Development of Biomimetic Alginate/Gelatin/Elastin Sponges with Recognition Properties toward Bioactive Peptides for Cardiac Tissue Engineering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Imprinted Particles: Synthesis Procedure
2.3. Alginate/Gelatin/Elastin Sponges: Preparation and Functionalization
2.4. Morphological Analysis by Scanning Electron Microscopy
2.5. Chromatographic Analysis
2.6. Infrared Spectroscopy
2.7. Recognition and Selectivity Tests
2.8. Thermal Analysis
2.9. Mechanical Analysis
2.10. Degradation Test
2.11. Swelling Test
2.12. In Vitro Biological Characterization
2.12.1. Rat Cardiac Progenitor Cells Isolation and Culture
2.12.2. DiI Cell Labeling
2.12.3. Cell Culture on AGE Scaffolds
2.13. In Vivo Biological Characterization
2.13.1. Surgical Procedure
2.13.2. Immunohistochemical Analysis
2.13.3. Data Management and Statistics
3. Results and Discussion
3.1. MIP Characterization
3.1.1. Morphological Analysis by Scanning Electron Microscopy
3.1.2. Chromatographic Analysis
3.1.3. Infrared Spectroscopy
3.1.4. Recognition and Selectivity Tests
3.2. AGE Sponges Characterization
3.2.1. Morphological Analysis
3.2.2. Infrared Analysis
3.2.3. Thermal Analysis
3.2.4. Hydrolytic Degradation Test
3.2.5. Swelling Test
3.2.6. Mechanical Analysis
3.3. Characterization of MIP Functionalized AGE Sponges
3.3.1. Morphological Analysis
3.3.2. Recognition Experiments
3.3.3. In Vitro and In Vivo Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tallawi, M.; Rosellini, E.; Barbani, N.; Cascone, M.G.; Rai, R.; Saint-Pierre, G.; Boccaccini, A.R. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: A review. J. R. Soc. Interface 2015, 12, 20150254. [Google Scholar] [CrossRef] [PubMed]
- Hynes, R.O. Cell adhesion: Old and new questions. Trends Cell Biol. 1999, 9, 33–37. [Google Scholar] [CrossRef]
- Shin, H.; Jo, S.; Mikos, A.G. Biomimetic materials for tissue engineering. Biomaterials 2003, 24, 4353–4364. [Google Scholar] [CrossRef]
- Rosellini, E.; Barbani, N.; Giusti, P.; Ciardelli, G.; Cristallini, C. Novel Bioactive Scaffolds with Fibronectin Recognition Nanosites Based on Molecular Imprinting Technology. J. Appl. Polym. Sci. 2010, 118, 3236–3244. [Google Scholar] [CrossRef]
- Rosellini, E.; Barbani, N.; Giusti, P.; Ciardelli, G.; Cristallini, C. Molecularly Imprinted Nanoparticles with Recognition Properties Towards a Laminin H–Tyr–Ile–Gly–Ser–Arg–OH Sequence for Tissue Engineering Applications. Biomed. Mater. 2010, 5, 065007. [Google Scholar] [CrossRef]
- Rachkov, A.; Minoura, N. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochim. Biophys. Acta 2001, 1544, 255–266. [Google Scholar] [CrossRef]
- Akiyama, S.K.; Yamada, K.M. Fibronectin. Adv. Enzym. Relat. Areas Mol. Biol. 1987, 59, 1–57. [Google Scholar]
- Humphries, M.J.; Obara, M.; Olden, K.; Yamada, K.M. Role of fibronectin in adhesion, migration, and metastasis. Cancer Investig. 1989, 7, 373–393. [Google Scholar] [CrossRef]
