Copolymerization of a Catechol and a Diamine as a Versatile Polydopamine-Like Platform for Surface Functionalization: The Case of a Hydrophobic Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Primer Coatings for Their Physicochemical Characterization
2.3. Functionalization of the Primer Coatings with Hydrophobizing Agents
2.4. Material Coating and Functionalization under Optimized Conditions
2.5. Contact Angle
2.6. Chemical Characterization
2.7. Morphological Characterization of the Coatings
2.8. Statistical Analysis
3. Results and Discussion
3.1. Generation of the Primer Coating
3.2. Functionalization of the Primer Coating
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ye, Q.; Zhou, F.; Liu, W. Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 2011, 40, 4244–4258. [Google Scholar] [CrossRef] [PubMed]
- Grumelli, D.; Cristina, L.J.; Lobo Maza, F.; Carro, P.; Ferrón, J.; Kern, K.; Salvarezza, R.C. Thiol adsorption on the Au(100)-hex and Au(100)-(1 × 1) surfaces. J. Phys. Chem. C 2015, 119, 14248–14254. [Google Scholar] [CrossRef]
- Park, C.S.; Lee, H.J.; Jamison, A.C.; Lee, T.R. Robust thick polymer brushes grafted from gold surfaces using bidentate thiol-based atom-transfer radical polymerization initiators. ACS Appl. Mater. Interfaces 2016, 8, 5586–5594. [Google Scholar] [CrossRef] [PubMed]
- Bartucci, M.A.; Florián, J.; Ciszek, J.W. Spectroscopic evidence of work function alterations due to photoswitchable monolayers on gold surfaces. J. Phys. Chem. C 2013, 117, 19471–19476. [Google Scholar] [CrossRef]
- Lebec, V.; Landoulsi, J.; Boujday, S.; Poleunis, C.; Pradier, C.-M.; Delcorte, A. Probing the orientation of β-lactoglobulin on gold surfaces modified by alkyl thiol self-assembled monolayers. J. Phys. Chem. C 2013, 117, 11569–11577. [Google Scholar] [CrossRef]
- Escobar, C.A.; Zulkifli, A.R.; Faulkner, C.J.; Trzeciak, A.; Jennings, G.K. Composite fluorocarbon membranes by surface-initiated polymerization from nanoporous gold-coated alumina. ACS Appl. Mater. Interfaces 2012, 4, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Kahsar, K.R.; Schwartz, D.K.; Medlin, J.W. Liquid- and vapor-phase hydrogenation of 1-epoxy-3-butene using self-assembled monolayer coated palladium and platinum catalysts. Appl. Catal. A Gen. 2012, 445–446, 102–106. [Google Scholar] [CrossRef]
- Kim, Y.R.; Kim, H.J.; Kim, J.S.; Kim, H. Rhodamine-based “turn-on” fluorescent chemodosimeter for Cu(II) on ultrathin platinum films as molecular switches. Adv. Mater. 2008, 20, 4428–4432. [Google Scholar] [CrossRef]
- Makosch, M.; Lin, W.I.; Bumbalek, V.; Sa, J.; Medlin, J.W.; Hungerbuhler, K.; van Bokhoven, J.A.; Bokhoven, J.A. Organic thiol modified Pt/TiO2 catalysts to control chemoselective hydrogenation of substituted nitroarenes. ACS Catal. 2012, 2, 2079–2081. [Google Scholar] [CrossRef]
- Silien, C.; Dreesen, L.; Cecchet, F.; Thiry, P.A.; Peremans, A. Orientation and order of self-assembled p-benzenedimethanethiol films on Pt(111) obtained by direct adsorption and via alkanethiol displacement. J. Phys. Chem. C 2007, 111, 6357–6364. [Google Scholar] [CrossRef]
