Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction
Abstract
1. Introduction
2. Force Measurement Methods
2.1. Global External Forcing
2.2. Local Forcing
Whole Animal Measurements
2.3. Limbs and Below
3. Discussion
3.1. Limitations
3.2. Trade-Offs in Study Design
3.3. Beyond Adhesion and Friction Measurements
3.4. Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
Adhesion | [Newtons; N] the attractive contact force acting perpendicular to the substrate. |
Friction | [Newtons; N] the contact force resisting motion parallel to the substrate. |
Static friction | [Newtons; N] the friction force acting on a stationary object. |
Dynamic friction | [Newtons; N] the friction force acting on a sliding object. |
Contact area | [square meters; m2] the area of an adhesive in direct contact with a substrate. |
Adhesive stress (Tenacity) | [Newtons per square meter; N/m2] the adhesion force per unit contact area. It provides a scale-independent representation of adhesive capacity. |
Shear stress | [Newtons per square meter; N/m2] the friction force per unit contact area. |
Fluid viscosity | [Newton seconds per square meter; N-s/m2] the resistance of a fluid to shearing. For example, honey is 10,000 times more viscous than water. |
Substrate roughness | [nanometer; nm] the average height of the bumps, features, and asperities on a substrate. |
Substrate energy | [milli-Newton per meter; mN/m] the excess energy that a surface of a material has compared to its bulk. If a substrate has high energy, then, generally, liquids and solids interact strongly with it. |
Surface tension | [milli-Newton per meter; mN/m] the force (per unit length) acting tangential to a liquid-air interface. It is what enables insects to stand on the water surface and drives water drops to become spherical. |
Young’s modulus (Stiffness) | [Pascals; Pa] the physical property that represents how easily a material can stretch or deform. |
References
- Langowski, J.K.A.; Dodou, D.; Kamperman, M.; van Leeuwen, J.L. Tree frog attachment: Mechanisms, challenges, and perspectives. Front. Zool. 2018, 15, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Autumn, K.; Liang, Y.A.; Hsieh, S.T.; Zesch, W.; Chan, W.P.; Kenny, T.W.; Fearing, R.; Full, R.J. Adhesive force of a single gecko foot-hair. Nature 2000, 405, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Autumn, K.; Sitti, M.; Liang, Y.A.; Peattie, A.M.; Hansen, W.R.; Sponberg, S.; Kenny, T.W.; Fearing, R.; Israelachvili, J.N.; Full, R.J. Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 2002, 99, 12252–12256. [Google Scholar] [CrossRef]
- Gao, H.; Wang, X.; Yao, H.; Gorb, S.; Arzt, E. Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 2005, 37, 275–285. [Google Scholar] [CrossRef]
- Gorb, S.N. The design of the fly adhesive pad: Distal tenent setae are adapted to the delivery of an adhesive secretion. Proc. R. Soc. Lond. Series B Biol. Sci. 1998, 265, 747–752. [Google Scholar] [CrossRef]
- Gorb, S.; Beutel, R. Evolution of locomotory attachment pads of hexapods. Naturwissenschaften 2001, 88, 530–534. [Google Scholar] [CrossRef]
- Gorb, S.N. Uncovering insect stickiness: Structure and properties of hairy attachment devices. Am. Entomol. 2005, 51, 31–35. [Google Scholar] [CrossRef]
- Federle, W.; Labonte, D. Dynamic biological adhesion: Mechanisms for controlling attachment during locomotion. Philos. Trans. R. Soc. B 2019, 374, 20190199. [Google Scholar] [CrossRef]
- Endlein, T.; Barnes, W.J.P.; Samuel, D.S.; Crawford, N.A.; Biaw, A.B.; Grafe, U. Sticking under wet conditions: The remarkable attachment abilities of the torrent frog, Staurois guttatus. PLoS ONE 2013, 8, e73810. [Google Scholar] [CrossRef]
