MESPBO: Multi-Strategy-Enhanced Student Psychology-Based Optimization Algorithm for Global Optimization Problems and Feature Selection Problems
Abstract
1. Introduction
- A hybrid heuristic initialization strategy combining LHS and Gaussian perturbation is proposed to ensure a well-distributed and diverse initial population.
- An adaptive dual-learning mechanism is developed to dynamically balance exploration and exploitation throughout the optimization process.
- Introduce hybrid oppositional reflection boundary control to enhance the stability and diversity of population evolution and improve the boundary control performance of the algorithm.
- Comprehensive experiments on benchmark and real-world datasets validate the superior performance and general applicability of MESPBO.
- The effectiveness of the MESPBO algorithm in solving practical problems was comprehensively analyzed by applying it to the practical application of photovoltaic model parameter extraction.
2. Student Psychology-Based Optimization Algorithm
2.1. Best Student
2.2. Good Student
2.3. Average Student
2.4. Students Who Try to Improve Randomly
| Algorithm 1: the pseudo-code of the SPBO |
| 1: Begin 2: Initialize the relevant parameters and the population 3: while 4: Evaluate the initial performance of the class 5: check the category of the student 6: Best students: 7: Modify performance by Equation (1) 8: Good students: 9: Modify performance by Equations (2) and (3) 10: Average students: 11: Modify performance by Equation (4) 12: Students who try to improve randomly: 13: Modify performance by Equation (5) 14: Check the boundary 15: Update the students’ performance 16: End while 17: return best student 18: end |
3. Proposed MESPBO
3.1. Hybrid Heuristic Population Initialization
3.1.1. Latin Hypercube Sampling (LHS)
3.1.2. Gaussian Perturbation
3.2. Adaptive Dual-Learning Position Update Mechanism
3.3. Hybrid Opposition-Based Reflective Boundary Control
3.4. Time Complexity Analysis
4. Experimental Analysis of Global Optimization Problems
4.1. IEEE CEC2017 Benchmark Suite
4.2. Comparison of Algorithms and Parameter Settings
4.3. Experimental Results and Analysis of CEC2017 Test Suite
4.4. Friedman Mean Rank Test
5. MESPBO for Feature Selection
5.1. The Proposed MESPBO-KNN
5.2. Simulation Experiment Analysis
5.3. MESPBO for Photovoltaic Model Parameter Extraction
5.3.1. Single Diode Model (SDM)
5.3.2. Experimental Parameter Setting and Simulation Analysis
- (1)
- Experimental Parameter setting
- (2)
- Experimental Analysis of SDM
6. Summary and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Chen, H.; Yang, B.; Zhao, X.; Hu, L.; Cai, Z.; Huang, H.; Tong, C. Toward an Optimal Kernel Extreme Learning Machine Using a Chaotic Moth-Flame Optimization Strategy with Applications in Medical Diagnoses. Neurocomputing 2017, 267, 69–84. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L. An Ensemble Learning-Enhanced Smart Prediction Model for Financial Credit Risks. J. Circuits Syst. Comput. 2024, 33, 7. [Google Scholar] [CrossRef]
- Qiao, Q. Image Processing Technology Based on Machine Learning. IEEE Consum. Electron. Mag. 2024, 13, 90–99. [Google Scholar] [CrossRef]
- Pandey, S.; Basisth, N.; Sachan, T.; Kumari, N.; Pakray, P. Quantum Machine Learning for Natural Language Processing Application. Phys. A-Stat. Mech. ITS Appl. 2023, 627, 129123. [Google Scholar] [CrossRef]
- Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature Selection in Machine Learning: A New Perspective. Neurocomputing 2018, 300, 70–79. [Google Scholar] [CrossRef]
- Barrera-García, J.; Cisternas-Caneo, F.; Crawford, B.; Sánchez, M.; Soto, R. Feature Selection Problem and Metaheuristics: A Systematic Literature Review about Its Formulation, Evaluation and Applications. Biomimetics 2024, 9, 9. [Google Scholar] [CrossRef]
- Ming, H.; Heyong, W. Filter Feature Selection Methods for Text Classification: A Review. Multimed. Tools Appl. 2024, 83, 2053–2091. [Google Scholar] [CrossRef]
- Jain, R.; Xu, W. Artificial Intelligence Based Wrapper for High Dimensional Feature Selection. BMC Bioinform. 2023, 24, 392. [Google Scholar] [CrossRef]
- Liu, X.; Liang, Y.; Wang, S.; Yang, Z.; Ye, H. A Hybrid Genetic Algorithm With Wrapper-Embedded Approaches for Feature Selection. IEEE Access 2018, 6, 22863–22874. [Google Scholar] [CrossRef]
- Li, W.; Wang, G.; Gandomi, A. A Survey of Learning-Based Intelligent Optimization Algorithms. Arch. Comput. Methods Eng. 2021, 28, 3781–3799. [Google Scholar] [CrossRef]
- Duzgun, E.; Acar, E.; Yildiz, A. A Novel Chaotic Artificial Rabbits Algorithm for Optimization of Constrained Engineering Problems. Mater. Test. 2024, 66, 1449–1462. [Google Scholar] [CrossRef]
- Zhang, Y.; Gorriz, J.; Nayak, D. Optimization Algorithms and Machine Learning Techniques in Medical Image Analysis. Math. Biosci. Eng. 2023, 20, 5917–5920. [Google Scholar] [CrossRef]
- Jia, H.; Xing, Z.; Song, W. A New Hybrid Seagull Optimization Algorithm for Feature Selection. IEEE Access 2019, 7, 49614–49631. [Google Scholar] [CrossRef]
- Mozhdehi, A.; Khodadadi, N.; Aboutalebi, M.; El-kenawy, E.; Hussien, A.; Zhao, W.; Nadimi-Shahraki, M.; Mirjalili, S. Divine Religions Algorithm: A Novel Social-Inspired Metaheuristic Algorithm for Engineering and Continuous Optimization Problems. Clust. Comput.-J. Netw. Softw. Tools Appl. 2025, 28, 253. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Wu, Y.; Fu, Z. Graduate Student Evolutionary Algorithm: A Novel Metaheuristic Algorithm for 3D UAV and Robot Path Planning. Biomimetics 2025, 10, 616. [Google Scholar] [CrossRef]
- Fu, S.; Li, K.; Huang, H.; Ma, C.; Fan, Q.; Zhu, Y. Red-Billed Blue Magpie Optimizer: A Novel Metaheuristic Algorithm for 2D/3D UAV Path Planning and Engineering Design Problems. Artif. Intell. Rev. 2024, 57, 134. [Google Scholar] [CrossRef]
- Tang, W.; Cao, L.; Chen, Y.; Chen, B.; Yue, Y. Solving Engineering Optimization Problems Based on Multi-Strategy Particle Swarm Optimization Hybrid Dandelion Optimization Algorithm. Biomimetics 2024, 9, 298. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, J.; Xing, Y.; Zhang, S.; Zhao, X.; Zhang, S. Node Coverage Optimization for Wireless Sensor Networks Based on a Multi-Strategy Fusion Group Teaching Optimization Algorithm. Eng. Optim. 2025, 1–24. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, L.; Zhang, J.; Peng, Y. Day-Ahead Operation Optimization of Microgrid Based on Enhanced Sardine Optimization Algorithm. Electr. Power Syst. Res. 2025, 249, 112047. [Google Scholar] [CrossRef]
- Das, B.; Mukherjee, V.; Das, D. Student Psychology Based Optimization Algorithm: A New Population Based Optimization Algorithm for Solving Optimization Problems. Adv. Eng. Softw. 2020, 146, 102804. [Google Scholar] [CrossRef]
- Balu, K.; Mukherjee, V. A Novel Quasi-Oppositional Chaotic Student Psychology-Based Optimization Algorithm for Deciphering Global Complex Optimization Problems. Knowl. Inf. Syst. 2023, 65, 5387–5477. [Google Scholar] [CrossRef]
- Shanmugam, G.; Thanarajan, T.; Rajendran, S.; Murugaraj, S. Student Psychology Based Optimized Routing Algorithm for Big Data Clustering in IoT with MapReduce Framework. J. Intell. Fuzzy Syst. 2023, 44, 2051–2063. [Google Scholar] [CrossRef]
