Google Scholar] [CrossRef]
- Hawken, P.; Lovins, A.; Lovins, L.H. Natural Capitalism: Creating the Next Industrial Revolution; Little, Brown and Co.: New York, NY, USA, 2000. [Google Scholar]
- McDonough, W.; Braungart, M. Cradle to Cradle: Remaking the Way We Make Things; Vintage Books: London, UK, 2009. [Google Scholar]
- Mang, P.; Reed, B. Designing from place: A regenerative framework and methodology. Build. Res. Inf. 2012, 40, 23–38. [Google Scholar] [CrossRef]
- Speck, O.; Speck, T. Biomimetics and Education in Europe: Challenges, Opportunities, and Variety. Biomimetics 2021, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- Innovation Inspired by Nature—AskNature. Available online: https://asknature.org/ (accessed on 18 April 2022).
- Biomimicry Institute, “Nature’s Unifying Patterns”, Biomimicry Toolbox. Available online: https://toolbox.biomimicry.org/core-concepts/natures-unifying-patterns/ (accessed on 5 April 2022).
- Benyus, J.M. Biomimicry: Innovation Inspired by Nature; Morrow: New York, NY, USA, 1997. [Google Scholar]
- Erkman, S. Industrial ecology: An historical view. J. Clean. Prod. 1997, 5, 1–10. [Google Scholar] [CrossRef]
- Jelinski, L.W.; E Graedel, T.; Laudise, R.A.; McCall, D.W.; Patel, C.K. Industrial ecology: Concepts and approaches. Proc. Natl. Acad. Sci. USA 1992, 89, 793–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagel, J.K.S.; Rose, C.S.; Beverly, C.; Pidaparti, R.M. Bio-inspired Design Pedagogy in Engineering, In Design Education Today; Schaefer, D., Coates, G., Eckert, C., Eds.; Springer: Cham, Switzerland, 2019; pp. 149–178. [Google Scholar] [CrossRef]
- Wanieck, K.; Ritzinger, D.; Zollfrank, C.; Jacobs, S. Biomimetics: Teaching the tools of the trade. FEBS Open Bio. 2020, 10, 2250–2267. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.L.; Fehler, M.; Bidwell, D.; Singhal, A.; Baumeister, D. Building from the Bottom Up: A Closer Look into the Teaching and Learning of Life’s Principles in Biomimicry Design Thinking Courses. Biomimetics 2022, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.B.; Niewiarowski, P.H. Biomimicry: Do frames of inquiry support search and identification of biological models? Designs 2018, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Yen, J.; Helms, M.; Vattam, S.; Goel, A.K. Evaluating Biological Systems for Their Potential in Engineering Design. In Proceedings of the 3rd International Conference on Bionic Engineering, Zhuhai, China, 14–16 September 2010; p. 14. [Google Scholar]
- Cheong, H.; Hallihan, G.; Shu, L.H. Understanding analogical reasoning in biomimetic design: An inductive approach. In Design Computing and Cognition ’12; Gero, J.S., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 21–39. [Google Scholar] [CrossRef]
- Vattam, S.S.; Helms, M.E.; Goel, A.K. Compound analogical design: Interaction between problem decomposition and analogical transfer in biologically inspired design. In Design Computing and Cognition ’08; Gero, J.S., Goel, A.K., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 377–396. [Google Scholar] [CrossRef]
- Niklas, K.; Walker, I. The Challenges of inferring organic function from structure and its emulation in biomechanics and biomimetics. Biomimetics 2021, 6, 21. [Google Scholar] [CrossRef]
- Stevens, L.; Kopnina, H.; Mulder, K.; De Vries, M. Biomimicry design thinking education: A base-line exercise in preconceptions of biological analogies. Int. J. Technol. Des. Educ. 2020, 31, 797–814. [Google Scholar] [CrossRef] [Green Version]
- Yen, J.; Helms, M.; Goel, A.; Tovey, C.; Weissburg, M. Adaptive Evolution of Teaching Practices in Biologically Inspired Design. In Biologically Inspired Design; Goel, A.K., McAdams, D.A., Stone, R.B., Eds.; Springer: London, UK, 2014; pp. 153–199. [Google Scholar] [CrossRef]
- de Pauw, I.C.; Karana, E.; Kandachar, P.; Poppelaars, F. Comparing biomimicry and cradle to cradle with ecodesign: A case study of student design projects. J. Clean. Prod. 2014, 78, 174–183. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Product-Service Systems and Sustainability: Opportunities for Sustainable Solutions. 2002. Available online: https://wedocs.unep.org/20.500.11822/8123 (accessed on 9 June 2022).