- Langowski, J.K.; Rummenie, A.; Pieters, R.P.; Kovalev, A.; Gorb, S.N.; van Leeuwen, J.L. Estimating the maximum attachment performance of tree frogs on rough substrates. Bioinspir. Biomim. 2019, 14, 025001. [Google Scholar] [CrossRef]
- Gorb, S. Attachment Devices of Insect Cuticle; Kluwer Academic: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Song, Y.; Dai, Z.; Wang, Z.; Ji, A.; Gorb, S.N. The synergy between the insect-inspired claws and adhesive pads increases the attachment ability on various rough surfaces. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Labonte, D.; Clemente, C.J.; Dittrich, A.; Kuo, C.Y.; Crosby, A.J.; Irschick, D.J.; Federle, W. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing. Proc. Natl. Acad. Sci. USA 2016, 113, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Persson, B.; Gorb, S. The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J. Chem. Phys. 2003, 119, 11437–11444. [Google Scholar] [CrossRef]
- Endlein, T.; Ji, A.; Samuel, D.; Yao, N.; Wang, Z.; Barnes, W.J.P.; Federle, W.; Kappl, M.; Dai, Z. Sticking like sticky tape: Tree frogs use friction forces to enhance attachment on overhanging surfaces. J. R. Soc. Interface 2013, 10, 20120838. [Google Scholar] [CrossRef] [PubMed]
- Amador, G.J.; Endlein, T.; Sitti, M. Soiled adhesive pads shear clean by slipping: A robust self-cleaning mechanism in climbing beetles. J. R. Soc. Interface 2017, 14, 20170134. [Google Scholar] [CrossRef]
- Amador, G.J.; Hu, D.L. Cleanliness is next to godliness: Mechanisms for staying clean. J. Exp. Biol. 2015, 218, 3164–3174. [Google Scholar] [CrossRef] [PubMed]
- Crawford, N.; Endlein, T.; Barnes, W.J.P. Self-cleaning in tree frog toe pads; a mechanism for recovering from contamination without the need for grooming. J. Exp. Biol. 2012, 215, 3965–3972. [Google Scholar] [CrossRef]
- Hansen, W.R.; Autumn, K. Evidence for self-cleaning in gecko setae. Proc. Natl. Acad. Sci. USA 2005, 102, 385–389. [Google Scholar] [CrossRef]
- Hawkes, E.W.; Christensen, D.L.; Han, A.K.; Jiang, H.; Cutkosky, M.R. Grasping without squeezing: Shear adhesion gripper with fibrillar thin film. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2305–2312. [Google Scholar]
- Song, S.; Majidi, C.; Sitti, M. Geckogripper: A soft, inflatable robotic gripper using gecko-inspired elastomer micro-fiber adhesives. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 4624–4629. [Google Scholar]
- Zhou, M.; Tian, Y.; Sameoto, D.; Zhang, X.; Meng, Y.; Wen, S. Controllable interfacial adhesion applied to transfer light and fragile objects by using gecko inspired mushroom-shaped pillar surface. ACS Appl. Mater. Interfaces 2013, 5, 10137–10144. [Google Scholar] [CrossRef]
- Henrey, M.; Ahmed, A.; Boscariol, P.; Shannon, L.; Menon, C. Abigaille-III: A versatile, bioinspired hexapod for scaling smooth vertical surfaces. J. Bionic Eng. 2014, 11, 1–17. [Google Scholar] [CrossRef]
- Kim, S.; Spenko, M.; Trujillo, S.; Heyneman, B.; Santos, D.; Cutkosky, M.R. Smooth vertical surface climbing with directional adhesion. IEEE Trans. Robot. 2008, 24, 65–74. [Google Scholar]
- Murphy, M.P.; Kute, C.; Mengüç, Y.; Sitti, M. Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives. Int. J. Robot. Res. 2011, 30, 118–133. [Google Scholar] [CrossRef]
- Bergeles, C.; Yang, G.Z. From passive tool holders to microsurgeons: Safer, smaller, smarter surgical robots. IEEE Trans. Biomed. Eng. 2013, 61, 1565–1576. [Google Scholar] [CrossRef] [PubMed]