- Basu, S.; Basu, M. Modified Student Psychology Based Optimization Algorithm for Economic Dispatch Problems. Appl. Artif. Intell. 2021, 35, 1508–1528. [Google Scholar] [CrossRef]
- Zhong, R.; Yu, J.; Zhang, C.; Munetomo, M. SRIME: A Strengthened RIME with Latin Hypercube Sampling and Embedded Distance-Based Selection for Engineering Optimization Problems. Neural Comput. Appl. 2024, 36, 6721–6740. [Google Scholar] [CrossRef]
- Hu, G.; Zheng, Y.; Abualigah, L.; Hussien, A. DETDO: An Adaptive Hybrid Dandelion Optimizer for Engineering Optimization. Adv. Eng. Inform. 2023, 57, 102004. [Google Scholar] [CrossRef]
- Hu, Z.; Dai, C.; Su, Q. Adaptive Backtracking Search Optimization Algorithm with a Dual-Learning Strategy for Dynamic Economic Dispatch with Valve-Point Effects. Energy 2022, 248, 123558. [Google Scholar] [CrossRef]
- Xie, F.; Yu, H.; Long, Q.; Zeng, W.; Lu, N. Battery Model Parameterization Using Manufacturer Datasheet and Field Measurement for Real-Time HIL Applications. IEEE Trans. Smart Grid 2020, 11, 2396–2406. [Google Scholar] [CrossRef]
- Awad, N.H.; Ali, M.Z.; Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization; Technical Report; Nanyang Technological University Singapore: Singapore, 2016; pp. 1–34. [Google Scholar]
- Gad, A.G. Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Arch. Comput. Methods Eng. 2022, 29, 2531–2561. [Google Scholar] [CrossRef]
- Hashim, F.; Hussien, A. Snake Optimizer: A Novel Meta-Heuristic Optimization Algorithm. Knowl.-Based Syst. 2022, 242, 108320. [Google Scholar] [CrossRef]
- Zolfi, K. Gold Rush Optimizer: A New Population-Based Metaheuristic Algorithm. Oper. Res. Decis. 2023, 33, 113–150. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, D.; Chen, J.; He, L. Secretary Bird Optimization Algorithm: A New Metaheuristic for Solving Global Optimization Problems. Artif. Intell. Rev. 2024, 57, 123. [Google Scholar] [CrossRef]
- Truong, D.-N.; Chou, J.-S. Metaheuristic Algorithm Inspired by Enterprise Development for Global Optimization and Structural Engineering Problems with Frequency Constraints. Eng. Struct. 2024, 318, 118679. [Google Scholar] [CrossRef]
- Ouyang, K.; Fu, S.; Chen, Y.; Cai, Q.; Heidari, A.A.; Chen, H. Escape: An Optimization Method Based on Crowd Evacuation Behaviors. Artif. Intell. Rev. 2024, 58, 19. [Google Scholar] [CrossRef]
- Su, Y.; Dai, Y.; Liu, Y. A Hybrid Hyper-Heuristic Whale Optimization Algorithm for Reusable Launch Vehicle Reentry Trajectory Optimization. Aerosp. Sci. Technol. 2021, 119, 107200. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An Improved Grey Wolf Optimizer for Solving Engineering Problems. Expert Syst. Appl. 2021, 166, 113917. [Google Scholar] [CrossRef]
- López-Vázquez, C.; Hochsztain, E. Extended and Updated Tables for the Friedman Rank Test. Commun. Stat.-Theory Methods 2019, 48, 268–281. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Deng, S.; Zhao, Y.; Li, Y. Enhanced Black Widow Optimization Algorithm Incorporating Food Sufficiency Strategy and Differential Mutation Strategy for Feature Selection of High-Dimensional Data. Expert Syst. Appl. 2025, 290, 128506. [Google Scholar] [CrossRef]
- Comak, E.; Arslan, A. A New Training Method for Support Vector Machines: Clustering k-NN Support Vector Machines. Expert Syst. Appl. 2008, 35, 564–568. [Google Scholar] [CrossRef]
- Di Ruberto, C.; Fodde, G. Evaluation of Statistical Features for Medical Image Retrieval. In International Conference on Image Analysis and Processing; Petrosino, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8156, pp. 552–561. [Google Scholar]
- Ren, Z.; Tang, Y.; Zhang, W. Quality-Related Fault Diagnosis Based on k-Nearest Neighbor Rule for Non-Linear Industrial Processes. Int. J. Distrib. Sens. Netw. 2021, 17, 15501477211055931. [Google Scholar] [CrossRef]
- Brown, A.; Marotta, T. A Natural Language Processing-Based Model to Automate MRI Brain Protocol Selection and Prioritization. Acad. Radiol. 2017, 24, 160–166. [Google Scholar] [CrossRef] [PubMed]














| Algorithms | Name of the Parameter | Value of the Parameter |
|---|---|---|
| PSO | , , , , | 6, 0.9, 0.6, 2, 2 |
| SO | , , | 0.5, 0.05, 2 |
| GRO | sigma_initial | 2 |
| SBOA | 0.5 | |
| ED | ishow | 250 |
| ESC | eliteSize, beta_base | 5, 1.5 |
| HHWOA | w | 3 |
| IGWO | 2 | |
| MSPBO | U, R1, R2 | 0.5, 0.33, 0.66 |
| QOCSPBO | jumpRate | 0.2 |
| ID | Metric | PSO | SO | GRO | SBOA | ED | ESC | HHWOA | IGWO | MSPBO | QOCSPBO | SPBO | MESPBO |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| F1 | mean | 2.9814 × 103 | 3.3019 × 103 | 1.8098 × 103 | 2.2149 × 103 | 2.4692 × 103 | 1.3422 × 103 | 3.7052 × 102 | 1.7027 × 104 | 1.4412 × 103 | 1.1691 × 108 | 1.5116 × 102 | 1.8885 × 102 |
| std | 4.0299 × 103 | 7.8603 × 103 | 1.9065 × 103 | 2.3589 × 103 | 1.4839 × 103 | 1.1709 × 103 | 1.4817 × 103 | 5.5602 × 103 | 1.8378 × 103 | 2.6019 × 108 | 8.0474 × 101 | 8.1775 × 101 | |
| F2 | mean | 2.0000 × 102 | 2.0760 × 102 | 6.1530 × 102 | 2.0000 × 102 | 2.0000 × 102 | 2.0000 × 102 | 2.0043 × 102 | 2.0000 × 102 | 2.5830 × 104 | 1.0809 × 107 | 2.0000 × 102 | 2.0000 × 102 |
| std | 0.0000 × 100 | 3.2625 × 101 | 6.7882 × 102 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 6.2606 × 10−1 | 0.0000 × 100 | 6.8349 × 104 | 2.5789 × 107 | 0.0000 × 100 | 0.0000 × 100 | |
| F3 | mean | 3.0000 × 102 | 3.0000 × 102 | 3.0034 × 102 | 3.0000 × 102 | 3.3974 × 102 | 3.0102 × 102 | 3.0000 × 102 | 3.0005 × 102 | 1.5391 × 103 | 2.1619 × 103 | 2.9897 × 103 | 3.0000 × 102 |
| std | 2.9513 × 10−4 | 2.9154 × 10−3 | 1.2123 × 10 | 7.2192 × 10−12 | 5.3821 × 101 | 2.8371 × 10 | 5.1711 × 10−14 | 3.6635 × 10−2 | 5.7748 × 102 | 8.8096 × 102 | 1.8069 × 103 | 5.0623 × 10−14 | |
| F4 | mean | 4.0579 × 102 | 4.0377 × 102 | 4.0435 × 102 | 4.0207 × 102 | 4.0216 × 102 | 4.0453 × 102 | 4.0221 × 102 | 4.0217 × 102 | 4.0661 × 102 | 4.5913 × 102 | 4.0025 × 102 | 4.0046 × 102 |
| std | 1.1816 × 101 | 1.9050 × 100 | 1.9667 × 100 | 9.0036 × 10−1 | 5.0678 × 10−1 | 2.6380 × 10−1 | 1.1082 × 101 | 9.0710 × 10−1 | 6.2636 × 10−1 | 5.7352 × 101 | 3.5411 × 10−1 | 2.4265 × 10−1 | |
| F5 | mean | 5.3582 × 102 | 5.1181 × 102 | 5.0769 × 102 | 5.0809 × 102 | 5.1328 × 102 | 5.0426 × 102 | 5.1682 × 102 | 5.0678 × 102 | 5.1721 × 102 | 5.5706 × 102 | 5.0517 × 102 | 5.0425 × 102 |
| std | 1.1597 × 101 | 4.3230 × 100 | 4.0976 × 100 | 3.5127 × 100 | 3.7001 × 100 | 2.1595 × 100 | 7.6273 × 100 | 5.3774 × 100 | 6.8634 × 100 | 1.9745 × 101 | 1.3427 × 100 | 8.9587 × 10−1 | |
| F6 | mean | 6.0716 × 102 | 6.0006 × 102 | 6.0000 × 102 | 6.0000 × 102 | 6.0000 × 102 | 6.0000 × 102 | 6.0033 × 102 | 6.0005 × 102 | 6.0000 × 102 | 6.3391 × 102 | 6.0000 × 102 | 6.0000 × 102 |
| std | 6.2732 × 100 | 1.9504 × 10−1 | 3.3782 × 10−3 | 5.5268 × 10−6 | 1.5177 × 10−4 | 4.6974 × 10−6 | 9.7174 × 10−1 | 1.2289 × 10−2 | 1.7287 × 10−4 | 1.0239 × 101 | 1.0342 × 10−13 | 7.6117 × 10−14 | |
| F7 | mean | 7.2317 × 102 | 7.2568 × 102 | 7.1808 × 102 | 7.1789 × 102 | 7.2233 × 102 | 7.1462 × 102 | 7.2262 × 102 | 7.2167 × 102 | 7.3359 × 102 | 7.6940 × 102 | 7.1506 × 102 | 7.1081 × 102 |
| std | 4.8619 × 100 | 7.3540 × 100 | 2.6763 × 100 | 5.7604 × 100 | 3.0334 × 100 | 1.6277 × 100 | 5.6667 × 100 | 8.2655 × 100 | 7.6246 × 100 | 1.7869 × 101 | 1.3952 × 100 | 3.2041 × 100 | |
