Multifunctional Liquid Metal for Biomimicry Application
Abstract
1. Introduction
2. Liquid Metal 3D Printing
2.1. Direct-Ink Writing of Liquid Metal
2.2. Embedded Printing of Liquid Metal
2.3. Extrusion and Infiltration Printing of Liquid Metal
3. Liquid Metal Catalysis
3.1. Liquid Metal Direct Catalytic Reaction
3.2. Liquid Metal Indirect Catalytic Reaction
4. Liquid Metal-Based Sensor
4.1. Liquid Metal-Based Mechanical Sensor
4.1.1. Liquid Metal-Based Strain Sensor
4.1.2. Liquid Metal-Based Pressure Sensor
4.2. Liquid Metal-Based Chemical Sensor
4.3. Liquid Metal-Based Multimodal Sensor
5. Liquid Metal in Biomedical Applications
5.1. Neural Signal Monitoring and Visual Function Recovery
5.2. Wearable Devices and Biological Signal Monitoring
5.3. Tumor and Systemic Disease Treatment
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABS | Acrylonitrile butadiene styrene |
AI-LMS | Anisotropic inductive liquid metal sensor |
BPC | Bismuth-based composite |
CNF | Cellulose nanofibers |
CuGa-LM | CuGa2-loaded liquid metal |
Cu-LMC | Cu-doped liquid metal catalyst |
DIW | Direct ink writing |
ECG | Electrocardiogram |
FDM | Fused deposition modeling |
GF | Gauge factor |
LMs | Liquid metals |
LMS | Liquid metal silicon |
LMPs | Liquid metal microparticles |
MTT | Magnetothermal therapy |
NIR | Near-infrared |
NO | Nitric oxide |
PMA | Polymethyl methacrylate |
PPT | P-phenylenediamine |
PTT | Photothermal therapy |
PVC | Polyvinyl chloride |
rGO | Reduced graphene oxide |
RH | Relative humidity |
Ru | Ruthenium |
SCALMS | Supported catalytically active liquid metal solution |
SNR | Signal to noise ratio |
TENG | Triboelectric nanogeneration |
TPMS | Triply periodic minimal surface |
VOC | Volatile organic compound |
3D | Three-dimensional |
3e-3DP | Embedded 3D printing |
References
- Liu, X.; Li, H.; Tao, M.; Yu, Y.; Zhu, Z.; Wu, D.; Hu, X.; Chen, Y. Organic flexible electronics for innovative applications in electronic skin. Adv. Mater. Technol. 2025, 10, 2400661. [Google Scholar] [CrossRef]
- Abolhassani, S.; Fattahi, R.; Safshekan, F.; Saremi, J.; Hasanzadeh, E. Advances in 4D bioprinting: The next frontier in regenerative medicine and tissue engineering applications. Adv. Healthc. Mater. 2025, 14, 2403065. [Google Scholar] [CrossRef]
- Tan, J.; Shi, J.; Wu, L.; Chen, B.; Tang, H.; Zhang, C.; Zhang, W.; Wan, J.; Wang, S. Embodied Intelligence Empowering Customized Manufacturing: Architecture, Opportunities, and Challenges. IEEE Access 2025, 13, 92740–92755. [Google Scholar] [CrossRef]
- Handschuh-Wang, S.; Wang, T.; Gancarz, T.; Liu, X.; Wang, B.; He, B.; Dickey, M.D.; Wimmer, G.W.; Stadler, F.J. The liquid metal age: A transition from Hg to Ga. Adv. Mater. 2024, 36, 2408466. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Liu, L.; Liu, T.; Wang, X.; Qi, Q.; Hang, Z.; Chen, K.; Xu, J.; Fu, J. Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor. Nat. Commun. 2023, 14, 130. [Google Scholar] [CrossRef] [PubMed]
- Zopf, S.F.; Cruz, R.E.S.; Kekedjian, C.; Ping, L.; Ferrer, J.M.M.; Aquino, J.P.S.; Xie, R.; Ling, X.; Boley, J.W. Self-Catalyzed Chemically Coalescing Liquid Metal Emulsions. Adv. Sci. 2025, 12, 2413116. [Google Scholar] [CrossRef]
- Hu, M.; Yu, J.; Li, W.; Shuai, Y.; Ai, L.; Wang, Z. 3D printed self-healing, degradable on-skin electronics with liquid metal for multi-functional monitoring. Chem. Eng. J. 2025, 505, 159190. [Google Scholar] [CrossRef]