- Glass, P.; Cheung, E.; Sitti, M. A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives. IEEE Trans. Biomed. Eng. 2008, 55, 2759–2767. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Cheung, E.; Park, S.; Sitti, M. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces. Biomed. Mater. 2006, 1, 216. [Google Scholar] [CrossRef] [PubMed]
- Langowski, J.K.A.; Sharma, P.; Shoushtari, A.L. In the soft grip of nature. Sci. Robot. 2020, 5, eabd9120. [Google Scholar] [CrossRef] [PubMed]
- Salerno, G.; Rebora, M.; Gorb, E.; Gorb, S. Attachment ability of the polyphagous bug Nezara viridula (Heteroptera: Pentatomidae) to different host plant surfaces. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Salerno, G.; Rebora, M.; Kovalev, A.; Gorb, E.; Gorb, S. Contribution of different tarsal attachment devices to the overall attachment ability of the stink bug Nezara viridula. J. Comp. Physiol. A 2018, 204, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Bräuer, P.; Neinhuis, C.; Voigt, D. Attachment of honeybees and greenbottle flies to petal surfaces. Arthropod-Plant Interact. 2017, 11, 171–192. [Google Scholar] [CrossRef]
- Amador, G.J.; Hu, D.L. Sticky solution provides grip for the first robotic pollinator. Chem 2017, 2, 162–164. [Google Scholar] [CrossRef]
- Féat, A.; Federle, W.; Kamperman, M.; Murray, M.; van der Gucht, J.; Taylor, P. Slippery paints: Eco-friendly coatings that cause ants to slip. Prog. Org. Coatings 2019, 135, 331–344. [Google Scholar] [CrossRef]
- Féat, A.; Federle, W.; Kamperman, M.; van der Gucht, J. Coatings preventing insect adhesion: An overview. Prog. Org. Coatings 2019, 134, 349–359. [Google Scholar] [CrossRef]
- Pashazanusi, L.; Lwoya, B.; Oak, S.; Khosla, T.; Albert, J.N.; Tian, Y.; Bansal, G.; Kumar, N.; Pesika, N.S. Enhanced adhesion of mosquitoes to rough surfaces. ACS Appl. Mater. Interfaces 2017, 9, 24373–24380. [Google Scholar] [CrossRef] [PubMed]
- Voigt, D.; Gorb, S. Functional morphology of tarsal adhesive pads and attachment ability in ticks Ixodes ricinus (Arachnida, Acari, Ixodidae). J. Exp. Biol. 2017, 220, 1984–1996. [Google Scholar] [CrossRef] [PubMed]
- Irschick, D.J.; Austin, C.C.; Petren, K.; Fisher, R.N.; Losos, J.B.; Ellers, O. A comparative analysis of clinging ability among pad-bearing lizards. Biol. J. Linn. Soc. 1996, 59, 21–35. [Google Scholar] [CrossRef]
- Smith, J.M.; Barnes, W.J.; Downie, J.R.; Ruxton, G.D. Structural correlates of increased adhesive efficiency with adult size in the toe pads of hylid tree frogs. J. Comp. Physiol. A 2006, 192, 1193–1204. [Google Scholar] [CrossRef]
- Labonte, D.; Federle, W. Scaling and biomechanics of surface attachment in climbing animals. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140027. [Google Scholar] [CrossRef]
- Labonte, D.; Struecker, M.Y.; Birn-Jeffery, A.V.; Federle, W. Shear-sensitive adhesion enables size-independent adhesive performance in stick insects. Proc. R. Soc. B 2019, 286, 20191327. [Google Scholar] [CrossRef] [PubMed]
- Autumn, K.; Hsieh, S.T.; Dudek, D.M.; Chen, J.; Chitaphan, C.; Full, R.J. Dynamics of geckos running vertically. J. Exp. Biol. 2006, 209, 260–272. [Google Scholar] [CrossRef]
- Dai, Z.; Wang, Z.; Ji, A. Dynamics of gecko locomotion: A force-measuring array to measure 3D reaction forces. J. Exp. Biol. 2011, 214, 703–708. [Google Scholar] [CrossRef]
- Hanna, G.; Jon, W.; Barnes, W.J. Adhesion and detachment of the toe pads of tree frogs. J. Exp. Biol. 1991, 155, 103–125. [Google Scholar] [CrossRef]
- Reinhardt, L.; Weihmann, T.; Blickhan, R. Dynamics and kinematics of ant locomotion: Do wood ants climb on level surfaces? J. Exp. Biol. 2009, 212, 2426–2435. [Google Scholar] [CrossRef]
- Endlein, T.; Federle, W. On heels and toes: How ants climb with adhesive pads and tarsal friction hair arrays. PLoS ONE 2015, 10, e0141269. [Google Scholar] [CrossRef] [PubMed]