| F8 | mean | 8.2043 × 102 | 8.1316 × 102 | 8.0899 × 102 | 8.0909 × 102 | 8.1322 × 102 | 8.0368 × 102 | 8.1496 × 102 | 8.0740 × 102 | 8.1619 × 102 | 8.2864 × 102 | 8.0551 × 102 | 8.0331 × 102 |
| std | 7.2160 × 100 | 6.0902 × 100 | 3.2053 × 100 | 4.3665 × 100 | 3.2359 × 100 | 1.5683 × 100 | 7.1818 × 100 | 5.4027 × 100 | 6.2505 × 100 | 6.9581 × 100 | 1.8793 × 100 | 7.8205 × 10−1 | |
| F9 | mean | 9.0000 × 102 | 9.0022 × 102 | 9.0000 × 102 | 9.0000 × 102 | 9.0003 × 102 | 9.0000 × 102 | 9.0028 × 102 | 9.0000 × 102 | 9.0000 × 102 | 1.3009 × 103 | 9.0000 × 102 | 9.0000 × 102 |
| std | 7.0853 × 10−7 | 5.7142 × 10−1 | 2.5516 × 10−7 | 9.4412 × 10−14 | 9.3033 × 10−2 | 8.2697 × 10−9 | 4.1145 × 10−1 | 4.1183 × 10−4 | 2.2169 × 10−3 | 1.7234 × 102 | 3.6464 × 10−6 | 0.0000 × 100 | |
| F10 | mean | 1.8351 × 103 | 1.4772 × 103 | 1.3651 × 103 | 1.3071 × 103 | 1.7283 × 103 | 1.1977 × 103 | 1.7373 × 103 | 1.3397 × 103 | 1.8416 × 103 | 2.0960 × 103 | 1.1607 × 103 | 1.1192 × 103 |
| std | 3.0903 × 102 | 1.8638 × 102 | 2.0713 × 102 | 1.7428 × 102 | 1.9398 × 102 | 1.0851 × 102 | 3.4245 × 102 | 3.7366 × 102 | 2.2667 × 102 | 2.2106 × 102 | 9.0718 × 101 | 4.3279 × 101 | |
| F11 | mean | 1.1370 × 103 | 1.1093 × 103 | 1.1037 × 103 | 1.1036 × 103 | 1.1041 × 103 | 1.1026 × 103 | 1.1168 × 103 | 1.1044 × 103 | 1.1067 × 103 | 1.2519 × 103 | 1.1022 × 103 | 1.1005 × 103 |
| std | 1.9167 × 101 | 5.0477 × 100 | 1.2459 × 100 | 1.4220 × 100 | 2.3872 × 100 | 1.4531 × 100 | 1.6768 × 101 | 2.1990 × 100 | 2.7680 × 100 | 9.5849 × 101 | 1.1243 × 100 | 4.1158 × 10−1 | |
| F12 | mean | 1.7014 × 104 | 1.3361 × 104 | 1.5602 × 104 | 1.6323 × 104 | 5.1249 × 104 | 1.1953 × 104 | 1.3330 × 103 | 1.8918 × 104 | 1.4100 × 105 | 4.1247 × 106 | 2.1198 × 104 | 3.5939 × 103 |
| std | 1.0552 × 104 | 1.0458 × 104 | 1.2176 × 104 | 1.6828 × 104 | 2.9166 × 104 | 9.0781 × 103 | 1.5341 × 102 | 1.6807 × 104 | 1.5868 × 105 | 3.5646 × 106 | 1.6353 × 104 | 8.8142 × 102 | |
| F13 | mean | 6.3821 × 103 | 4.7231 × 103 | 2.1871 × 103 | 2.2813 × 103 | 3.6262 × 103 | 6.0238 × 103 | 1.3045 × 103 | 2.1359 × 103 | 4.4067 × 103 | 1.2331 × 104 | 1.5060 × 103 | 1.3769 × 103 |
| std | 5.9593 × 103 | 3.3906 × 103 | 7.7793 × 102 | 1.3675 × 103 | 1.5563 × 103 | 6.5014 × 103 | 2.6734 × 100 | 5.4946 × 102 | 2.7957 × 103 | 7.5568 × 103 | 2.3749 × 102 | 3.5321 × 101 | |
| F14 | mean | 1.6978 × 103 | 1.4891 × 103 | 1.4383 × 103 | 1.4315 × 103 | 1.5168 × 103 | 2.1039 × 103 | 1.4238 × 103 | 1.4512 × 103 | 1.6156 × 103 | 2.4446 × 103 | 1.4800 × 103 | 1.4179 × 103 |
| std | 4.5901 × 102 | 4.8873 × 101 | 1.0416 × 101 | 1.0730 × 101 | 7.0773 × 101 | 2.2352 × 103 | 1.9862 × 101 | 1.1742 × 101 | 1.6062 × 102 | 9.3036 × 102 | 6.1648 × 101 | 6.3990 × 10 | |
| F15 | mean | 2.1077 × 103 | 1.6639 × 103 | 1.5611 × 103 | 1.5223 × 103 | 1.5579 × 103 | 1.8968 × 103 | 1.5170 × 103 | 1.5274 × 103 | 2.1181 × 103 | 7.8864 × 103 | 1.5971 × 103 | 1.5087 × 103 |
| std | 7.7348 × 102 | 1.1109 × 102 | 5.2152 × 101 | 2.1792 × 101 | 4.1510 × 101 | 7.7996 × 102 | 4.4404 × 101 | 1.3013 × 101 | 4.4678 × 102 | 2.7619 × 103 | 1.1985 × 102 | 3.1644 × 100 | |
| F16 | mean | 1.8504 × 103 | 1.6932 × 103 | 1.6325 × 103 | 1.6116 × 103 | 1.6054 × 103 | 1.6168 × 103 | 1.6450 × 103 | 1.6038 × 103 | 1.6250 × 103 | 1.9686 × 103 | 1.6074 × 103 | 1.6013 × 103 |
| std | 1.0783 × 102 | 9.6429 × 101 | 5.4797 × 101 | 4.5520 × 101 | 1.2992 × 101 | 3.3072 × 101 | 5.3681 × 101 | 1.6456 × 10 | 1.5599 × 101 | 1.0766 × 102 | 2.3212 × 101 | 2.8320 × 10−1 | |
| F17 | mean | 1.7649 × 103 | 1.7356 × 103 | 1.7278 × 103 | 1.7178 × 103 | 1.7069 × 103 | 1.7047 × 103 | 1.7224 × 103 | 1.7322 × 103 | 1.7437 × 103 | 1.7800 × 103 | 1.7008 × 103 | 1.7173 × 103 |
| std | 3.4152 × 101 | 2.4262 × 101 | 1.0797 × 101 | 1.0540 × 101 | 2.2991 × 100 | 7.0844 × 100 | 1.3511 × 101 | 9.8757 × 100 | 1.0337 × 101 | 2.1877 × 101 | 7.1941 × 10−1 | 6.2297 × 100 | |
| F18 | mean | 1.1272 × 104 | 5.9195 × 103 | 2.8207 × 103 | 5.3461 × 103 | 5.4902 × 103 | 7.4367 × 103 | 1.8068 × 103 | 4.9668 × 103 | 7.1777 × 103 | 1.6427 × 104 | 2.5954 × 103 | 2.1796 × 103 |
| std | 7.2253 × 103 | 4.6359 × 103 | 9.4287 × 102 | 2.5627 × 103 | 1.4442 × 103 | 7.4005 × 103 | 9.1106 × 101 | 3.4350 × 103 | 2.8988 × 103 | 1.2650 × 104 | 7.2833 × 102 | 1.3448 × 102 | |
| F19 | mean | 3.0216 × 103 | 2.1863 × 103 | 1.9692 × 103 | 1.9171 × 103 | 1.9275 × 103 | 4.7177 × 103 | 1.9001 × 103 | 1.9230 × 103 | 2.6122 × 103 | 1.4083 × 104 | 1.9880 × 103 | 1.9067 × 103 |
| std | 1.8474 × 103 | 5.4463 × 102 | 1.0842 × 102 | 1.2157 × 101 | 2.4497 × 101 | 4.4077 × 103 | 2.7798 × 10−1 | 1.1630 × 101 | 7.8364 × 102 | 9.5644 × 103 | 1.6802 × 102 | 1.7189 × 100 | |
| F20 | mean | 2.0877 × 103 | 2.0256 × 103 | 2.0163 × 103 | 2.0061 × 103 | 2.0058 × 103 | 2.0002 × 103 | 2.0093 × 103 | 2.0248 × 103 | 2.0187 × 103 | 2.1800 × 103 | 2.0002 × 103 | 2.0010 × 103 |
| std | 5.4271 × 101 | 2.7431 × 101 | 1.9328 × 101 | 8.4835 × 10 | 4.3121 × 10 | 4.7606 × 10−1 | 1.0720 × 101 | 6.6342 × 10 | 1.2386 × 101 | 5.5017 × 101 | 2.6765 × 10−1 | 7.0716 × 10−1 | |
| F21 | mean | 2.3207 × 103 | 2.3090 × 103 | 2.2465 × 103 | 2.2914 × 103 | 2.2158 × 103 | 2.2978 × 103 | 2.2809 × 103 | 2.2776 × 103 | 2.2726 × 103 | 2.2375 × 103 | 2.2037 × 103 | 2.2000 × 103 |
| std | 4.2719 × 101 | 2.0798 × 101 | 5.3799 × 101 | 4.1424 × 101 | 3.9269 × 101 | 2.8473 × 101 | 5.3017 × 101 | 4.8106 × 101 | 3.3858 × 101 | 1.8187 × 101 | 1.9453 × 101 | 1.2942 × 10−6 | |
| F22 | mean | 2.3010 × 103 | 2.3017 × 103 | 2.2970 × 103 | 2.2978 × 103 | 2.2879 × 103 | 2.3004 × 103 | 2.2994 × 103 | 2.2981 × 103 | 2.3018 × 103 | 2.3351 × 103 | 2.2582 × 103 | 2.2446 × 103 |
| std | 1.3015 × 101 | 5.9380 × 10−1 | 1.8325 × 101 | 1.4534 × 101 | 3.1827 × 101 | 2.7929 × 10−1 | 1.2660 × 101 | 2.6677 × 101 | 7.7753 × 100 | 1.4254 × 101 | 3.5382 × 101 | 4.3063 × 101 | |
| F23 | mean | 2.6864 × 103 | 2.6149 × 103 | 2.6080 × 103 | 2.6103 × 103 | 2.6141 × 103 | 2.6061 × 103 | 2.6190 × 103 | 2.6108 × 103 | 2.6149 × 103 | 2.6646 × 103 | 2.6039 × 103 | 2.6065 × 103 |
| std | 2.6026 × 101 | 5.6227 × 100 | 3.0176 × 100 | 4.0292 × 100 | 2.8214 × 100 | 2.3841 × 100 | 9.4645 × 100 | 7.4644 × 100 | 6.6855 × 100 | 2.7099 × 101 | 3.5565 × 101 | 9.3062 × 10−1 | |
| F24 | mean | 2.7832 × 103 | 2.7430 × 103 | 2.6710 × 103 | 2.6905 × 103 | 2.5815 × 103 | 2.7363 × 103 | 2.7449 × 103 | 2.7265 × 103 | 2.7422 × 103 | 2.6877 × 103 | 2.5199 × 103 | 2.6166 × 103 |
| std | 9.1167 × 101 | 4.8112 × 100 | 1.0492 × 102 | 9.6898 × 101 | 1.0098 × 102 | 2.9374 × 100 | 6.9177 × 100 | 4.3174 × 101 | 2.6718 × 101 | 1.2556 × 102 | 6.3539 × 101 | 1.1864 × 102 | |
| F25 | mean | 2.9242 × 103 | 2.9258 × 103 | 2.9050 × 103 | 2.9167 × 103 | 2.8583 × 103 | 2.9320 × 103 | 2.9293 × 103 | 2.8996 × 103 | 2.9390 × 103 | 2.9564 × 103 | 2.7554 × 103 | 2.8979 × 103 |
| std | 2.2794 × 101 | 2.2640 × 101 | 1.5558 × 101 | 2.2695 × 101 | 7.1246 × 101 | 2.2564 × 101 | 2.3294 × 101 | 8.3610 × 100 | 1.3779 × 101 | 1.8307 × 101 | 1.4080 × 102 | 1.3630 × 10−1 | |
| F26 | mean | 3.0505 × 103 | 3.0843 × 103 | 2.8633 × 103 | 2.9020 × 103 | 2.8460 × 103 | 2.9386 × 103 | 2.9904 × 103 | 2.9000 × 103 | 2.9685 × 103 | 3.1960 × 103 | 2.6743 × 103 | 2.8509 × 103 |
| std | 2.5484 × 102 | 1.9785 × 102 | 9.2786 × 101 | 4.1088 × 101 | 6.8196 × 101 | 1.6053 × 102 | 1.8862 × 102 | 2.5704 × 10−3 | 3.3328 × 101 | 3.4205 × 102 | 9.8219 × 101 | 8.1519 × 101 | |