- Larsen, M.; Artym, V.V.; Green, J.A.; Yamada, K.M. The matrix reorganized: Extracellular matrix remodeling and integrin signaling. Curr. Opin. Cell Biol. 2006, 18, 463–471. [Google Scholar] [CrossRef]
- Colognato, H.; Yurchenco, P.D. Form and function: The laminin family of heterotrimers. Dev. Dyn. 2000, 218, 213–234. [Google Scholar] [CrossRef]
- Miner, J.H.; Yurchenco, P.D. Laminin functions in tissue morphogenesis. Ann. Rev. Cell Dev. Biol. 2004, 20, 255–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hersel, U.; Dahmen, C.; Kessler, H. RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003, 24, 4385–4415. [Google Scholar] [CrossRef]
- Ross, R.S.; Borg, T.K. Integrins and the myocardium. Circ. Res. 2001, 88, 1112–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maitra, N.; Flink, I.L.; Bahl, J.J.; Morkin, E. Expression of α and β integrins during terminal differentiation of cardiomyocytes. Cardiovasc. Res. 2000, 47, 715–725. [Google Scholar] [CrossRef] [Green Version]
- Massia, S.P.; Hubbell, J.A. Covalent surface immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates. Anal. Biochem. 1990, 187, 292–301. [Google Scholar] [CrossRef]
- Dee, K.C.; Andersen, T.T.; Bizios, R. Cell function on substrates containing immobilized bioactive peptides. Mater. Res. Soc. Symp. Proc. 1994, 331, 115–119. [Google Scholar] [CrossRef]
- Battista, S.; Guarnieri, D.; Borselli, C.; Zeppetelli, S.; Borzacchiello, A.; Mayol, L.; Gerbasio, D.; Keene, D.R.; Ambrosio, L.; Netti, P.A. The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials 2005, 26, 6194–6207. [Google Scholar] [CrossRef]
- Rosellini, E.; Zhang, Y.S.; Migliori, B.; Barbani, N.; Lazzeri, L.; Shin, S.R.; Dokmeci, M.R.; Cascone, M.G. Protein/Polysaccharide-based Scaffolds Mimicking Native Extracellular Matrix for Cardiac Tissue Engineering Applications. J. Biomed. Mater. Res. A 2018, 106, 769–781. [Google Scholar] [CrossRef]
- Massia, S.P.; Hubbell, J.A. An RGD spacing of 440 nm is sufficient for integrin αVβ3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 1991, 114, 1089–1100. [Google Scholar] [CrossRef]
- Rowley, J.A.; Madlambayan, G.; Mooney, D.J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999, 20, 45–53. [Google Scholar] [CrossRef]
- Frati, C.; Graiani, G.; Barbani, N.; Madeddu, D.; Falco, A.; Quaini, F.; Lazzeri, L.; Cascone, M.G.; Rosellini, E. Reinforced alginate/gelatin sponges functionalized by avidin/biotin-binding strategy: A novel cardiac patch. J. Biomater. Appl. 2020, 34, 975–987. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-13. Biological Evaluation of Medical Devices Identification and Quantification of Degradation Products from Polymeric Medical Devices; 1998-11-15; International Organization for Standardization: Geneva, Switzerland, 2010; Available online: https://www.iso.org/standard/44050.html (accessed on 20 June 2011).