- Endlein, T.; Ji, A.; Yuan, S.; Hill, I.; Wang, H.; Barnes, W.J.P.; Dai, Z.; Sitti, M. The use of clamping grips and friction pads by tree frogs for climbing curved surfaces. Proc. R. Soc. B Biol. Sci. 2017, 284, 20162867. [Google Scholar] [CrossRef] [PubMed]
- Ji, A.; Yuan, S.; Endlein, T.; Hill, I.D.; Wang, W.; Wang, H.; Jiang, N.; Zhao, Z.; Barnes, W.J.P.; Dai, Z. A force-measuring and behaviour-recording system consisting of 24 individual 3D force plates for the study of single limb forces in climbing animals on a quasi-cylindrical tower. Bioinspir. Biomim. 2019, 14, 046004. [Google Scholar] [CrossRef]
- Full, R.; Yamauchi, A.; Jindrich, D. Maximum single leg force production: Cockroaches righting on photoelastic gelatin. J. Exp. Biol. 1995, 198, 2441–2452. [Google Scholar] [CrossRef] [PubMed]
- Federle, W.; Endlein, T. Locomotion and adhesion: Dynamic control of adhesive surface contact in ants. Arthropod Struct. Dev. 2004, 33, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Hill, I.D.; Dong, B.; Barnes, W.J.P.; Ji, A.; Endlein, T. The biomechanics of tree frogs climbing curved surfaces: A gripping problem. J. Exp. Biol. 2018, 221, jeb168179. [Google Scholar] [CrossRef]
- Eason, E.V.; Hawkes, E.W.; Windheim, M.; Christensen, D.L.; Libby, T.; Cutkosky, M.R. Stress distribution and contact area measurements of a gecko toe using a high-resolution tactile sensor. Bioinspir. Biomim. 2015, 10, 016013. [Google Scholar] [CrossRef]
- Gorb, E.; Gorb, S. Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomol. Exp. Appl. 2002, 105, 13–28. [Google Scholar] [CrossRef]
- Voigt, D.; Gorb, E.; Gorb, S. Plant surface–bug interactions: Dicyphus errans stalking along trichomes. Arthropod-Plant Interact. 2007, 1, 221–243. [Google Scholar] [CrossRef]
- Barnes, W.J.; Oines, C.; Smith, J.M. Whole animal measurements of shear and adhesive forces in adult tree frogs: Insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale. J. Comp. Physiol. A 2006, 192, 1179–1191. [Google Scholar] [CrossRef] [PubMed]
- Brainerd, E. Adhesion force of ants on smooth surfaces. Am. Zool. 1994, 34, 128. [Google Scholar]
- Federle, W.; Rohrseitz, K.; Holldobler, B. Attachment forces of ants measured with a centrifuge: Better ‘wax-runners’ have a poorer attachment to a smooth surface. J. Exp. Biol. 2000, 203, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Federle, W.; Riehle, M.; Curtis, A.S.; Full, R.J. An integrative study of insect adhesion: Mechanics and wet adhesion of pretarsal pads in ants. Integr. Comp. Biol. 2002, 42, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Al Bitar, L.; Voigt, D.; Zebitz, C.P.; Gorb, S.N. Tarsal morphology and attachment ability of the codling moth Cydia pomonella L.(Lepidoptera, Tortricidae) to smooth surfaces. J. Insect Physiol. 2009, 55, 1029–1038. [Google Scholar] [CrossRef]
- Voigt, D.; Gorb, S.N. Attachment ability of sawfly larvae to smooth surfaces. Arthropod Struct. Dev. 2012, 41, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Gorb, S.; Gorb, E.; Kastner, V. Scale effects on the attachment pads and friction forces in syrphid flies (Diptera, Syrphidae). J. Exp. Biol. 2001, 204, 1421–1431. [Google Scholar] [CrossRef]
- Lüken, D.; Voigt, D.; Gorb, S.N.; Zebitz, C. Die Tarsenmorphologie und die Haftfähigkeit des Schwarzen Batatenkäfers Cylas puncticollis (Boheman) auf glatten Oberflächen mit unterschiedlichen physiko-chemischen Eigenschaften. Mitteilungen Der Dtsch. Ges. Fur Allg. Und Angew. Entomol. 2009, 17, 109–113. [Google Scholar]