| F27 | mean | 3.1357 × 103 | 3.1021 × 103 | 3.0926 × 103 | 3.0904 × 103 | 3.0932 × 103 | 3.0901 × 103 | 3.0947 × 103 | 3.0894 × 103 | 3.0905 × 103 | 3.1459 × 103 | 3.0928 × 103 | 3.0889 × 103 |
| std | 5.6496 × 101 | 4.9836 × 100 | 2.5674 × 100 | 1.4881 × 100 | 2.4482 × 100 | 1.0209 × 100 | 3.8125 × 100 | 3.5394 × 10−1 | 1.2186 × 100 | 4.7537 × 101 | 2.4456 × 100 | 3.6842 × 10−1 | |
| F28 | mean | 3.1593 × 103 | 3.3659 × 103 | 3.1313 × 103 | 3.1783 × 103 | 3.0775 × 103 | 3.3036 × 103 | 3.2670 × 103 | 3.2103 × 103 | 3.2225 × 103 | 3.3803 × 103 | 3.0543 × 103 | 3.0700 × 103 |
| std | 3.9504 × 101 | 8.3022 × 101 | 1.0842 × 102 | 1.7300 × 102 | 6.9108 × 101 | 1.4389 × 102 | 1.3651 × 102 | 1.4758 × 102 | 4.2744 × 101 | 1.2192 × 102 | 1.0384 × 102 | 9.1536 × 101 | |
| F29 | mean | 3.2431 × 103 | 3.1715 × 103 | 3.1583 × 103 | 3.1458 × 103 | 3.1622 × 103 | 3.1505 × 103 | 3.1780 × 103 | 3.1507 × 103 | 3.2023 × 103 | 3.3319 × 103 | 3.1510 × 103 | 3.1341 × 103 |
| std | 5.6363 × 101 | 2.5736 × 101 | 1.5211 × 101 | 1.5650 × 101 | 3.9390 × 101 | 1.0004 × 101 | 2.3496 × 101 | 1.2438 × 101 | 1.9303 × 101 | 8.0801 × 101 | 9.2151 × 10 | 1.0926 × 10 | |
| F30 | mean | 2.0786 × 104 | 6.2193 × 104 | 1.0382 × 104 | 8.9056 × 104 | 2.4989 × 104 | 2.3104 × 105 | 2.2292 × 105 | 6.2358 × 104 | 2.3561 × 105 | 1.4363 × 106 | 1.1519 × 104 | 3.9048 × 103 |
| std | 1.8062 × 104 | 2.0617 × 105 | 5.7099 × 103 | 2.4803 × 105 | 1.7666 × 104 | 3.6582 × 105 | 4.1565 × 105 | 2.1568 × 105 | 1.6920 × 105 | 1.0987 × 106 | 1.3166 × 104 | 1.8510 × 102 |
| ID | Metric | PSO | SO | GRO | SBOA | ED | ESC | HHWOA | IGWO | MSPBO | QOCSPBO | SPBO | MESPBO |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| F1 | mean | 2.4596 × 105 | 4.5560 × 104 | 1.5599 × 106 | 6.8940 × 103 | 2.9922 × 103 | 3.5303 × 103 | 4.6072 × 103 | 3.8406 × 105 | 3.9490 × 106 | 4.6773 × 109 | 1.8896 × 102 | 1.5596 × 102 |
| std | 1.7503 × 105 | 6.6804 × 104 | 1.8106 × 106 | 6.7951 × 103 | 2.3195 × 103 | 3.4202 × 103 | 5.1698 × 103 | 2.2382 × 105 | 1.7832 × 106 | 1.2942 × 109 | 9.7710 × 101 | 5.1543 × 101 | |
| F2 | mean | 1.7501 × 1010 | 2.2070 × 1018 | 2.4786 × 1022 | 4.7204 × 1012 | 3.5066 × 1022 | 1.4068 × 1015 | 9.2087 × 1016 | 3.0351 × 1016 | 1.5720 × 1029 | 1.4922 × 1038 | 6.0646 × 104 | 5.0359 × 108 |
| std | 5.3363 × 1010 | 7.6977 × 1018 | 1.2492 × 1023 | 1.0226 × 1013 | 1.3679 × 1023 | 6.7197 × 1015 | 3.7255 × 1017 | 9.0360 × 1016 | 3.4408 × 1029 | 5.1992 × 1038 | 2.4761 × 105 | 4.9406 × 108 | |
| F3 | mean | 5.6259 × 103 | 5.6741 × 104 | 3.4051 × 104 | 6.6270 × 103 | 8.0714 × 104 | 4.0339 × 104 | 3.0000 × 102 | 5.7968 × 103 | 1.3640 × 105 | 7.3497 × 104 | 9.1277 × 104 | 2.0269 × 103 |
| std | 2.8127 × 103 | 8.4409 × 103 | 6.2035 × 103 | 3.1070 × 103 | 1.5312 × 104 | 1.0266 × 104 | 3.9070 × 10−3 | 3.1029 × 103 | 2.0652 × 104 | 8.2942 × 103 | 1.9301 × 104 | 3.1745 × 102 | |
| F4 | mean | 4.6402 × 102 | 5.0305 × 102 | 5.1650 × 102 | 4.9837 × 102 | 4.7466 × 102 | 5.0649 × 102 | 4.7536 × 102 | 4.9601 × 102 | 5.9628 × 102 | 1.6792 × 103 | 4.2963 × 102 | 4.7313 × 102 |
| std | 2.6125 × 101 | 2.4952 × 101 | 1.9550 × 101 | 1.9485 × 101 | 3.5493 × 101 | 1.4252 × 101 | 3.0436 × 101 | 1.2369 × 101 | 2.3736 × 101 | 5.3309 × 102 | 2.9474 × 101 | 5.0237 × 100 | |
| F5 | mean | 6.7834 × 102 | 5.6314 × 102 | 5.7199 × 102 | 5.6033 × 102 | 6.4726 × 102 | 5.7734 × 102 | 5.8799 × 102 | 5.7573 × 102 | 6.9789 × 102 | 8.2933 × 102 | 5.5268 × 102 | 5.2816 × 102 |
| std | 2.7151 × 101 | 1.6095 × 101 | 1.6196 × 101 | 1.9374 × 101 | 1.5657 × 101 | 1.9956 × 101 | 2.0267 × 101 | 4.5163 × 101 | 1.4828 × 101 | 2.7358 × 101 | 9.2838 × 100 | 4.4624 × 100 | |
| F6 | mean | 6.3977 × 102 | 6.0262 × 102 | 6.0432 × 102 | 6.0048 × 102 | 6.0402 × 102 | 6.0000 × 102 | 6.0500 × 102 | 6.0047 × 102 | 6.0210 × 102 | 6.7152 × 102 | 6.0000 × 102 | 6.0000 × 102 |
| std | 7.1212 × 100 | 1.9415 × 100 | 1.9594 × 100 | 5.7791 × 10−1 | 3.9740 × 100 | 2.0211 × 10−3 | 3.6091 × 100 | 2.2918 × 10−1 | 5.6066 × 10−1 | 5.7272 × 100 | 8.4444 × 10−14 | 5.7673 × 10−4 | |
| F7 | mean | 8.5063 × 102 | 8.2078 × 102 | 8.0959 × 102 | 8.1224 × 102 | 8.6623 × 102 | 8.2038 × 102 | 8.6855 × 102 | 8.2772 × 102 | 9.4479 × 102 | 1.3031 × 103 | 7.7617 × 102 | 7.5892 × 102 |
| std | 2.7603 × 101 | 2.9088 × 101 | 3.3694 × 101 | 3.1838 × 101 | 2.1647 × 101 | 1.4310 × 101 | 4.5764 × 101 | 5.8842 × 101 | 1.1883 × 101 | 6.8417 × 101 | 7.0361 × 100 | 3.5724 × 100 | |
| F8 | mean | 9.2021 × 102 | 8.5703 × 102 | 8.7075 × 102 | 8.6112 × 102 | 9.3687 × 102 | 8.7087 × 102 | 8.7879 × 102 | 8.6354 × 102 | 9.9632 × 102 | 1.0348 × 103 | 8.5800 × 102 | 8.3075 × 102 |
| std | 1.6790 × 101 | 1.0402 × 101 | 1.6366 × 101 | 2.0792 × 101 | 1.9235 × 101 | 1.7022 × 101 | 2.2166 × 101 | 4.4014 × 101 | 1.4977 × 101 | 2.1772 × 101 | 9.9026 × 100 | 4.5211 × 100 | |
| F9 | mean | 4.7558 × 103 | 1.2920 × 103 | 1.1921 × 103 | 9.6899 × 102 | 1.2481 × 103 | 9.0026 × 102 | 1.3374 × 103 | 9.0984 × 102 | 1.3245 × 103 | 8.1339 × 103 | 1.0401 × 103 | 9.0022 × 102 |
| std | 1.3851 × 103 | 2.8686 × 102 | 2.6363 × 102 | 8.9781 × 101 | 2.6585 × 102 | 4.6554 × 10−1 | 3.2112 × 102 | 2.7461 × 101 | 1.8158 × 102 | 8.1707 × 102 | 8.7559 × 101 | 1.4123 × 10−1 | |
| F10 | mean | 4.7756 × 103 | 3.6220 × 103 | 4.2873 × 103 | 4.0910 × 103 | 5.0743 × 103 | 6.5289 × 103 | 4.7189 × 103 | 6.4259 × 103 | 8.4369 × 103 | 7.3814 × 103 | 2.9533 × 103 | 3.5077 × 103 |
| std | 7.3609 × 102 | 1.1449 × 103 | 5.8269 × 102 | 6.3615 × 102 | 2.9302 × 102 | 4.7613 × 102 | 6.5698 × 102 | 2.2447 × 103 | 3.1474 × 102 | 5.5562 × 102 | 2.0419 × 102 | 2.9656 × 102 | |
| F11 | mean | 1.2083 × 103 | 1.2477 × 103 | 1.2030 × 103 | 1.1668 × 103 | 1.1935 × 103 | 1.1767 × 103 | 1.1823 × 103 | 1.1858 × 103 | 1.5164 × 103 | 2.6927 × 103 | 1.2307 × 103 | 1.1153 × 103 |
| std | 2.6490 × 101 | 4.9339 × 101 | 3.1518 × 101 | 3.0609 × 101 | 3.9320 × 101 | 2.0054 × 101 | 3.6721 × 101 | 2.7607 × 101 | 8.6856 × 101 | 5.3808 × 102 | 6.4523 × 101 | 4.0984 × 100 | |
| F12 | mean | 1.5396 × 106 | 7.2948 × 105 | 7.7828 × 105 | 3.5819 × 105 | 3.5131 × 105 | 7.2829 × 105 | 6.1237 × 104 | 1.4945 × 106 | 3.5254 × 106 | 7.5238 × 108 | 3.1685 × 105 | 4.0537 × 104 |
| std | 1.3335 × 106 | 8.1913 × 105 | 6.1627 × 105 | 2.8788 × 105 | 2.9175 × 105 | 6.3280 × 105 | 7.1867 × 104 | 9.2758 × 105 | 1.5726 × 106 | 3.7548 × 108 | 2.2746 × 105 | 1.1669 × 104 | |
| F13 | mean | 1.4813 × 104 | 2.0626 × 104 | 2.0060 × 104 | 2.2367 × 104 | 2.7550 × 104 | 1.6355 × 104 | 1.9835 × 104 | 1.4977 × 105 | 2.0470 × 104 | 4.9138 × 107 | 6.7450 × 103 | 2.7933 × 103 |
| std | 1.7632 × 104 | 1.6147 × 104 | 1.4572 × 104 | 1.9108 × 104 | 1.9773 × 104 | 1.1804 × 104 | 1.8113 × 104 | 8.5169 × 104 | 1.0036 × 104 | 3.7143 × 107 | 4.8294 × 103 | 7.1352 × 102 | |
| F14 | mean | 1.5928 × 104 | 2.9210 × 104 | 1.2283 × 104 | 1.6767 × 104 | 3.4752 × 104 | 3.7845 × 104 | 1.4855 × 103 | 7.9845 × 103 | 2.0494 × 105 | 1.3408 × 106 | 5.6801 × 104 | 2.4274 × 103 |
| std | 2.5451 × 104 | 3.9078 × 104 | 9.4987 × 103 | 1.9670 × 104 | 3.6214 × 104 | 4.8333 × 104 | 6.0844 × 101 | 6.2977 × 103 | 1.9066 × 105 | 1.2779 × 106 | 3.9885 × 104 | 4.3621 × 102 | |
| F15 | mean | 8.3592 × 103 | 7.5755 × 103 | 6.8856 × 103 | 8.9023 × 103 | 6.2047 × 103 | 5.0609 × 103 | 1.6050 × 103 | 2.2718 × 104 | 4.6087 × 103 | 1.3321 × 106 | 2.0984 × 103 | 2.5486 × 103 |