- Scientific Applications International Corporation (SAIC); Curran, M.A.; National Risk Management Research Laboratory (U.S.); Office of Research and Development, Environmental Protection Agency, United States. Life-Cycle Assessment: Principles and Practice; National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Cincinnati, OH, USA, 2006. [Google Scholar]
- Lovins, A.; Bendewald, M.; Kinsley, M.; Bony, L.; Hutchinson, H.; Pradhan, A.; Sheikh, I.; Acher, Z. Factor Ten Engineering Design Principles; Rocky Mt. Institute: Basalt, CO, USA, 2010. [Google Scholar]
- Zimmerman, J.B.; Anastas, P.T.; Erythropel, H.C.; Leitner, W. Designing for a green chemistry future. Science 2020, 367, 397–400. [Google Scholar] [CrossRef]
- Ehrenfeld, J.R.; Hoffman, A.J. Flourishing: A Frank Conversation about Sustainability; Stanford University Press: Redwood City, CA, USA, 2013. [Google Scholar]
- MacGregor, S. This is not a lifestyle: Everyday sustainabilities, situated knowledges and engaged urban research. In Proceedings of the 4th Annual Sustainable Consumption Research & Action Initiative (SCORAI) Conference, Stockholm, Sweden/Boston, MA, USA, 10 June 2020. [Google Scholar]
- Hoagland, M.B.; Dodson, B. The Way Life Works: The Science Lover’s Illustrated Guide to How Life Grows, Develops, Reproduces, and Gets Along; Three Rivers Press: New York, NY, USA, 1998. [Google Scholar]
- Nagel, J.K.; Pidaparti, R.; Rose, C.; Beverly, C.L. Enhancing the pedagogy of bio-inspired design in an engineering curriculum. In Proceedings of the 2016 ASEE Annual Conference & Exposition Proceedings, New Orleans, LA, USA, 26–29 June 2016. [Google Scholar] [CrossRef] [Green Version]
- McInerney, S.J.; Niewiarowski, P.H. Biomimicry Training to Promote Employee Engagement in Sustainability. Biomimetics 2022, 7, 71. [Google Scholar] [CrossRef]
- Hannafin, M.; Land, S.; Oliver, K. Open learning environments: Foundations, methods, and models. Instr.-Des. Theor. Models New Paradigm Instr. Theory 1999, 2, 115–140. [Google Scholar]
- Walqui, A. Scaffolding instruction for english language learners: A conceptual framework. Int. J. Biling. Educ. Biling. 2006, 9, 159–180. [Google Scholar] [CrossRef]
- Holton, D.; Clarke, D. Scaffolding and metacognition. Int. J. Math. Educ. Sci. Technol. 2006, 37, 127–143. [Google Scholar] [CrossRef]
- Kennedy, B.; Nagel, J.K.S. Integrating biology, design, and engineering for sustainable innovation. In Proceedings of the 2015 IEEE Integrated STEM Education Conference, Princeton, NJ, USA, 7 March 2015; pp. 88–93. [Google Scholar] [CrossRef]
- VanGundy, A.B. Techniques of Structured Problem Solving; Van Nostrand Reinhold Co.: New York, NY, USA, 1981. [Google Scholar]
- The SDG Accord Report. July 2018. Available online: http://www.sustainabilityexchange.ac.uk/files/the_sdg_accord_un_high_political_forum_doc_-_interactive.pdf (accessed on 18 April 2022).
- Designers Accord. Available online: http://www.designersaccord.org/ (accessed on 18 April 2022).
- The Green Chemistry Commitment. Beyond Benign. Available online: https://www.beyondbenign.org/he-green-chemistry-commitment/ (accessed on 18 April 2022).
Example Questions |
---|
SF |
How would nature travel long distances in the air? |
How does nature reduce drag? |
How would nature allow for a safe landing? |
How does nature do quick rapid flight? |
CCL |
How does nature use readily available resources to fly? |
How does nature conserve energy while flying/swimming? |
How would nature use natural materials and chemistry for flight? |
How would nature use naturally occurring elements of weather to generate lift? |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linder, B.; Huang, J. Beyond Structure-Function: Getting at Sustainability within Biomimicry Pedagogy. Biomimetics 2022, 7, 90. https://doi.org/10.3390/biomimetics7030090
Linder B, Huang J. Beyond Structure-Function: Getting at Sustainability within Biomimicry Pedagogy. Biomimetics. 2022; 7(3):90. https://doi.org/10.3390/biomimetics7030090
Chicago/Turabian StyleLinder, Benjamin, and Jean Huang. 2022. "Beyond Structure-Function: Getting at Sustainability within Biomimicry Pedagogy" Biomimetics 7, no. 3: 90. https://doi.org/10.3390/biomimetics7030090
APA StyleLinder, B., & Huang, J. (2022). Beyond Structure-Function: Getting at Sustainability within Biomimicry Pedagogy. Biomimetics, 7(3), 90. https://doi.org/10.3390/biomimetics7030090