- Grohmann, C.; Blankenstein, A.; Koops, S.; Gorb, S.N. Attachment of Galerucella nymphaeae (Coleoptera, Chrysomelidae) to surfaces with different surface energy. J. Exp. Biol. 2014, 217, 4213–4220. [Google Scholar]
- Al Bitar, L.; Voigt, D.; Zebitz, C.P.; Gorb, S.N. Attachment ability of the codling moth Cydia pomonella L. to rough substrates. J. Insect Physiol. 2010, 56, 1966–1972. [Google Scholar] [CrossRef] [PubMed]
- Labonte, D.; Federle, W. Rate-dependence of ‘wet’ biological adhesives and the function of the pad secretion in insects. Soft Matter 2015, 11, 8661–8673. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.; Yulf, A.; Ratcliffe, J. The adhesive organ of the blowfly, Calliphora vomitoria: A functional approach (Diptera: Calliphoridae). J. Zool. 1985, 205, 297–307. [Google Scholar] [CrossRef]
- Gorb, E.; Voigt, D.; Eigenbrode, S.D.; Gorb, S. Attachment force of the beetle Cryptolaemus montrouzieri (Coleoptera, Coccinellidae) on leaflet surfaces of mutants of the pea Pisum sativum (Fabaceae) with regular and reduced wax coverage. Arthropod-Plant Interact. 2008, 2, 247–259. [Google Scholar] [CrossRef][Green Version]
- Gorb, E.; Hosoda, N.; Miksch, C.; Gorb, S. Slippery pores: Anti-adhesive effect of nanoporous substrates on the beetle attachment system. J. R. Soc. Interface 2010, 7, 1571–1579. [Google Scholar] [CrossRef] [PubMed]
- England, M.W.; Sato, T.; Yagihashi, M.; Hozumi, A.; Gorb, S.N.; Gorb, E.V. Surface roughness rather than surface chemistry essentially affects insect adhesion. Beilstein J. Nanotechnol. 2016, 7, 1471–1479. [Google Scholar] [CrossRef]
- Salerno, G.; Rebora, M.; Piersanti, S.; Gorb, E.; Gorb, S. Mechanical ecology of fruit-insect interaction in the adult Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae). Zoology 2020, 139, 125748. [Google Scholar] [CrossRef]
- Pugno, N.; Lepore, E.; Toscano, S.; Pugno, F. Normal adhesive force-displacement curves of living geckos. J. Adhes. 2011, 87, 1059–1072. [Google Scholar] [CrossRef]
- Jiao, Y.; Gorb, S.; Scherge, M. Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J. Exp. Biol. 2000, 203, 1887–1895. [Google Scholar] [CrossRef]
- Spinner, M.; Westhoff, G.; Gorb, S.N. Subdigital setae of chameleon feet: Friction-enhancing microstructures for a wide range of substrate roughness. Sci. Rep. 2014, 4, 1–9. [Google Scholar] [CrossRef]
- Drechsler, P.; Federle, W. Biomechanics of smooth adhesive pads in insects: Influence of tarsal secretion on attachment performance. J. Comp. Physiol. A 2006, 192, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Robinson, A.; Steiner, U.; Federle, W. Insect adhesion on rough surfaces: Analysis of adhesive contact of smooth and hairy pads on transparent microstructured substrates. J. R. Soc. Interface 2014, 11, 20140499. [Google Scholar] [CrossRef] [PubMed]
- Federle, W.; Barnes, W.; Baumgartner, W.; Drechsler, P.; Smith, J. Wet but not slippery: Boundary friction in tree frog adhesive toe pads. J. R. Soc. Interface 2006, 3, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Autumn, K.; Dittmore, A.; Santos, D.; Spenko, M.; Cutkosky, M. Frictional adhesion: A new angle on gecko attachment. J. Exp. Biol. 2006, 209, 3569–3579. [Google Scholar] [CrossRef]
- Gillies, A.G.; Henry, A.; Lin, H.; Ren, A.; Shiuan, K.; Fearing, R.S.; Full, R.J. Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces. J. Exp. Biol. 2014, 217, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Huber, G.; Gorb, S.N.; Spolenak, R.; Arzt, E. Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol. Lett. 2005, 1, 2–4. [Google Scholar] [CrossRef]
- Huber, G.; Mantz, H.; Spolenak, R.; Mecke, K.; Jacobs, K.; Gorb, S.N.; Arzt, E. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. USA 2005, 102, 16293–16296. [Google Scholar] [CrossRef]