| std | 9.8873 × 103 | 7.0157 × 103 | 5.3948 × 103 | 8.5654 × 103 | 4.8499 × 103 | 4.2108 × 103 | 2.4807 × 102 | 1.7717 × 104 | 2.6104 × 103 | 9.6807 × 105 | 6.7721 × 102 | 4.8055 × 102 | |
| F16 | mean | 2.5776 × 103 | 2.3622 × 103 | 2.1912 × 103 | 2.2377 × 103 | 2.8702 × 103 | 2.0357 × 103 | 2.5562 × 103 | 2.1639 × 103 | 3.2951 × 103 | 4.0369 × 103 | 2.1409 × 103 | 1.8364 × 103 |
| std | 2.8817 × 102 | 2.4040 × 102 | 1.6478 × 102 | 2.8943 × 102 | 1.6047 × 102 | 1.9427 × 102 | 3.5644 × 102 | 4.4080 × 102 | 1.9081 × 102 | 4.0050 × 102 | 1.1976 × 102 | 1.0272 × 102 | |
| F17 | mean | 2.3070 × 103 | 1.9907 × 103 | 1.8437 × 103 | 1.8421 × 103 | 2.1334 × 103 | 1.8305 × 103 | 2.1745 × 103 | 1.8507 × 103 | 2.3505 × 103 | 2.6310 × 103 | 1.8361 × 103 | 1.8012 × 103 |
| std | 2.1975 × 102 | 1.6693 × 102 | 5.9343 × 101 | 8.4069 × 101 | 1.2962 × 102 | 9.3385 × 101 | 1.7479 × 102 | 1.1620 × 102 | 1.4710 × 102 | 2.3809 × 102 | 6.0487 × 101 | 1.8146 × 101 | |
| F18 | mean | 3.6281 × 105 | 4.0398 × 105 | 3.1386 × 105 | 3.0627 × 105 | 7.0699 × 105 | 4.9221 × 105 | 9.4064 × 103 | 1.4821 × 105 | 3.2111 × 106 | 7.2249 × 106 | 1.2175 × 105 | 7.6168 × 104 |
| std | 2.7583 × 105 | 3.1315 × 105 | 2.2033 × 105 | 2.5376 × 105 | 3.5569 × 105 | 5.3267 × 105 | 1.1557 × 104 | 8.8047 × 104 | 1.5455 × 106 | 6.1290 × 106 | 6.1649 × 104 | 2.3466 × 104 | |
| F19 | mean | 1.1334 × 104 | 1.0154 × 104 | 7.9412 × 103 | 1.1190 × 104 | 9.4179 × 103 | 6.1317 × 103 | 5.6914 × 103 | 1.5536 × 104 | 8.3464 × 103 | 1.0231 × 107 | 2.9665 × 103 | 2.2927 × 103 |
| std | 1.0137 × 104 | 8.8497 × 103 | 6.2186 × 103 | 1.0766 × 104 | 1.2030 × 104 | 6.8140 × 103 | 1.3776 × 104 | 1.5239 × 104 | 5.1228 × 103 | 7.4936 × 106 | 1.1357 × 103 | 1.9748 × 102 | |
| F20 | mean | 2.6406 × 103 | 2.3675 × 103 | 2.2448 × 103 | 2.1960 × 103 | 2.5458 × 103 | 2.1610 × 103 | 2.4907 × 103 | 2.1540 × 103 | 2.6468 × 103 | 2.7801 × 103 | 2.1671 × 103 | 2.0962 × 103 |
| std | 2.1483 × 102 | 1.4741 × 102 | 1.0063 × 102 | 1.0229 × 102 | 1.1028 × 102 | 1.1205 × 102 | 1.8798 × 102 | 7.8455 × 101 | 1.7222 × 102 | 1.7913 × 102 | 6.2669 × 101 | 2.3384 × 101 | |
| F21 | mean | 2.4736 × 103 | 2.3630 × 103 | 2.3575 × 103 | 2.3479 × 103 | 2.4452 × 103 | 2.3663 × 103 | 2.3867 × 103 | 2.3600 × 103 | 2.4948 × 103 | 2.6302 × 103 | 2.3462 × 103 | 2.3294 × 103 |
| std | 6.1024 × 101 | 1.1820 × 101 | 1.6702 × 101 | 1.4040 × 101 | 1.7554 × 101 | 2.0893 × 101 | 2.8716 × 101 | 4.0240 × 101 | 1.4360 × 101 | 3.6998 × 101 | 4.3418 × 101 | 4.9411 × 100 | |
| F22 | mean | 4.7374 × 103 | 3.2874 × 103 | 2.3102 × 103 | 2.3006 × 103 | 5.5191 × 103 | 2.8079 × 103 | 3.9133 × 103 | 2.9150 × 103 | 7.7309 × 103 | 5.4541 × 103 | 2.3821 × 103 | 2.3000 × 103 |
| std | 2.2074 × 103 | 1.2087 × 103 | 4.7894 × 100 | 1.1814 × 100 | 1.8152 × 103 | 1.5678 × 103 | 2.2077 × 103 | 1.8695 × 103 | 2.3602 × 103 | 1.8640 × 103 | 4.4658 × 102 | 4.5485 × 10−7 | |
| F23 | mean | 3.0755 × 103 | 2.7434 × 103 | 2.7174 × 103 | 2.7017 × 103 | 2.8089 × 103 | 2.6986 × 103 | 2.7675 × 103 | 2.7060 × 103 | 2.8412 × 103 | 3.2794 × 103 | 2.7113 × 103 | 2.6900 × 103 |
| std | 1.2654 × 102 | 2.0901 × 101 | 1.8198 × 101 | 1.3847 × 101 | 2.0016 × 101 | 2.0133 × 101 | 3.0742 × 101 | 4.0844 × 101 | 1.3533 × 101 | 1.2719 × 102 | 1.0862 × 101 | 7.1280 × 100 | |
| F24 | mean | 3.1811 × 103 | 2.8933 × 103 | 2.8786 × 103 | 2.8666 × 103 | 2.9771 × 103 | 2.9091 × 103 | 2.9258 × 103 | 2.9040 × 103 | 3.0199 × 103 | 3.3914 × 103 | 2.8743 × 103 | 2.8589 × 103 |
| std | 8.8045 × 101 | 1.4178 × 101 | 1.5979 × 101 | 1.7443 × 101 | 2.7855 × 101 | 1.4530 × 101 | 4.3870 × 101 | 6.3692 × 101 | 1.1416 × 101 | 1.2368 × 102 | 1.5190 × 102 | 5.0005 × 100 | |
| F25 | mean | 2.8845 × 103 | 2.8932 × 103 | 2.9117 × 103 | 2.8980 × 103 | 2.8904 × 103 | 2.8891 × 103 | 2.8981 × 103 | 2.8872 × 103 | 2.9390 × 103 | 3.2345 × 103 | 2.8838 × 103 | 2.8848 × 103 |
| std | 1.3505 × 101 | 9.8600 × 100 | 1.9462 × 101 | 1.7328 × 101 | 7.9075 × 100 | 4.4094 × 100 | 1.6850 × 101 | 1.6754 × 100 | 1.0540 × 101 | 8.7998 × 101 | 1.8792 × 10−1 | 1.5740 × 100 | |
| F26 | mean | 5.7774 × 103 | 4.7504 × 103 | 3.6235 × 103 | 3.8717 × 103 | 5.0612 × 103 | 4.0406 × 103 | 5.0263 × 103 | 3.8676 × 103 | 5.6073 × 103 | 7.9669 × 103 | 3.0703 × 103 | 3.7417 × 103 |
| std | 1.9820 × 103 | 2.6490 × 102 | 7.2199 × 102 | 5.9975 × 102 | 6.5764 × 102 | 2.3494 × 102 | 4.0932 × 102 | 4.7102 × 102 | 1.4298 × 102 | 1.3764 × 103 | 5.6179 × 102 | 4.9138 × 102 | |
| F27 | mean | 3.3211 × 103 | 3.2571 × 103 | 3.2398 × 103 | 3.2130 × 103 | 3.2406 × 103 | 3.2121 × 103 | 3.2461 × 103 | 3.2021 × 103 | 3.2433 × 103 | 3.6311 × 103 | 3.2112 × 103 | 3.1971 × 103 |
| std | 1.9337 × 102 | 1.9526 × 101 | 1.1989 × 101 | 8.8266 × 100 | 1.8051 × 101 | 6.9371 × 100 | 2.8123 × 101 | 1.0024 × 101 | 9.0040 × 100 | 1.5912 × 102 | 4.6880 × 100 | 4.6605 × 100 | |
| F28 | mean | 3.2370 × 103 | 3.2646 × 103 | 3.2669 × 103 | 3.2150 × 103 | 3.2334 × 103 | 3.2322 × 103 | 3.1649 × 103 | 3.2194 × 103 | 3.3506 × 103 | 4.0120 × 103 | 3.1591 × 103 | 3.1891 × 103 |
| std | 2.3163 × 101 | 2.1089 × 101 | 2.6497 × 101 | 1.2274 × 101 | 2.4596 × 101 | 1.6115 × 101 | 6.3881 × 101 | 1.0705 × 101 | 2.1026 × 101 | 2.4593 × 102 | 3.9725 × 101 | 2.3434 × 101 | |
| F29 | mean | 4.1611 × 103 | 3.8186 × 103 | 3.6129 × 103 | 3.5210 × 103 | 3.7897 × 103 | 3.4786 × 103 | 3.8356 × 103 | 3.4676 × 103 | 4.3602 × 103 | 5.3447 × 103 | 3.4467 × 103 | 3.4540 × 103 |
| std | 2.0489 × 102 | 1.8372 × 102 | 1.4201 × 102 | 1.5489 × 102 | 1.2275 × 102 | 9.1715 × 101 | 2.4729 × 102 | 9.2550 × 101 | 1.7632 × 102 | 4.6063 × 102 | 6.8469 × 101 | 3.4203 × 101 | |
| F30 | mean | 4.4794 × 104 | 2.3836 × 104 | 1.6167 × 104 | 1.2819 × 104 | 4.1836 × 104 | 1.0345 × 104 | 9.6933 × 103 | 2.1012 × 105 | 2.2835 × 105 | 7.3960 × 107 | 6.5580 × 103 | 8.7688 × 103 |
| std | 2.5129 × 104 | 3.9028 × 104 | 8.2884 × 103 | 4.6478 × 103 | 5.4515 × 104 | 3.3683 × 103 | 3.9358 × 103 | 1.4625 × 105 | 1.1340 × 105 | 7.6312 × 107 | 6.0648 × 102 | 1.2881 × 103 |
| ID | Metric | PSO | SO | GRO | SBOA | ED | ESC | HHWOA | IGWO | MSPBO | QOCSPBO | SPBO | MESPBO |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| F1 | mean | 8.6734 × 106 | 2.3685 × 106 | 5.3913 × 108 | 1.2142 × 104 | 3.3006 × 104 | 2.7644 × 103 | 3.9216 × 103 | 1.2373 × 107 | 6.9607 × 108 | 2.3090 × 1010 | 8.5150 × 102 | 3.8769 × 102 |
| std | 3.4959 × 106 | 1.5953 × 106 | 3.4521 × 108 | 1.1842 × 104 | 3.8494 × 104 | 2.7582 × 103 | 4.8496 × 103 | 5.8869 × 106 | 2.1505 × 108 | 4.9392 × 109 | 8.9134 × 102 | 1.3170 × 102 | |
| F2 | mean | 1.1321 × 1023 | 7.7286 × 1041 | 1.2534 × 1047 | 1.8707 × 1033 | 1.1498 × 1044 | 1.0850 × 1042 | 1.5421 × 1042 | 5.7637 × 1037 | 2.4870 × 1061 | 4.1030 × 1073 | 2.4739 × 1013 | 7.4016 × 1026 |
| std | 2.3415 × 1023 | 1.8387 × 1042 | 4.9974 × 1047 | 1.0239 × 1034 | 5.9854 × 1044 | 3.9538 × 1042 | 6.2931 × 1042 | 2.1849 × 1038 | 7.2696 × 1061 | 2.2083 × 1074 | 1.3437 × 1014 | 1.0605 × 1027 | |
| F3 | mean | 8.0519 × 104 | 1.3709 × 105 | 1.0701 × 105 | 4.2937 × 104 | 2.4239 × 105 | 1.5926 × 105 | 1.4391 × 103 | 3.1961 × 104 | 3.1827 × 105 | 1.7614 × 105 | 2.4043 × 105 | 4.2018 × 104 |
| std | 1.9113 × 104 | 1.4660 × 104 | 1.8568 × 104 | 1.0579 × 104 | 3.4754 × 104 | 2.7322 × 104 | 1.2826 × 103 | 7.2848 × 103 | 3.9136 × 104 | 1.4209 × 104 | 2.5516 × 104 | 3.7041 × 103 | |