- Okabe, M.; Ikawa, M.; Kominami, K.; Nakanishi, T.; Nishimune, Y. Green mice as a source of ubiquitous green cells. FEBS Lett. 1997, 407, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Frati, C.; Savi, M.; Graiani, G.; Lagrasta, C.; Cavalli, S.; Prezioso, L.; Rosseti, P.; Mangiaracina, C.; Ferrado, F.; Madeddu, D.; et al. Resident cardiac stem cells. Curr. Pharm. Des. 2011, 17, 3252–3257. [Google Scholar] [PubMed]
- Giuliani, A.; Frati, C.; Rossini, A.; Komlev, V.S.; Lagrasta, C.; Savi, M.; Cavalli, S.; Gaetano, C.; Quaini, F.; Manescu, A.; et al. High-resolution X-ray microtomography for three-dimensional imaging of cardiac progenitor cell homing in infarcted rat hearts. J. Tissue Eng. Regen. Med. 2011, 5, e168–e178. [Google Scholar] [CrossRef]
- Rai, R.; Tallawi, M.; Barbani, N.; Frati, C.; Madeddu, D.; Cavalli, S.; Graiani, G.; Quaini, F.; Roether, J.A.; Schubert, D.W.; et al. Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 3677–3687. [Google Scholar] [CrossRef]
- Rossini, A.; Frati, C.; Lagrasta, C.; Graiani, G.; Scopece, A.; Cavalli, S.; Musso, E.; Baccarin, M.; Di Segni, M.; Fagnoni, F.; et al. Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovasc. Res. 2011, 89, 650–660. [Google Scholar] [CrossRef]
- Bocchi, L.; Savi, M.; Graiani, G.; Rossi, S.; Agnetti, A.; Stillitano, F.; Lagrasta, C.; Baruffi, S.; Berni, R.; Frati, C.; et al. Growth factor-induced mobilization of cardiac progenitor cells reduces the risk of arrhythmias, in a rat model of chronic myocardial infarction. PLoS ONE 2011, 6, e17750. [Google Scholar] [CrossRef] [Green Version]
- Savi, M.; Bocchi, L.; Rossi, S.; Frati, C.; Graiani, G.; Lagrasta, C.; Miragoli, M.; Di Pasquale, E.; Stirparo, G.G.; Mastrototaro, G.; et al. Antiarrhythmic effect of growth factor-supplemented cardiac progenitor cells in chronic infarcted heart. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H1622–H1648. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, R.A.; Carro, A.M.; Alvarez-Lorenzo, C.; Concheiro, A. To Remove or Not to Remove? The Challenge of Extracting the Template to Make the Cavities Available in Molecularly Imprinted Polymers (MIPs). Int. J. Mol. Sci. 2011, 12, 4327–4347. [Google Scholar] [CrossRef] [Green Version]
- Ciardelli, G.; Cioni, B.; Cristallini, C.; Barbani, N.; Silvestri, D. and Giusti, P. Acrylic polymeric nanospheres for the release and recognition of molecules of clinical interest. Biosens. Bioelectron. 2004, 20, 1083–1090. [Google Scholar] [CrossRef]
- Brown, M.E.; Puleo, D.A. Protein binding to peptide-imprinted porous silica scaffolds. Chem. Eng. J. 2008, 137, 97–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rechichi, A.; Cristallini, C.; Vitale, U.; Ciardelli, G.; Barbani, N.; Vozzi, G.; Giusti, P. New biomedical devices with selective peptide recognition properties. Part 1: Characterization and cytotoxicity of molecularly imprinted polymers. J. Cell. Mol. Med. 2007, 11, 1367–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shachar, M.; Cohen, S. Cardiac Tissue Engineering, Ex-Vivo: Design Principles in Biomaterials and Bioreactors. Heart Fail. Rev. 2003, 8, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Daniliuc, L.; De Kasel, C.; David, C. Intermolecular interactions in blends of poly(vinyl alcohol) with poly(acrylic acid)-1. FTIR and DSC studies. Eur. Polym. J. 1992, 28, 1365–1371. [Google Scholar] [CrossRef]