- Marshall, S.T.; O’Brien, M.; Oetter, B.; Corpuz, A.; Richards, R.M.; Schwartz, D.K.; Medlin, J.W. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat. Mater. 2010, 9, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.B.; Venkataraman, N.; Spencer, N.D.; Textor, M.; Xiao, S.J. Structural evolution of self-assembled alkanephosphate monolayers on TiO2. ChemPhysChem 2008, 9, 1979–1981. [Google Scholar] [CrossRef] [PubMed]
- Spori, D.M.; Venkataraman, N.V.; Tosatti, S.G.P.; Durmaz, F.; Spencer, N.D.; Zürcher, S. Influence of alkyl chain length on phosphate self-assembled monolayers. Langmuir 2007, 23, 8053–8060. [Google Scholar] [CrossRef] [PubMed]
- Hoque, E.; DeRose, J.A.; Kulik, G.; Hoffmann, P.; Mathieu, H.J.; Bhushan, B. Alkylphosphonate modified aluminum oxide surfaces. J. Phys. Chem. B 2006, 110, 10855–10861. [Google Scholar] [CrossRef] [PubMed]
- Pawsey, S.; Yach, K.; Reven, L. Self-assembly of carboxyalkylphosphonic acids on metal oxide powders. Langmuir 2002, 18, 5205–5212. [Google Scholar] [CrossRef]
- Hassanpour, A.; Asghari, S.; Lakouraj, M.M. Synthesis, characterization and antibacterial evaluation of nanofibrillated cellulose grafted by a novel quinolinium silane salt. RCS Adv. 2017, 7, 23907–23916. [Google Scholar] [CrossRef]
- Achoundong, C.S.K.; Bhuwania, N.; Burgess, S.K.; Karvan, O.; Johnson, J.R.; Koros, W.J. Silane modification of cellulose acetate dense films as materials for acid gas removal. Macromolecules 2013, 46, 5584–5594. [Google Scholar] [CrossRef]
- Watté, J.; Van Gompel, W.; Lommens, P.; De Buysser, K.; VanDriessche, I. Titania nanocrystal surface functionalization through silane chemistry for low temperature deposition on polymers. ACS Appl. Mater. Interfaces 2016, 8, 29759–29769. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Laplace, P.; Gallach-Perez, D.; Pellacania, P.; Martin-Palma, R.J.; Torres-Costa, V.; Ceccone, G.; Silvan, M.M. Hydrophobic perfluoro-silane functionalization of porous silicon photoluminescent films and particles. App. Surf. Sci. 2016, 380, 243–248. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.Y.; Cheon, S.; Kim, S.; Kim, D.; Ryu, H. Stimuli-responsive magneto-/electro-chromatic color-tunable hydrophobic surface modified Fe3O4@SiO2 core-shell nanoparticles for reflective display approaches. RSC Adv. 2017, 7, 6988–6993. [Google Scholar] [CrossRef]
- Garcia-Uriostegui, L.; Melendez-Ortiz, H.I.; Toriz, G.; Delgado, E. Post-grafting and characterization of mesoporous silica MCM-41 with a thermoresponsive polymer TEVS/NIPAAm/β-cyclodextrin. Mater. Lett. 2017, 196, 26–29. [Google Scholar] [CrossRef]
- Kelleher, S.M.; Nooney, R.I.; Flynn, S.P.; Clancy, E.; Burke, M.; Daly, S.; Smith, T.J.; Daniels, S.; McDonagh, C. Multivalent linkers for improved covalent binding of oligonucleotides to dye-doped silica nanoparticles. Nanotechnology 2015, 26, 365703–365715. [Google Scholar] [CrossRef] [PubMed]
- Matthews, R.; Glasser, E.; Sprawls, S.C.; French, R.H.; Peshek, T.J.; Pentzer, E.; Martin, I.T. Facile synthesis of unique hexagonal nanoplates of Zn/Co hydroxy sulfate for efficient electrocatalytic oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 17621–17629. [Google Scholar] [CrossRef]