- Huber, G.; Gorb, S.N.; Hosoda, N.; Spolenak, R.; Arzt, E. Influence of surface roughness on gecko adhesion. Acta Biomater. 2007, 3, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Langer, M.G.; Ruppersberg, J.P.; Gorb, S. Adhesion forces measured at the level of a terminal plate of the fly’s seta. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2004, 271, 2209–2215. [Google Scholar] [CrossRef]
- Betts, R.; Duckworth, T.; Austin, I.; Crocker, S.; Moore, S. Critical light reflection at a plastic/glass interface and its application to foot pressure measurements. J. Med. Eng. Technol. 1980, 4, 136–142. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.K.; Deban, S.M. The effects of roughness and wetness on salamander cling performance. Integr. Comp. Biol. 2020, 60, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Dixon, A.; Croghan, P.; Gowing, R. The mechanism by which aphids adhere to smooth surfaces. J. Exp. Biol. 1990, 152, 243–253. [Google Scholar] [CrossRef]
- Federle, W.; Baumgartner, W.; Holldobler, B. Biomechanics of ant adhesive pads: Frictional forces are rate-and temperature-dependent. J. Exp. Biol. 2004, 207, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Goodman, M.B.; Pruitt, B.L. Analysis of nematode mechanics by piezoresistive displacement clamp. Proc. Natl. Acad. Sci. USA 2007, 104, 17376–17381. [Google Scholar] [CrossRef] [PubMed]
- Kappl, M.; Kaveh, F.; Barnes, W.J.P. Nanoscale friction and adhesion of tree frog toe pads. Bioinspir. Biomim. 2016, 11, 035003. [Google Scholar] [CrossRef]
- Geim, A.K.; Dubonos, S.; Grigorieva, I.; Novoselov, K.; Zhukov, A.; Shapoval, S.Y. Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2003, 2, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Walton, O.R. Review of adhesion fundamentals for micron-scale particles. KONA Powder Part. J. 2008, 26, 129–141. [Google Scholar] [CrossRef]
- Gingell, D.; Todd, I. Interference reflection microscopy. A quantitative theory for image interpretation and its application to cell-substratum separation measurement. Biophys. J. 1979, 26, 507–526. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, H.; Guo, Y.; Wang, Y.; Jiang, Y.; Zhang, D.; Ma, L.; Luo, J.; Jiang, L. Micro–nano hierarchical structure enhanced strong wet friction surface inspired by tree frogs. Adv. Sci. 2020, 7, 2001125. [Google Scholar] [CrossRef]
- Langowski, J.K.; Singla, S.; Nyarko, A.; Schipper, H.; van den Berg, F.T.; Kaur, S.; Astley, H.C.; Gussekloo, S.W.; Dhinojwala, A.; van Leeuwen, J.L. Comparative and functional analysis of the digital mucus glands and secretions of tree frogs. Front. Zool. 2019, 16, 1–17. [Google Scholar] [CrossRef]
- Beattie, A.J.; Turnbull, C.; Hough, T.; Jobson, S.; Knox, R.B. The vulnerability of pollen and fungal spores to ant secretions: Evidence and some evolutionary implications. Am. J. Bot. 1985, 72, 606–614. [Google Scholar] [CrossRef]
- Clarke, B.T. The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol. Rev. 1997, 72, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Peisker, H.; Heepe, L.; Kovalev, A.E.; Gorb, S.N. Comparative study of the fluid viscosity in tarsal hairy attachment systems of flies and beetles. J. R. Soc. Interface 2014, 11, 20140752. [Google Scholar] [CrossRef] [PubMed]
- Vötsch, W.; Nicholson, G.; Müller, R.; Stierhof, Y.D.; Gorb, S.; Schwarz, U. Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem. Mol. Biol. 2002, 32, 1605–1613. [Google Scholar] [CrossRef]
- Geiselhardt, S.F.; Geiselhardt, S.; Peschke, K. Comparison of tarsal and cuticular chemistry in the leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae) and an evaluation of solid-phase microextraction and solvent extraction techniques. Chemoecology 2009, 19, 185–193. [Google Scholar] [CrossRef]