| F4 | mean | 5.3900 × 102 | 6.0547 × 102 | 7.4178 × 102 | 5.4650 × 102 | 5.5164 × 102 | 5.9117 × 102 | 5.2955 × 102 | 5.9929 × 102 | 9.2187 × 102 | 4.9451 × 103 | 4.2880 × 102 | 4.8216 × 102 |
| std | 4.7706 × 101 | 5.3270 × 101 | 9.6985 × 101 | 5.7918 × 101 | 3.9988 × 101 | 4.1892 × 101 | 4.7105 × 101 | 4.6263 × 101 | 5.9182 × 101 | 1.4072 × 103 | 1.5886 × 101 | 2.6648 × 101 | |
| F5 | mean | 7.7107 × 102 | 6.3086 × 102 | 6.9511 × 102 | 6.7350 × 102 | 8.4367 × 102 | 6.9753 × 102 | 6.9542 × 102 | 6.4328 × 102 | 9.2641 × 102 | 1.0411 × 103 | 6.3653 × 102 | 5.6668 × 102 |
| std | 3.1775 × 101 | 2.2643 × 101 | 3.3310 × 101 | 3.4169 × 101 | 2.3217 × 101 | 3.6683 × 101 | 3.5800 × 101 | 4.8374 × 101 | 2.1667 × 101 | 3.1057 × 101 | 1.3004 × 101 | 5.5336 × 100 | |
| F6 | mean | 6.5205 × 102 | 6.1019 × 102 | 6.1627 × 102 | 6.0634 × 102 | 6.2313 × 102 | 6.0010 × 102 | 6.1961 × 102 | 6.0213 × 102 | 6.1160 × 102 | 6.8998 × 102 | 6.0000 × 102 | 6.0015 × 102 |
| std | 6.0171 × 100 | 5.2724 × 100 | 4.6810 × 100 | 3.7230 × 100 | 5.5937 × 100 | 1.1072 × 10−1 | 7.0140 × 100 | 9.1144 × 10−1 | 2.1198 × 100 | 6.4049 × 100 | 7.3131 × 10−14 | 3.6565 × 10−2 | |
| F7 | mean | 1.0737 × 103 | 9.4840 × 102 | 1.0219 × 103 | 9.8636 × 102 | 1.1433 × 103 | 9.7989 × 102 | 1.1169 × 103 | 9.4569 × 102 | 1.2161 × 103 | 1.9081 × 103 | 8.5993 × 102 | 8.1874 × 102 |
| std | 6.2901 × 101 | 3.6518 × 101 | 6.2968 × 101 | 6.8683 × 101 | 5.4777 × 101 | 2.6986 × 101 | 7.8483 × 101 | 7.9035 × 101 | 2.0705 × 101 | 8.4598 × 101 | 1.2753 × 101 | 9.5937 × 100 | |
| F8 | mean | 1.0985 × 103 | 9.2707 × 102 | 1.0027 × 103 | 9.5902 × 102 | 1.1365 × 103 | 9.7553 × 102 | 9.9297 × 102 | 9.7436 × 102 | 1.2307 × 103 | 1.3336 × 103 | 9.3542 × 102 | 8.6486 × 102 |
| std | 2.9356 × 101 | 1.7435 × 101 | 3.9263 × 101 | 3.2953 × 101 | 2.4816 × 101 | 4.8029 × 101 | 4.1708 × 101 | 9.1353 × 101 | 2.0802 × 101 | 3.4417 × 101 | 1.5205 × 101 | 6.3932 × 100 | |
| F9 | mean | 2.2509 × 104 | 2.4686 × 103 | 4.0613 × 103 | 2.9595 × 103 | 1.0470 × 104 | 9.6268 × 102 | 3.1924 × 103 | 1.5135 × 103 | 6.1152 × 103 | 2.9383 × 104 | 1.8765 × 103 | 9.1989 × 102 |
| std | 5.2617 × 103 | 8.7294 × 102 | 1.1291 × 103 | 1.2072 × 103 | 3.7003 × 103 | 5.8707 × 101 | 1.0576 × 103 | 6.6138 × 102 | 1.2177 × 103 | 2.8397 × 103 | 3.0329 × 102 | 6.1594 × 100 | |
| F10 | mean | 7.3854 × 103 | 9.0578 × 103 | 7.3818 × 103 | 6.6217 × 103 | 8.8334 × 103 | 1.2089 × 104 | 7.8758 × 103 | 1.2131 × 104 | 1.5200 × 104 | 1.2632 × 104 | 4.7369 × 103 | 6.5693 × 103 |
| std | 9.4706 × 102 | 2.8790 × 103 | 7.8832 × 102 | 9.3155 × 102 | 4.1864 × 102 | 6.9525 × 102 | 9.7975 × 102 | 3.5238 × 103 | 3.4271 × 102 | 6.1356 × 102 | 2.3504 × 102 | 5.1587 × 102 | |
| F11 | mean | 1.3285 × 103 | 1.5532 × 103 | 2.0524 × 103 | 1.2637 × 103 | 1.5698 × 103 | 1.3574 × 103 | 1.3268 × 103 | 1.4355 × 103 | 5.7594 × 103 | 7.5358 × 103 | 1.7598 × 103 | 1.2226 × 103 |
| std | 4.4182 × 101 | 1.2958 × 102 | 4.7057 × 102 | 4.3111 × 101 | 1.5205 × 102 | 1.3242 × 102 | 6.4318 × 101 | 6.8734 × 101 | 1.2641 × 103 | 1.3115 × 103 | 4.8893 × 102 | 1.4840 × 101 | |
| F12 | mean | 1.1469 × 107 | 1.1554 × 107 | 1.3915 × 107 | 4.3907 × 106 | 4.3492 × 106 | 5.0536 × 106 | 6.4706 × 105 | 2.1394 × 107 | 1.5508 × 108 | 5.4347 × 109 | 1.6127 × 106 | 4.8023 × 105 |
| std | 5.9075 × 106 | 8.2347 × 106 | 1.0430 × 107 | 2.3229 × 106 | 3.0015 × 106 | 3.2520 × 106 | 4.1159 × 105 | 1.0725 × 107 | 4.2305 × 107 | 1.8336 × 109 | 5.6886 × 105 | 1.6396 × 105 | |
| F13 | mean | 2.9101 × 104 | 3.8254 × 104 | 9.1108 × 103 | 1.1536 × 104 | 8.1246 × 103 | 9.4035 × 103 | 1.1992 × 104 | 3.6843 × 105 | 1.8224 × 105 | 7.6275 × 108 | 3.2039 × 103 | 2.3976 × 103 |
| std | 1.1205 × 104 | 2.3960 × 104 | 3.6171 × 103 | 9.0202 × 103 | 6.8628 × 103 | 4.1045 × 103 | 9.3041 × 103 | 2.0270 × 105 | 1.3935 × 105 | 4.2349 × 108 | 2.4444 × 103 | 6.2663 × 102 | |
| F14 | mean | 1.3427 × 105 | 1.8915 × 105 | 1.2733 × 105 | 1.7565 × 105 | 5.0495 × 105 | 3.7153 × 105 | 9.1018 × 103 | 8.6698 × 104 | 1.6267 × 106 | 8.0739 × 106 | 6.0671 × 105 | 2.0301 × 104 |
| std | 8.7992 × 104 | 1.3875 × 105 | 8.9269 × 104 | 1.4661 × 105 | 3.3528 × 105 | 4.2982 × 105 | 8.0683 × 103 | 6.9063 × 104 | 6.0420 × 105 | 8.8328 × 106 | 4.2494 × 105 | 7.2294 × 103 | |
| F15 | mean | 1.0373 × 104 | 1.2367 × 104 | 9.1041 × 103 | 1.1467 × 104 | 6.9715 × 103 | 7.6237 × 103 | 1.0527 × 104 | 1.0932 × 105 | 2.5429 × 104 | 6.8868 × 107 | 4.1130 × 103 | 2.4394 × 103 |
| std | 7.2767 × 103 | 5.8638 × 103 | 4.7893 × 103 | 7.0539 × 103 | 6.4609 × 103 | 4.7378 × 103 | 8.9865 × 103 | 8.0293 × 104 | 1.2912 × 104 | 6.5183 × 107 | 2.6936 × 103 | 3.8271 × 102 | |
| F16 | mean | 3.2325 × 103 | 2.9354 × 103 | 2.8243 × 103 | 2.7223 × 103 | 4.0200 × 103 | 3.0385 × 103 | 3.2836 × 103 | 2.5526 × 103 | 5.0559 × 103 | 6.4076 × 103 | 2.7871 × 103 | 2.5329 × 103 |
| std | 4.7497 × 102 | 3.6022 × 102 | 2.9499 × 102 | 3.6445 × 102 | 3.2554 × 102 | 3.6073 × 102 | 4.1614 × 102 | 4.4912 × 102 | 3.0523 × 102 | 8.6449 × 102 | 2.2885 × 102 | 2.0594 × 102 | |
| F17 | mean | 3.1660 × 103 | 2.7204 × 103 | 2.6991 × 103 | 2.5763 × 103 | 3.3163 × 103 | 2.5442 × 103 | 3.1080 × 103 | 2.5811 × 103 | 3.9918 × 103 | 4.4062 × 103 | 2.4494 × 103 | 2.4128 × 103 |
| std | 2.3482 × 102 | 2.6615 × 102 | 2.5654 × 102 | 2.9932 × 102 | 2.4172 × 102 | 2.4353 × 102 | 3.2673 × 102 | 4.1630 × 102 | 2.0232 × 102 | 6.4877 × 102 | 1.5883 × 102 | 1.6441 × 102 | |
| F18 | mean | 1.5490 × 106 | 2.1561 × 106 | 1.5097 × 106 | 1.1952 × 106 | 4.3640 × 106 | 3.5759 × 106 | 4.1173 × 104 | 6.0097 × 105 | 2.1350 × 107 | 3.8823 × 107 | 6.2119 × 105 | 3.2767 × 105 |
| std | 8.9012 × 105 | 1.3394 × 106 | 1.2341 × 106 | 7.4304 × 105 | 2.6864 × 106 | 2.7580 × 106 | 3.1312 × 104 | 4.0373 × 105 | 8.2142 × 106 | 2.7541 × 107 | 3.4535 × 105 | 7.4511 × 104 | |
| F19 | mean | 1.6640 × 104 | 1.7242 × 104 | 1.7670 × 104 | 1.8365 × 104 | 1.1502 × 104 | 1.6405 × 104 | 1.8139 × 104 | 6.2506 × 104 | 2.1137 × 104 | 2.1800 × 107 | 5.2383 × 103 | 2.3734 × 103 |
| std | 8.2542 × 103 | 1.2242 × 104 | 1.0550 × 104 | 1.1407 × 104 | 1.0138 × 104 | 9.5165 × 103 | 1.2900 × 104 | 3.1326 × 104 | 5.9293 × 103 | 1.8551 × 107 | 2.6114 × 103 | 3.6538 × 102 | |
| F20 | mean | 3.1222 × 103 | 2.9760 × 103 | 2.6872 × 103 | 2.6268 × 103 | 3.5373 × 103 | 2.7731 × 103 | 3.0128 × 103 | 2.9690 × 103 | 4.1382 × 103 | 3.6252 × 103 | 2.6225 × 103 | 2.5935 × 103 |
| std | 2.8785 × 102 | 4.1701 × 102 | 2.4773 × 102 | 2.4663 × 102 | 1.1407 × 102 | 1.8729 × 102 | 3.3030 × 102 | 6.2917 × 102 | 1.5947 × 102 | 2.4593 × 102 | 1.4247 × 102 | 1.1464 × 102 | |
| F21 | mean | 2.6546 × 103 | 2.4354 × 103 | 2.4782 × 103 | 2.4320 × 103 | 2.6341 × 103 | 2.4840 × 103 | 2.4960 × 103 | 2.4514 × 103 | 2.7096 × 103 | 2.9960 × 103 | 2.4481 × 103 | 2.3720 × 103 |
| std | 4.3705 × 101 | 2.4362 × 101 | 3.0549 × 101 | 2.9321 × 101 | 2.7099 × 101 | 4.6545 × 101 | 4.2499 × 101 | 9.2199 × 101 | 1.9422 × 101 | 7.3970 × 101 | 1.8129 × 101 | 8.4225 × 100 | |
| F22 | mean | 9.3375 × 103 | 1.1584 × 104 | 6.8459 × 103 | 7.3787 × 103 | 1.0977 × 104 | 1.3503 × 104 | 9.7794 × 103 | 1.3032 × 104 | 1.6783 × 104 | 1.4541 × 104 | 6.1198 × 103 | 7.5317 × 103 |