- Zhao, X.; He, L.; Zhang, T.; Gao, J.; He, Z.; Yi, S. Development of metallic wood with enhanced physical, mechanical, and thermal conduction properties based on a self-driven penetration mechanism. Ind. Crops Prod. 2022, 183, 114960. [Google Scholar] [CrossRef]
- Guan, T.; Gao, J.; Hua, C.; Tao, Y.; Ma, Y.; Liu, J. Liquid Metal Enabled Thermoelectric Effects: Fundamental and Application. Adv. Funct. Mater. 2025, 35, 2423909. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, P.; Liu, D.; Zhang, J.; Yang, Z.; Huang, Y.; Tong, Y.; Yu, H.; Wei, Q.; Lv, P. Multi-stimulus responsive liquid metals-integrated liquid crystal elastomers actuator with sensing function. Chem. Eng. J. 2025, 522, 167267. [Google Scholar] [CrossRef]
- Li, W.; Lou, C.; Liu, S.; Ma, Q.; Liao, G.; Leung, K.C.F.; Gong, X.; Ma, H.; Xuan, S. Climbing Plant-Inspired Multi-Responsive Biomimetic Actuator with Transitioning Complex Surfaces. Adv. Funct. Mater. 2025, 35, 2414733. [Google Scholar] [CrossRef]
- Jing, B.; Wang, X.; Zhao, J.; Zhai, X.; Xia, W.; Li, P.; Lei, H.; Wu, L. Phycocyanin/Liquid Metal Hydrogel-Based Wearable Electronics for Monitoring Physical Stimulus-Response Behavior. ACS Appl. Eng. Mater. 2025. [Google Scholar] [CrossRef]
- Shen, Y.; Zou, Y.; Bie, B.; Lv, Y. Hierarchically released liquid metal nanoparticles for mild photothermal therapy/chemotherapy of breast cancer bone metastases via remodeling tumor stromal microenvironment. Adv. Healthc. Mater. 2023, 12, 2301080. [Google Scholar] [CrossRef]
- Wang, S.; Zou, Y.; Hu, L.; Lv, Y. Manganese-doped liquid metal nanoplatforms for cellular uptake and glutathione depletion-enhanced photothermal and chemodynamic combination tumor therapy. Acta Biomater. 2025, 191, 369–385. [Google Scholar] [CrossRef]
- Shen, Y.; Zou, Y.; Bie, B.; Dong, C.; Lv, Y. Combining dual-targeted liquid metal nanoparticles with autophagy activation and mild photothermal therapy to treat metastatic breast cancer and inhibit bone destruction. Acta Biomater. 2023, 157, 578–592. [Google Scholar] [CrossRef]
- Lv, P.; Yang, X.; Bisoyi, H.K.; Zeng, H.; Zhang, X.; Chen, Y.; Xue, P.; Shi, S.; Priimagi, A.; Wang, L. Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics. Mater. Horiz. 2021, 8, 2475–2484. [Google Scholar] [CrossRef]
- Liao, J.; Majidi, C.; Sitti, M. Liquid metal actuators: A comparative analysis of surface tension controlled actuation. Adv. Mater. 2024, 36, 2300560. [Google Scholar] [CrossRef]
- Dong, T.; Ban, Z.; Zheng, S.; Gu, Y.; Liu, T. Enhanced actuation performance in liquid metal electromagnetic actuators with optimized microchannel for soft robotic applications. Sens. Actuators A Phys. 2025, 393, 116842. [Google Scholar] [CrossRef]
- Gao, S.; Yang, Y.; Falchevskaya, A.S.; Vinogradov, V.V.; Yuan, B.; Liu, J.; Sun, X. Phase transition liquid metal enabled emerging biomedical technologies and applications. Adv. Sci. 2024, 11, 2306692. [Google Scholar] [CrossRef]