- Segtnan, V.H.; Isaksson, T. Temperature, sample and time dependant structural characteristics of gelatin gels studied by near infrared spectroscopy. Food Hydrocoll. 2004, 18, 1–11. [Google Scholar] [CrossRef]
- Liu, K.-Z.; Jackson, M.; Sowa, M.G.; Ju, H.; Dixon, I.M.; Mantsch, H.H. Modification of the extracellular matrix following myocardial infarction monitored by FTIR spectroscopy. Biochim. Biophys. Acta 1996, 1315, 73–77. [Google Scholar] [CrossRef]
- Grover, C.N.; Cameron, R.E.; Best, S.M. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. J. Mech. Behav. Biomed. 2012, 10, 62–74. [Google Scholar] [CrossRef]
Template (mg) | MAA (mL) | PETRA (mL) | AIBN (mg) | ACN/ddH2O 70/30 (mL) | |
---|---|---|---|---|---|
MIP-GRDGSP | 39.39 | 0.17 | 2.27 | 5.1 | 30 |
MIP-YIGSR | 39.87 | 0.17 | 2.27 | 5.1 | 30 |
CP | - | 0.17 | 2.27 | 5.1 | 30 |
Monomer Conversion (%) | Entrapped Template (%) | Extracted Template | |
---|---|---|---|
MIP-GRGDSP | 98.8 | 85 | 30 |
MIP-YIGSR | 99.6 | 86 | 40 |
CP | 99.4 | - | - |
Template | Analogue | |||
---|---|---|---|---|
Quantitative Binding (μmol/g polymer) | Recognition Factor | Quantitative Binding (μmol/g polymer) | Selectivity Factor | |
MIP-YIGSR | 83.32 | 1.66 | 22.13 | 3.76 |
CP-YIGSR | 50.02 | |||
MIP-GRGDSP | 57.34 | 1.78 | 14.24 | 4.03 |
CP-GRGDSP | 37.50 |
Am I (cm−1) | Am II (cm−1) | C-O-C (cm−1) | |
---|---|---|---|
Alginate | 1024 | ||
Gelatin | 1630 | ||
Elastin | 1640 | 1390 | |
AGE | 1650–1635 | 1400 | 1033 |
1 Hz | 3.5 Hz | 10 Hz | |
---|---|---|---|
E’ (× 104 Pa) | 25.1 ± 0.6 | 26.1 ± 0.2 | 27.6 ± 0.4 |
E’’ (× 104 Pa) | 1.6 ± 0.1 | 2.6 ± 0.2 | 6.6 ± 0.5 |
Tan Delta (× 10−3) | 63.8 ± 0.9 | 100.5 ± 0.9 | 247.4 ± 0.2 |
Template | ||
---|---|---|
Quantitative Binding (μmol/g polymer) | Recognition Factor | |
Sponge + MIP-GRGDSP | 72.7 | 1.99 |
Sponge + CP | 36.6 | |
Sponge + MIP-YIGSR | 203.7 | 2.09 |
Sponge + CP | 97.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosellini, E.; Madeddu, D.; Barbani, N.; Frati, C.; Graiani, G.; Falco, A.; Lagrasta, C.; Quaini, F.; Cascone, M.G. Development of Biomimetic Alginate/Gelatin/Elastin Sponges with Recognition Properties toward Bioactive Peptides for Cardiac Tissue Engineering. Biomimetics 2020, 5, 67. https://doi.org/10.3390/biomimetics5040067
Rosellini E, Madeddu D, Barbani N, Frati C, Graiani G, Falco A, Lagrasta C, Quaini F, Cascone MG. Development of Biomimetic Alginate/Gelatin/Elastin Sponges with Recognition Properties toward Bioactive Peptides for Cardiac Tissue Engineering. Biomimetics. 2020; 5(4):67. https://doi.org/10.3390/biomimetics5040067
Chicago/Turabian StyleRosellini, Elisabetta, Denise Madeddu, Niccoletta Barbani, Caterina Frati, Gallia Graiani, Angela Falco, Costanza Lagrasta, Federico Quaini, and Maria Grazia Cascone. 2020. "Development of Biomimetic Alginate/Gelatin/Elastin Sponges with Recognition Properties toward Bioactive Peptides for Cardiac Tissue Engineering" Biomimetics 5, no. 4: 67. https://doi.org/10.3390/biomimetics5040067
APA StyleRosellini, E., Madeddu, D., Barbani, N., Frati, C., Graiani, G., Falco, A., Lagrasta, C., Quaini, F., & Cascone, M. G. (2020). Development of Biomimetic Alginate/Gelatin/Elastin Sponges with Recognition Properties toward Bioactive Peptides for Cardiac Tissue Engineering. Biomimetics, 5(4), 67. https://doi.org/10.3390/biomimetics5040067