| std | 1.1614 × 103 | 2.6307 × 103 | 3.1716 × 103 | 2.4111 × 103 | 1.7210 × 103 | 6.0105 × 102 | 8.8270 × 102 | 3.7830 × 103 | 3.3514 × 102 | 8.0271 × 102 | 1.5457 × 103 | 1.4445 × 103 | |
| F23 | mean | 3.5836 × 103 | 2.9259 × 103 | 2.9283 × 103 | 2.8593 × 103 | 3.1107 × 103 | 2.8762 × 103 | 3.0062 × 103 | 2.8584 × 103 | 3.1461 × 103 | 3.9310 × 103 | 2.8909 × 103 | 2.8289 × 103 |
| std | 1.2674 × 102 | 2.9619 × 101 | 4.1576 × 101 | 3.3266 × 101 | 4.9950 × 101 | 5.2826 × 101 | 6.5735 × 101 | 6.8289 × 101 | 1.6807 × 101 | 1.6572 × 102 | 2.1512 × 101 | 1.4111 × 101 | |
| F24 | mean | 3.5913 × 103 | 3.0656 × 103 | 3.0762 × 103 | 3.0285 × 103 | 3.3161 × 103 | 3.1162 × 103 | 3.1666 × 103 | 3.0353 × 103 | 3.3121 × 103 | 4.0659 × 103 | 3.2504 × 103 | 3.0033 × 103 |
| std | 1.4742 × 102 | 3.3062 × 101 | 3.7799 × 101 | 3.0310 × 101 | 6.4662 × 101 | 3.0405 × 101 | 6.2404 × 101 | 9.1306 × 101 | 1.9104 × 101 | 1.7734 × 102 | 4.0101 × 101 | 1.3501 × 101 | |
| F25 | mean | 2.9909 × 103 | 3.0948 × 103 | 3.2390 × 103 | 3.0895 × 103 | 3.0797 × 103 | 3.1086 × 103 | 3.0535 × 103 | 3.0938 × 103 | 3.4498 × 103 | 5.9306 × 103 | 2.9687 × 103 | 3.0183 × 103 |
| std | 4.3426 × 101 | 3.4516 × 101 | 5.6194 × 101 | 3.2142 × 101 | 2.9337 × 101 | 2.7134 × 101 | 3.8784 × 101 | 3.3696 × 101 | 7.4813 × 101 | 6.3242 × 102 | 2.0415 × 101 | 1.6804 × 101 | |
| F26 | mean | 8.0375 × 103 | 6.0354 × 103 | 5.5124 × 103 | 5.5096 × 103 | 7.1895 × 103 | 4.9611 × 103 | 6.7682 × 103 | 5.4370 × 103 | 7.9446 × 103 | 1.3537 × 104 | 4.0868 × 103 | 4.6816 × 103 |
| std | 3.7319 × 103 | 4.0146 × 102 | 1.3363 × 103 | 1.7288 × 103 | 3.5661 × 102 | 4.2283 × 102 | 7.8138 × 102 | 7.5542 × 102 | 2.1503 × 102 | 1.3829 × 103 | 1.2892 × 103 | 1.2812 × 102 | |
| F27 | mean | 4.0311 × 103 | 3.5952 × 103 | 3.5472 × 103 | 3.3197 × 103 | 3.7637 × 103 | 3.4086 × 103 | 3.6112 × 103 | 3.3001 × 103 | 3.7857 × 103 | 4.8827 × 103 | 3.3392 × 103 | 3.2561 × 103 |
| std | 7.5936 × 102 | 7.7932 × 101 | 7.1038 × 101 | 5.4548 × 101 | 1.3402 × 102 | 6.0966 × 101 | 1.7404 × 102 | 5.4462 × 101 | 8.8730 × 101 | 7.2274 × 102 | 2.6623 × 101 | 1.1242 × 101 | |
| F28 | mean | 3.2967 × 103 | 3.4429 × 103 | 3.6382 × 103 | 3.3622 × 103 | 3.3717 × 103 | 3.4681 × 103 | 3.3154 × 103 | 3.3646 × 103 | 4.4836 × 103 | 6.0265 × 103 | 3.2636 × 103 | 3.2836 × 103 |
| std | 2.9886 × 101 | 5.2514 × 101 | 1.0682 × 102 | 4.1064 × 101 | 3.6633 × 101 | 6.7595 × 101 | 2.6669 × 101 | 5.8427 × 101 | 2.1107 × 102 | 6.1755 × 102 | 8.4268 × 100 | 1.2148 × 101 | |
| F29 | mean | 4.9707 × 103 | 4.3162 × 103 | 4.1629 × 103 | 3.8195 × 103 | 4.8113 × 103 | 3.6392 × 103 | 4.7845 × 103 | 3.8262 × 103 | 5.7029 × 103 | 1.0002 × 104 | 3.7594 × 103 | 3.7718 × 103 |
| std | 4.2478 × 102 | 2.5397 × 102 | 2.6689 × 102 | 2.7194 × 102 | 4.2288 × 102 | 1.7120 × 102 | 3.4330 × 102 | 2.5904 × 102 | 2.1802 × 102 | 1.6476 × 103 | 1.2522 × 102 | 9.8391 × 101 | |
| F30 | mean | 3.8617 × 106 | 2.7456 × 106 | 1.5263 × 106 | 1.0568 × 106 | 2.9302 × 106 | 1.2185 × 106 | 1.0653 × 106 | 8.8823 × 106 | 1.1536 × 107 | 3.7356 × 108 | 6.5996 × 105 | 9.2349 × 105 |
| std | 1.6101 × 106 | 9.2617 × 105 | 2.8278 × 105 | 3.4573 × 105 | 1.0841 × 106 | 3.7175 × 105 | 3.7166 × 105 | 3.7392 × 106 | 4.1323 × 106 | 1.1042 × 108 | 4.3430 × 104 | 1.1365 × 105 |
| Suites | CEC2017 | |||||
|---|---|---|---|---|---|---|
| Dimensions | 10 | 30 | 50 | |||
| Algorithms | ||||||
| PSO | 9.23 | 10 | 7.77 | 9 | 7.30 | 9 |
| SO | 8.20 | 9 | 7.10 | 8 | 6.47 | 7 |
| GRO | 5.63 | 5 | 6.60 | 7 | 6.73 | 8 |
| SBOA | 4.67 | 3 | 4.67 | 3 | 4.50 | 3 |
| ED | 6.17 | 7 | 7.97 | 10 | 7.93 | 10 |
| ESC | 5.23 | 4 | 5.03 | 4 | 6.03 | 6 |
| HHWOA | 5.90 | 6 | 5.83 | 6 | 5.83 | 5 |
| IGWO | 6.20 | 8 | 5.53 | 5 | 5.70 | 4 |
| MSPBO | 9.43 | 11 | 10.57 | 11 | 10.77 | 11 |
| QOCSPBO | 11.53 | 12 | 11.80 | 12 | 11.80 | 12 |
| SPBO | 3.80 | 2 | 3.47 | 2 | 3.27 | 2 |
| MESPBO | 2.00 | 1 | 1.67 | 1 | 1.67 | 1 |
| ID | Name | Number of Features | Number of Instances | Number of Classes |
|---|---|---|---|---|
| Dataset 1 | Tic-Tac-Toe Endgame | 90 | 958 | 2 |
| Dataset 2 | BreastCancer Wisconsin (Original) | 10 | 699 | 2 |
| Dataset 3 | Statlog (Heart) | 13 | 270 | 2 |
| Dataset 4 | Wine | 13 | 178 | 3 |
| Dataset 5 | Congressional Voting Records | 16 | 435 | 2 |
| Dataset 6 | Zoo | 16 | 101 | 7 |
| Dataset 7 | Lymphography | 18 | 148 | 4 |
| Dataset 8 | Hepatitis | 19 | 155 | 2 |
| Dataset 9 | German Credit Dataset Analysis | 20 | 1000 | 2 |
| Dataset 10 | Waveform | 21 | 5000 | 3 |
| Function | Metric | PSO | SO | GRO | SBOA | ED | ESC | HHWOA | IGWO | MSPBO | QOCSPBO | SPBO | MESPBO |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dataset 1 | Ave | 0.1410 | 0.1435 | 0.1410 | 0.1535 | 0.1410 | 0.1443 | 0.1536 | 0.1410 | 0.1511 | 0.1410 | 0.1410 | 0.1410 |
| Std | 3 × 10−17 | 0.0079 | 3 × 10−17 | 0.0079 | 3 × 10−17 | 0.0105 | 0.0133 | 3 × 10−17 | 0.0130 | 3 × 10−17 | 3 × 10−17 | 3 × 10−17 | |
| Dataset 2 | Ave | 0.0317 | 0.0317 | 0.0317 | 0.0317 | 0.0317 | 0.0317 | 0.0318 | 0.0317 | 0.0317 | 0.0317 | 0.0317 | 0.0317 |
| Std | 3 × 10−17 | 3 × 10−17 | 3 × 10−17 | 3 × 10−17 | 3 × 10−17 | 3 × 10−17 | 0.0003 | 3 × 10−17 | 3 × 10−17 | 3 × 10−17 | 3 × 10−17 | 0 | |
| Dataset 3 | Ave | 0.1123 | 0.1123 | 0.1126 | 0.1123 | 0.1125 | 0.1123 | 0.1127 | 0.1123 | 0.1123 | 0.1123 | 0.1123 | 0.1122 |
| Std | 1 × 10−17 | 1 × 10−17 | 1 × 10−17 | 0.003 | 1 × 10−17 | 1 × 10−17 | 0.005 | 1 × 10−17 | 1 × 10−17 | 1 × 10−17 | 1 × 10−17 | 1 × 10−17 | |
| Dataset 4 | Ave | 0.0015 | 0.0018 | 0.0015 | 0.0016 | 0.0015 | 0.0015 | 0.0017 | 0.0015 | 0.0015 | 0.0015 | 0.0015 | 0.0014 |
| Std | 0 | 0.005 | 0 | 0.002 | 0 | 0 | 0.003 | 0 | 0 | 0 | 0 | 0 | |
| Dataset 5 | Ave | 0.0599 | 0.0612 | 0.0599 | 0.0572 | 0.0588 | 0.0513 | 0.0614 | 0.0471 | 0.0489 | 0.0476 | 0.0457 | 0.0441 |
| Std | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 1 × 10−2 | 9 × 10−3 | 6 × 10−3 | |
| Dataset 6 | Ave | 0.0012 | 0.0012 | 0.0013 | 0.0012 | 0.0012 | 0.0012 | 0.0013 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.00012 |
| Std | 2 × 10−4 | 0 | 3 × 10−4 | 0 | 0 | 0 | 3 × 10−4 | 0 | 0 | 0 | 0 | 0 | |
| Dataset 7 | Ave | 1 × 10−3 | 2 × 10−3 | 2 × 10−3 | 2 × 10−3 | 2 × 10−3 | 1 × 10−3 | 1 × 10−3 | 2 × 10−3 | 2 × 10−3 | 2 × 10−3 | 2 × 10−3 | 2 × 10−3 |
| Std | 8 × 10−4 | 1 × 10−3 | 7 × 10−4 | 9 × 10−4 | 3 × 10−4 | 8 × 10−4 | 7 × 10−4 | 6 × 10−4 | 8 × 10−4 | 9 × 10−4 | 8 × 10−4 | 0 | |
| Dataset 8 | Ave | 9 × 10−2 | 9 × 10−2 | 9 × 10−2 | 9 × 10−2 | 8 × 10−2 | 8 × 10−2 | 9 × 10−2 | 8 × 10−2 | 9 × 10−2 | 8 × 10−2 | 8 × 10−2 | 7 × 10−2 |
| Std | 5 × 10−2 | 5 × 10−2 | 3 × 10−2 | 3 × 10−2 | 3 × 10−2 | 1 × 10−2 | 4 × 10−2 | 5 × 10−2 | 3 × 10−2 | 3 × 10−2 | 4 × 10−4 | 2 × 10−4 | |
| Dataset 9 | Ave | 0.2036 | 0.1939 | 0.1910 | 0.2125 | 0.1927 | 0.1981 | 0.2086 | 0.1911 | 0.1987 | 0.1940 | 0.1889 | 0.1861 |
| Std | 0.0101 | 0.0111 | 0.0005 | 0.0128 | 0.0038 | 0.0077 | 0.0196 | 0.0081 | 0.0106 | 0.00048 | 0.0062 | 0.0084 | |
| Dataset 10 | Ave | 0.2036 | 0.1939 | 0.1910 | 0.2125 | 0.1927 | 0.1981 | 0.2086 | 0.1911 | 0.1987 | 0.1940 | 0.1889 | 0.1861 |
| Std | 0.0101 | 0.0111 | 0.005 | 0.0128 | 0.0038 | 0.0077 | 0.0196 | 0.0081 | 0.0106 | 0.0048 | 0.0062 | 0.0084 |
| Function | Metric | PSO | SO | GRO | SBOA | ED | ESC | HHWOA | IGWO | MSPBOO | QOCSPBOO | SPBO | MESPBO |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dataset 1 | Ave | 86.3% | 86.1% | 86.3% | 86.1% | 86.3% | 86.0% | 85.2% | 86.3% | 85.4% | 86.3% | 86.3% | 86.1% |