- Drotlef, D.M.; Stepien, L.; Kappl, M.; Barnes, W.J.P.; Butt, H.J.; del Campo, A. Insights into the adhesive mechanisms of tree frogs using artificial mimics. Adv. Funct. Mater. 2013, 23, 1137–1146. [Google Scholar] [CrossRef]
- Kaimaki, D.M.; Andrew, C.N.; Attipoe, A.E.; Labonte, D. The physical properties of the stick insect pad secretion are independent of body size. J. R. Soc. Interface 2022, 19, 20220212. [Google Scholar] [CrossRef]
- Gernay, S.; Federle, W.; Lambert, P.; Gilet, T. Elasto-capillarity in insect fibrillar adhesion. J. R. Soc. Interface 2016, 13, 20160371. [Google Scholar] [CrossRef]
- Gilet, T.; Heepe, L.; Lambert, P.; Compère, P.; Gorb, S.N. Liquid secretion and setal compliance: The beetle’s winning combination for a robust and reversible adhesion. Curr. Opin. Insect Sci. 2018, 30, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Peisker, H.; Michels, J.; Gorb, S.N. Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nat. Commun. 2013, 4, 1–7. [Google Scholar] [CrossRef]
- Scholz, I.; Baumgartner, W.; Federle, W. Micromechanics of smooth adhesive organs in stick insects: Pads are mechanically anisotropic and softer towards the adhesive surface. J. Comp. Physiol. A 2008, 194, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Scholz, I.; Barnes, W.J.P.; Smith, J.M.; Baumgartner, W. Ultrastructure and physical properties of an adhesive surface, the toe pad epithelium of the tree frog, Litoria caerulea White. J. Exp. Biol. 2009, 212, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.J.; Goodwyn, P.J.P.; Nokhbatolfoghahai, M.; Gorb, S.N. Elastic modulus of tree frog adhesive toe pads. J. Comp. Physiol. A 2011, 197, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.L.; Kendall, K.; Roberts, A. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 1971, 324, 301–313. [Google Scholar]
- Gilman, C.A.; Imburgia, M.J.; Bartlett, M.D.; King, D.R.; Crosby, A.J.; Irschick, D.J. Geckos as springs: Mechanics explain across-species scaling of adhesion. PLoS ONE 2015, 10, e0134604. [Google Scholar] [CrossRef]
- Russell, A.P. A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia: Gekkonidae). J. Zool. 1975, 176, 437–476. [Google Scholar] [CrossRef]
- Ye, Z.; Lum, G.Z.; Song, S.; Rich, S.; Sitti, M. Phase change of gallium enables highly reversible and switchable adhesion. Adv. Mater. 2016, 28, 5088–5092. [Google Scholar] [CrossRef]
- Niederegger, S.; Gorb, S. Tarsal movements in flies during leg attachment and detachment on a smooth substrate. J. Insect Physiol. 2003, 49, 611–620. [Google Scholar] [CrossRef]
- Gernay, S.M.; Labousse, S.; Lambert, P.; Compère, P.; Gilet, T. Multi-scale tarsal adhesion kinematics of freely-walking dock beetles. J. R. Soc. Interface 2017, 14, 20170493. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, M.; Federle, W.; Full, R.; Kenny, T. Small insect measurements using a custom MEMS force sensor. In Proceedings of the TRANSDUCERS’03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Digest of Technical Papers (Cat. No.03TH8664). Boston, MA, USA, 8–12 June 2003; Volume 2, pp. 1039–1042. [Google Scholar]
- Bartsch, M.S.; Federle, W.; Full, R.J.; Kenny, T.W. A multiaxis force sensor for the study of insect biomechanics. J. Microelectromech. Syst. 2007, 16, 709–718. [Google Scholar] [CrossRef]
- Lin, H.T.; Trimmer, B.A. A new bi-axial cantilever beam design for biomechanics force measurements. J. Biomech. 2012, 45, 2310–2314. [Google Scholar] [CrossRef] [PubMed]