- Rohe, B.; Veeman, W.S.; Tausch, M. Synthesis and photocatalytic activity of silane-coated and UV-modified nanoscale zinc oxide. Nanotechnology 2006, 17, 277–282. [Google Scholar] [CrossRef]
- Cano, M.; Nunez-Lozano, R.; Lumbreras, R.; Gonzalez-Rodriguez, V.; Delgado-Garcia, A.; Jimenez-Hoyuela, J.M.; de la Cueva-Mendez, G. Partial PEGylation of superparamagnetic iron oxide nanoparticles thinly coated with amine-silane as a source of ultrastable tunable nanosystems for biomedical applications. Nanoscale 2017, 9, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Dincer, C.A.; Yildiz, N.; Aydogan, N.; Calimli, A. A comparative study of Fe3O4 nanoparticles modified with different silane compounds. App. Surf. Sci. 2014, 318, 297–304. [Google Scholar] [CrossRef]
- Du, M.J.; Li, G. Preparation of silane-capped boron nanoparticles with enhanced dispersibility in hydrocarbon fuels. Fuel 2017, 194, 75–82. [Google Scholar] [CrossRef]
- Waite, J.H. Mussel adhesion—Essential footwork. J. Exp. Biol. 2017, 220, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Petrone, L.; Kumar, A.; Sutanto, C.N.; Patil, N.J.; Kannan, S.; Palaniappan, A.; Amini, S.; Zappone, B.; Verma, C.; Miserez, A. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins. Nat. Commun. 2015, 6, 8737–8748. [Google Scholar] [CrossRef] [PubMed]
- Sedó-Vegara, J.; Saiz-Poseu, J.; Busqué, F.; Ruiz-Molina, D. Catechol-based biomimetic functional materials. Adv. Mater. 2013, 25, 653–701. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Scherer, N.F.; Messersmith, P.B. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. USA 2006, 103, 12999–13003. [Google Scholar] [CrossRef] [PubMed]
- Chouirfa, H.; Evans, M.D.M.; Castner, D.G.; Bean, P.; Mercier, D.; Galtayries, A.; Falentin-Daudre, C.; Migonney, V. Grafting of architecture controlled poly(styrene sodium sulfonate) onto titanium surfaces using bio-adhesive molecules: Surface characterization and biological properties. Biointerphases 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.H.; Guo, S.T.; Zhang, Q.; Wilson, P.; Haddleton, D.M. Mussel-inspired thermoresponsive polymers with a tunable LCST by Cu(0)-LRP for the construction of smart TiO2 nanocomposites. Polym. Chem. 2017, 8, 3679–3688. [Google Scholar] [CrossRef]
- Chao, C.G.; Kumar, M.P.; Riaz, N.; Khanoyan, R.T.; Madrahimov, S.T.; Bergbreiter, D.E. Polyisobutylene oligomers as tools for iron oxide nanoparticle solubilization. Macromolecules 2017, 50, 1494–1502. [Google Scholar] [CrossRef]
- Saiz-Poseu, J.; Sedó, J.; García, B.; Benaiges, C.; Parella, T.; Alibés, R.; Hernando, J.; Busqué, F.; Ruiz-Molina, D. Versatile nanostructured materials via direct reaction of functionalized catechols. Adv. Mater. 2013, 25, 2066–2070. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Uchiyama, S.; Miyashita, T.; Mitsuishi, M. Multimodal underwater adsorption of oxide nanoparticles on catechol-based polymer nanosheets. Nanoscale 2016, 8, 5912–5919. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; In, I.; Park, S.Y. Study of photo-induced hydrophilicity and self-cleaning property of glass surfaces immobilized with TiO2 nanoparticles using catechol chemistry. Surf. Coat. Technol. 2016, 294, 75–82. [Google Scholar] [CrossRef]