| Dataset 2 | Ave | 97.1% | 97.1% | 97.1% | 97.1% | 97.1% | 97.1% | 97.1% | 97.1% | 97.1% | 97.1% | 97.1% | 97.1% |
| Dataset 3 | Ave | 88.9% | 88.9% | 88.9% | 88.9% | 88.9% | 88.9% | 88.9% | 88.9% | 88.9% | 88.9% | 88.9% | 89.0% |
| Dataset 4 | Ave | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
| Dataset 5 | Ave | 94.11% | 93.95% | 94.11% | 94.57% | 94.57% | 95.04% | 93.95% | 94.11% | 95.50% | 94.37% | 94.68% | 95.81% |
| Dataset 6 | Ave | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
| Dataset 7 | Ave | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
| Dataset 8 | Ave | 91.11% | 91.56% | 91.11% | 92.00% | 92.00% | 92.89% | 88.44% | 92.00% | 92.68% | 90.36% | 91.27% | 93.33% |
| Dataset 9 | Ave | 79.9% | 80.7% | 81.0% | 79.0% | 80.8% | 80.3% | 79.3% | 81.0% | 80.3% | 80.7% | 81.2% | 81.5% |
| Dataset 10 | Ave | 79.9% | 80.7% | 81% | 79% | 80.8% | 80.3% | 79.3% | 81% | 80.3% | 80.7% | 81.2% | 81.5% |
| Function | Metric | PSO | SO | GRO | SBOA | ED | ESC | HHWOA | IGWO | MSPBO | QOCSPBO | SPBO | MESPBO |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dataset 1 | Ave | 5 | 5.4 | 5 | 5.4 | 5 | 5.2 | 7 | 5 | 6.6 | 5 | 5 | 5 |
| Dataset 2 | Ave | 3 | 3 | 3 | 3 | 3 | 3 | 3.1 | 3 | 3 | 3 | 3 | 3 |
| Dataset 3 | Ave | 3 | 3 | 3 | 3.3 | 3 | 3 | 3.3 | 3 | 3 | 3 | 3 | 3 |
| Dataset 4 | Ave | 2 | 2 | 2 | 2.1 | 2 | 2 | 2.2 | 2 | 2 | 2 | 2 | 2 |
| Dataset 5 | Ave | 2.7 | 2.2 | 2.7 | 3.2 | 3.5 | 3.6 | 2.5 | 4.4 | 4.3 | 4.2 | 3.2 | 2.1 |
| Dataset 6 | Ave | 2.12 | 2.2 | 2 | 2 | 2 | 2 | 2.2 | 2 | 2 | 2 | 2 | 2 |
| Dataset 7 | Ave | 3.2 | 3.7 | 4.1 | 3.4 | 2.1 | 2.1 | 3.4 | 2.3 | 2 | 2 | 2 | 2 |
| Dataset 8 | Ave | 3.2 | 3.7 | 4.1 | 3.4 | 2.2 | 2.1 | 3.5 | 2.3 | 2 | 2 | 2 | 2 |
| Dataset 9 | Ave | 9.3 | 5.7 | 5.8 | 9.3 | 5.4 | 6.2 | 7.4 | 6 | 7.5 | 5.9 | 5.7 | 6 |
| Dataset 10 | Ave | 9.3 | 5.7 | 5.8 | 9.3 | 5.4 | 6.2 | 7.4 | 6 | 7.5 | 5.9 | 6 | 5.7 |
| Parameters | Single Diode PV Models | |
|---|---|---|
| 0 | 1 | |
| 0 | 1 | |
| 0 | 0.5 | |
| 0 | 100 | |
| 1 | 2 | |
| 0 | 1 | |
| 0 | 1 | |
| 1 | 2 | |
| 1 | 2 | |
| Algorithm | |||||||
|---|---|---|---|---|---|---|---|
| RTH | 7.6043 × 10−1 | 9.9716 × 10−7 | 3.1402 × 10−2 | 1.1245 × 102 | 1.6041 × 100 | 9.8615 × 10−4 | + |
| SAO | 7.6084 × 10−1 | 1.0000 × 10−6 | 3.1385 × 10−2 | 1.0000 × 102 | 1.6045 × 100 | 9.8735 × 10−4 | + |
| GRO | 7.6070 × 10−1 | 3.3551 × 10−7 | 3.6241 × 10−2 | 5.5509 × 101 | 1.4850 × 100 | 9.8987 × 10−4 | + |
| SO | 7.6078 × 10−1 | 3.2067 × 10−7 | 3.6406 × 10−2 | 5.3452 × 101 | 1.4805 × 100 | 2.4000 × 10−3 | + |
| ESC | 7.6076 × 10−1 | 3.2096 × 10−7 | 3.6391 × 10−2 | 5.3553 × 101 | 1.4805 × 100 | 1.7000 × 10−3 | + |
| INFO | 7.6084 × 10−1 | 8.3538 × 10−7 | 3.2367 × 10−2 | 1.0000 × 102 | 1.5834 × 100 | 9.8654 × 10−4 | + |
| SBOA | 7.6078 × 10−1 | 3.2302 × 10−7 | 3.6377 × 10−2 | 5.3719 × 101 | 1.4812 × 100 | 9.8633 × 10−4 | + |
| GKSO | 7.6031 × 10−1 | 4.0577 × 10−7 | 3.5468 × 10−2 | 6.5852 × 101 | 1.5045 × 100 | 9.8678 × 10−4 | + |
| IGWO | 7.6061 × 10−1 | 3.6866 × 10−7 | 3.5871 × 10−2 | 5.8965 × 101 | 1.4946 × 100 | 1.1000 × 10−3 | + |
| HHWOA | 7.6107 × 10−1 | 2.1506 × 10−7 | 3.7916 × 10−2 | 4.1703 × 101 | 1.4415 × 100 | 9.8674 × 10−4 | + |
| ED | 7.6077 × 10−1 | 3.2394 × 10−7 | 3.6366 × 10−2 | 5.3675 × 101 | 1.4815 × 100 | 9.8870 × 10−4 | + |
| MEED | 7.6078 × 10−1 | 3.2305 × 10−7 | 3.6377 × 10−2 | 5.3721 × 101 | 1.4812 × 100 | 9.8602 × 10−4 | / |
| MESPBO | ||||||
|---|---|---|---|---|---|---|
| 1 | −2.0570 × 10−1 | 7.6400 × 10−1 | 7.6205 × 10−1 | 1.9511 × 10−3 | −1.5675 × 10−1 | 4.0134 × 10−4 |
| 2 | −1.2910 × 10−1 | 7.6200 × 10−1 | 7.6137 × 10−1 | 6.3184 × 10−4 | −9.8293 × 10−2 | 8.1570 × 10−5 |
| 3 | −5.8800 × 10−2 | 7.6050 × 10−1 | 7.6074 × 10−1 | 2.4304 × 10−4 | −4.4732 × 10−2 | 1.4291 × 10−5 |
| 4 | 5.7000 × 10−3 | 7.6050 × 10−1 | 7.6017 × 10−1 | 3.3215 × 10−4 | 4.3330 × 10−3 | 1.8932 × 10−6 |
| 5 | 6.4600 × 10−2 | 7.6000 × 10−1 | 7.5964 × 10−1 | 3.6187 × 10−4 | 4.9073 × 10−2 | 2.3377 × 10−5 |
| 6 | 1.1850 × 10−1 | 7.5900 × 10−1 | 7.5914 × 10−1 | 1.3832 × 10−4 | 8.9958 × 10−2 | 1.6391 × 10−5 |
| 7 | 1.6780 × 10−1 | 7.5700 × 10−1 | 7.5864 × 10−1 | 1.6371 × 10−3 | 1.2730 × 10−1 | 2.7470 × 10−4 |
| 8 | 2.1320 × 10−1 | 7.5700 × 10−1 | 7.5806 × 10−1 | 1.0560 × 10−3 | 1.6162 × 10−1 | 2.2513 × 10−4 |
| 9 | 2.5450 × 10−1 | 7.5550 × 10−1 | 7.5724 × 10−1 | 1.7442 × 10−3 | 1.9272 × 10−1 | 4.4391 × 10−4 |
| 10 | 2.9240 × 10−1 | 7.5400 × 10−1 | 7.5587 × 10−1 | 1.8746 × 10−3 | 2.2102 × 10−1 | 5.4813 × 10−4 |
| 11 | 3.2690 × 10−1 | 7.5050 × 10−1 | 7.5338 × 10−1 | 2.8778 × 10−3 | 2.4628 × 10−1 | 9.4077 × 10−4 |
| 12 | 3.5850 × 10−1 | 7.4650 × 10−1 | 7.4875 × 10−1 | 2.2510 × 10−3 | 2.6843 × 10−1 | 8.0698 × 10−4 |
| 13 | 3.8730 × 10−1 | 7.3850 × 10−1 | 7.4052 × 10−1 | 2.0165 × 10−3 | 2.8680 × 10−1 | 7.8098 × 10−4 |
| 14 | 4.1370 × 10−1 | 7.2800 × 10−1 | 7.2643 × 10−1 | 1.5667 × 10−3 | 3.0053 × 10−1 | 6.4814 × 10−4 |
| 15 | 4.3730 × 10−1 | 7.0650 × 10−1 | 7.0458 × 10−1 | 1.9228 × 10−3 | 3.0811 × 10−1 | 8.4082 × 10−4 |
| 16 | 4.5900 × 10−1 | 6.7550 × 10−1 | 6.7168 × 10−1 | 3.8212 × 10−3 | 3.0830 × 10−1 | 1.7539 × 10−3 |
| 17 | 4.7840 × 10−1 | 6.3200 × 10−1 | 6.2663 × 10−1 | 5.3700 × 10−3 | 2.9978 × 10−1 | 2.5690 × 10−3 |
| 18 | 4.9600 × 10−1 | 5.7300 × 10−1 | 5.6817 × 10−1 | 4.8281 × 10−3 | 2.8181 × 10−1 | 2.3948 × 10−3 |
| 19 | 5.1190 × 10−1 | 4.9900 × 10−1 | 4.9706 × 10−1 | 1.9389 × 10−3 | 2.5445 × 10−1 | 9.9254 × 10−4 |
| 20 | 5.2650 × 10−1 | 4.1300 × 10−1 | 4.1296 × 10−1 | 3.5430 × 10−5 | 2.1743 × 10−1 | 1.8654 × 10−5 |
| 21 | 5.3980 × 10−1 | 3.1650 × 10−1 | 3.1876 × 10−1 | 2.2600 × 10−3 | 1.7207 × 10−1 | 1.2200 × 10−3 |
| 22 | 5.5210 × 10−1 | 2.1200 × 10−1 | 2.1494 × 10−1 | 2.9383 × 10−3 | 1.1867 × 10−1 | 1.6222 × 10−3 |
| 23 | 5.6330 × 10−1 | 1.0350 × 10−1 | 1.0558 × 10−1 | 2.0816 × 10−3 | 5.9474 × 10−2 | 1.1726 × 10−3 |
| 24 | 5.7360 × 10−1 | −1.0000 × 10−2 | −6.5923 × 10−3 | 3.4077 × 10−3 | −3.7813 × 10−3 | 1.9547 × 10−3 |
| 25 | 5.8330 × 10−1 | −1.2300 × 10−1 | −1.2585 × 10−1 | 2.8543 × 10−3 | −7.3411 × 10−2 | 1.6649 × 10−3 |
| 26 | 5.9000 × 10−1 | −2.1000 × 10−1 | −2.1250 × 10−1 | 2.5047 × 10−3 | −1.2538 × 10−1 | 1.4778 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhai, G.; Li, S. MESPBO: Multi-Strategy-Enhanced Student Psychology-Based Optimization Algorithm for Global Optimization Problems and Feature Selection Problems. Biomimetics 2026, 11, 37. https://doi.org/10.3390/biomimetics11010037
Zhai G, Li S. MESPBO: Multi-Strategy-Enhanced Student Psychology-Based Optimization Algorithm for Global Optimization Problems and Feature Selection Problems. Biomimetics. 2026; 11(1):37. https://doi.org/10.3390/biomimetics11010037
Chicago/Turabian StyleZhai, Guolin, and Sai Li. 2026. "MESPBO: Multi-Strategy-Enhanced Student Psychology-Based Optimization Algorithm for Global Optimization Problems and Feature Selection Problems" Biomimetics 11, no. 1: 37. https://doi.org/10.3390/biomimetics11010037
APA StyleZhai, G., & Li, S. (2026). MESPBO: Multi-Strategy-Enhanced Student Psychology-Based Optimization Algorithm for Global Optimization Problems and Feature Selection Problems. Biomimetics, 11(1), 37. https://doi.org/10.3390/biomimetics11010037