Level 1 | Forcing 2 | Method | Configuration | Subject Class | Dependent Variables | Independent Variables | Measurable Range | Study |
---|---|---|---|---|---|---|---|---|
Wh | Gl | 3D force platforms | Single platform | Geckos | Reaction force | Walking direction | - | [42,43] |
Wh | Gl | Tree frogs | Reaction force | Walking direction | [44] | |||
Li | Gl | Insects | Reaction force | - | [45,46] | |||
Wh | Gl | Force Measurement Array (FMA) | Geckos | Reaction force | Surface roughness | [43] | ||
Wh | Gl | Tree frogs | Reaction force | Surface roughness, platform angle | [15,47,48] | |||
Wh | Gl | Photo-elastic gelatin | - | Insects | Reaction force | - | - | [49] |
Wh | Gl | Frustrated total internal reflection (FTIR) | - | Insects | Contact area | Load | [50] | |
Wh | Gl | - | Tree frogs | Contact area | Substrate curvature | [47,51] | ||
Wh | Gl | Rotation platform | Tree frogs | Contact area | Surface roughness | [9,10] | ||
Li | Gl | Optic tactile | - | Geckos | Normal stress | Load angle | [52] | |
Wh | Gl | Rotation platforms | - | Arachnids | Adhesion % | Surface roughness | {0.7 mN, –} SF = {0.1, 7.0} | [37] |
Wh | Gl | Insects | Adhesion % | Surface type, roughness, and structure | [53,54] | |||
Wh | Gl | Tree frogs | Adhesion and shear force | Surface roughness | [10,18,55] | |||
Wh | Gl | Force centrifuges | Adhesion | Insects | Adhesion force | Angular velocity, subject orientation | {500 µN, 500 mN} | [40,41,56,57,58,59,60] |
Wh | Gl | Friction | Insects | Dynamic friction force | Surface chemistry and roughness, angular velocity | [37,60,61,62,63,64] | ||
Wh | Lo | Tethered studies | Adhesion | Geckos | Adhesion force | Load | {200 µN, 10 mN} | [65] |
Wh | Lo | Friction | Insects | Static friction force | Surface chemistry and roughness | [30,31,32,54,57,66,67,68,69,70] | ||
Li | Lo | 1D (uniaxial) force transducers | Adhesion | Insects | Adhesive force | Preload, retraction speed | {80 µN, 100 mN} | [19,71,72] |
Li | Lo | Friction | Geckos | Friction force | Surface curvature and roughness, retraction speed | [73] | ||
Li | Lo | 2D (biaxial) force transducers | - | Geckos | Friction force | Surface chemistry, preload | [2,3] | |
Li | Lo | Insects | Friction force | Surface roughness, humidity, preload, sliding speed, retraction speed | [41,74,75] | |||
Li | Lo | Tree frogs | Friction force | Surface roughness, preload | [18,47,76] | |||
Li | Lo | Multiaxial force transducers | 3-axis | Geckos | Friction force | Drag direction | [77] | |
Li | Lo | 6-axis | Geckos | Friction force | Substrate roughness | [78] | ||
Su | Lo | Atomic force miscroscopy (AFM) | - | Geckos | Adhesion force | Surface roughnes and chemistry, humidity, preload | {200 pN, 1 µN} | [3,79,80,81] |
Su | Lo | Insects | Adhesion force | Surface roughness, humidity | [36] | |||
Li | Lo | Insects | Adhesion force | Buffer presence | [82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van den Boogaart, L.M.; Langowski, J.K.A.; Amador, G.J. Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction. Biomimetics 2022, 7, 134. https://doi.org/10.3390/biomimetics7030134
van den Boogaart LM, Langowski JKA, Amador GJ. Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction. Biomimetics. 2022; 7(3):134. https://doi.org/10.3390/biomimetics7030134
Chicago/Turabian Stylevan den Boogaart, Luc M., Julian K. A. Langowski, and Guillermo J. Amador. 2022. "Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction" Biomimetics 7, no. 3: 134. https://doi.org/10.3390/biomimetics7030134
APA Stylevan den Boogaart, L. M., Langowski, J. K. A., & Amador, G. J. (2022). Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction. Biomimetics, 7(3), 134. https://doi.org/10.3390/biomimetics7030134