- Zhong, J.; Ji, H.; Duan, J.; Tu, H.Y.; Zhang, A.D. Coating morphology and surface composition of acrylic terpolymers with pendant catechol, OEG and perfluoroalkyl groups in varying ratio and the effect on protein adsorption. Colloids Surf. B Biointerfaces 2016, 140, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Faure, E.; Falentin-Daudré, C.; Jérôme, C.; Lyskawa, J.; Fournier, D.; Woisel, P.; Detrembleur, C. Catechols as versatile platforms in polymer chemistry. Prog. Polym. Sci. 2013, 38, 236–270. [Google Scholar] [CrossRef]
- Liu, Y.L.; Ai, K.L.; Lu, L.H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115. [Google Scholar] [CrossRef] [PubMed]
- Haeshin, L.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef]
- Iacomino, M.; Paez, J.I.; Avolio, R.; Carpentieri, A.; Panzella, L.; Falco, G.; Pizzo, E.; Errico, M.E.; Napolitano, A.; del Campo, A.; et al. Multifunctional thin films and coatings from caffeic acid and a cross-linking diamine. Langmuir 2017, 33, 2096–2102. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, J.; Chen, Y.Q.; Zhao, S.; Chen, M.Y.; Li, X.; Maitz, M.F.; Wang, J.; Huang, N. Application of phenol/amine copolymerized film modified magnesium alloys: Anticorrosion and surface biofunctionalization. ACS Appl. Mater. Interfaces 2015, 7, 24510–24522. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, X.; Yang, Z.L.; Zhou, S.; Luo, R.F.; Maitz, M.F.; Zhao, Y.C.; Wang, J.; Xiong, K.Q.; Huang, N. A simple one-step modification of various materials for introducing effective multi-functional groups. Colloids Surf. B Biointerfaces 2014, 113, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Sen, R.; Gahtory, D.; Carvalho, R.R.; Albada, B.; van Delft, F.L.; Zuilhof, H. Ultrathin covalently bound organic layers on mica: Formation of atomically flat biofunctionalizable surfaces. Angew. Chem. Int. Ed. 2017, 56, 4130–4134. [Google Scholar] [CrossRef] [PubMed]
- Jackman, M.J.; Syres, K.L.; Cant, D.J.H.; Hardman, S.J.O.; Thomas, A.G. Adsorption of dopamine on rutile TiO2 (110): A photoemission and near-edge X-ray absorption fine structure study. Langmuir 2014, 30, 8761–8769. [Google Scholar] [CrossRef] [PubMed]
- Syres, K.L.; Thomas, A.G.; Flavell, W.R.; Spencer, B.F.; Bondino, F.; Malvestuto, M.; Preobrajenski, A.; Grätzel, M. Adsorbate-induced modification of surface electronic structure: Pyrocatechol adsorption on the anatase TiO2 (101) and rutile TiO2 (110) surfaces. J. Phys. Chem. C 2012, 116, 23515–23525. [Google Scholar] [CrossRef]
- Das, S.K.; Dickinson, C.; Lafir, F.; Brougham, D.F; Marsili, E. Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 2012, 14, 1322–1334. [Google Scholar] [CrossRef]
- Zorn, G.; Liu, L.-H.; Árnadóttir, L.; Wang, H.; Gamble, L.J.; Castner, D.G.; Yan, M. X-ray photoelectron spectroscopy investigation of the nitrogen species in photoactive perfluorophenylazide-modified surfaces. J. Phys Chem. C 2014, 118, 376–383. [Google Scholar] [CrossRef] [PubMed]
Peak | Time 1 (h) | Atom | Atomic Bond | BE (eV) | At. (%) |
---|---|---|---|---|---|
C1s | 12 | C3,5,6 | C(arom.) | 284.61 | 12.06 |
C8,9,10,11 | C–C/C–H(aliph.) | 285.07 | 32.52 | ||
C7,12 | C–N(aliph.) | 285.71 | 19.48 | ||
C4/C1,2 | C–N(arom.)/C–OH | 286.45 | 27.87 | ||
C1,2 | C=O | 288.31 | 8.07 | ||
24 | C3,5,6 | C(arom.) | 284.53 | 5.34 | |
C8,9,10,11 | C–C/C–H(aliph.) | 285.13 | 34.64 | ||
C7,12 | C–N(aliph.) | 285.81 | 26.61 | ||
C4/C1,2 | C–N(arom.)/C–OH | 286.64 | 21.04 | ||
C1,2 | C=O | 288.42 | 12.37 | ||
48 | C3,5,6 | C(arom.) | 284.57 | 4.52 | |
C8,9,10,11 | C–C/C–H(aliph.) | 285.22 | 36.52 | ||
C7,12 | C–N(aliph.) | 285.94 | 29.64 | ||
C4/C1,2 | C–N(arom.)/C–OH | 286.83 | 15.27 | ||
C1,2 | C=O | 288.43 | 14.05 | ||
N1s | 12 | N1 | C–NH2 | 399.87 | 81.26 |
N2 | C–N(arom.) | 401.11 | 10.51 | ||
24 | N1 | C–NH2 | 399.08 | 82.14 | |
N2 | C–N(arom.) | 401.65 | 11.26 | ||
48 | N1 | C–NH2 | 399.87 | 88.49 | |
N2 | C–N(arom.) | 401.78 | 11.51 | ||
O1s | 12 | O1,2 | C=O | 531.63 | 48.39 |
O1,2 | C–OH | 533.27 | 51.61 | ||
24 | O1,2 | C=O | 531.75 | 49.41 | |
O1,2 | C–OH | 533.29 | 50.59 | ||
48 | O1,2 | C=O | 531.95 | 56.08 | |
O1,2 | C–OH | 533.45 | 43.92 |
catHMDA 1 | Peak | Atomic Bond | BE (eV) | At. (%) |
---|---|---|---|---|
Amine | C1s | C–C/C–H(aliph.) | 285.20 | 42.92 |
C–N(aliph.) | 285.81 | 18.93 | ||
C=N | 286.23 | 18.51 | ||
C–OH | 287.11 | 5.73 | ||
C=O | 288.43 | 13.91 | ||
N1s | C=N | 399.73 | 15.62 | |
C–N(aliph.) | 400.67 | 62.72 | ||
C–N(arom.) | 402.17 | 21.66 | ||
O1s | C=O | 532.12 | 49.84 | |
C–OH | 533.64 | 50.16 | ||
Stearoyl | C1s | C–C/C–H(aliph.) | 285.37 | 16.29 |
C–N(aliph.) | 285.63 | 58.94 | ||
C–N(arom.)/C–OH | 286.93 | 17.20 | ||
C=O | 288.51 | 5.56 | ||
O=C–N | 289.67 | 2.01 | ||
N1s | O=C–N | 399.98 | 18.51 | |
C–N(aliph.) | 400.63 | 61.30 | ||
C–N(arom.) | 402.26 | 20.19 | ||
O1s | C=O | 531.76 | 35.53 | |
O=C–N | 532.86 | 27.88 | ||
C–OH | 533.95 | 36.59 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-García, S.; Sedó, J.; Saiz-Poseu, J.; Ruiz-Molina, D. Copolymerization of a Catechol and a Diamine as a Versatile Polydopamine-Like Platform for Surface Functionalization: The Case of a Hydrophobic Coating. Biomimetics 2017, 2, 22. https://doi.org/10.3390/biomimetics2040022
Suárez-García S, Sedó J, Saiz-Poseu J, Ruiz-Molina D. Copolymerization of a Catechol and a Diamine as a Versatile Polydopamine-Like Platform for Surface Functionalization: The Case of a Hydrophobic Coating. Biomimetics. 2017; 2(4):22. https://doi.org/10.3390/biomimetics2040022
Chicago/Turabian StyleSuárez-García, Salvio, Josep Sedó, Javier Saiz-Poseu, and Daniel Ruiz-Molina. 2017. "Copolymerization of a Catechol and a Diamine as a Versatile Polydopamine-Like Platform for Surface Functionalization: The Case of a Hydrophobic Coating" Biomimetics 2, no. 4: 22. https://doi.org/10.3390/biomimetics2040022
APA StyleSuárez-García, S., Sedó, J., Saiz-Poseu, J., & Ruiz-Molina, D. (2017). Copolymerization of a Catechol and a Diamine as a Versatile Polydopamine-Like Platform for Surface Functionalization: The Case of a Hydrophobic Coating. Biomimetics, 2(4), 22. https://doi.org/10.3390/biomimetics2040022