- Shen, Y.; Cao, J.; Zhou, E.; Wang, L.; Zhang, K.; Xue, Y.; Yuan, H.; Hu, J.; Li, S.; Miao, Z. Tough hydrogel-coated containment capsule of magnetic liquid metal for remote gastrointestinal operation. Natl. Sci. Rev. 2025, 12, nwaf042. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Wu, L.; Yang, Z.; Wu, J.; Chen, H.; Pan, S.; Zhu, M. Dynamic Liquid Metal–Microfiber Interlocking Enables Highly Conductive and Strain-insensitive Metastructured Fibers for Wearable Electronics. Adv. Mater. 2025, 37, 2415268. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Lee, S.; Kim, J.I.; Lee, D.H.; Koo, B.J.; Kim, S.G.; Ryu, S.; Kim, B.; Seo, M.H.; Jeong, J. Liquid Metal-Based Multimodal Wearable Sensor Platform Enabled by Highly Accessible Microfabrication of PDMS with Tuned Mechanical Properties. Adv. Mater. Technol. 2025, 10, 2400859. [Google Scholar] [CrossRef]
- Hang, C.; Rao, Q.; Wu, J.; Qi, J.; Jiang, X. A bilayer microfluidics-based elastic encapsulation method of liquid metal circuits with cellular resolution. ACS Nano 2025, 19, 13118–13127. [Google Scholar] [CrossRef]
- Li, X.; Lin, J.; Wu, J.; Liu, M.; Du, P.; Xu, L.; Yan, D.; Jia, L.; Li, Z. Stretchable and Leakage-Free Liquid Metal Networks for Thermal Management. Adv. Funct. Mater. 2025, 35, 2420839. [Google Scholar] [CrossRef]
- Chen, S.; Fan, S.; Chan, H.; Qiao, Z.; Qi, J.; Wu, Z.; Yeo, J.C.; Lim, C.T. Liquid metal functionalization innovations in wearables and soft robotics for smart healthcare applications. Adv. Funct. Mater. 2024, 34, 2309989. [Google Scholar] [CrossRef]
- He, Y.; You, J.; Dickey, M.D.; Wang, X. Controllable flow and manipulation of liquid metals. Adv. Funct. Mater. 2024, 34, 2309614. [Google Scholar] [CrossRef]
- Zuraiqi, K.; Zavabeti, A.; Allioux, F.M.; Tang, J.B.; Nguyen, C.K.; Tafazolymotie, P.; Mayyas, M.; Ramarao, A.V.; Spencer, M.; Shah, K.; et al. Liquid metals in catalysis for energy applications. Joule 2020, 4, 2290–2321. [Google Scholar] [CrossRef]
- Gao, J.-Y.; Chen, S.; Liu, T.-Y.; Ye, J.; Liu, J. Additive manufacture of low melting point metal porous materials: Capabilities, potential applications and challenges. Mater. Today 2021, 49, 201–230. [Google Scholar] [CrossRef]
- Neumann, T.V.; Dickey, M.D. Liquid metal direct write and 3D printing: A review. Adv. Mater. Technol. 2020, 5, 2000070. [Google Scholar] [CrossRef]
- Won, P.; Valentine, C.S.; Zadan, M.; Pan, C.; Vinciguerra, M.; Patel, D.K.; Ko, S.H.; Walker, L.M.; Majidi, C. 3D printing of liquid metal embedded elastomers for soft thermal and electrical materials. ACS Appl. Mater. Interfaces 2022, 14, 55028–55038. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, C.; Liu, P.; Peng, L.; Liu, Z.; Li, Y.; Wang, Q.; Wu, T.; Li, Z.; Majidi, C. Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities. Nat. Commun. 2023, 14, 4428. [Google Scholar] [CrossRef]
- Fatima, S.S.; Zuraiqi, K.; Zavabeti, A.; Krishnamurthi, V.; Kalantar-Zadeh, K.; Chiang, K.; Daeneke, T. Current state and future prospects of liquid metal catalysis. Nat. Catal. 2023, 6, 1131–1139. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Liu, X.; Wu, F.; Wang, X.; Ma, C.; Han, X.; Ran, Y.; Zhang, Y.; Zhang, Z. Improving the Methane Oxidation by Self-Adaptive Optimization of Liquid-Metal Catalysts. Angew. Chem. Int. Ed. 2025, 64, e202421554. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, H.; Wu, A.; Li, H.; Cao, A.; Yan, J.; Wang, L.; Xiao, F.-S. Stabilization of Metal-Based Catalysts for Hydrogenation of CO2 to C1 Products. Energy Fuels 2025, 39, 14483–14499. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, L.; Yang, H.; Yang, W.; Liu, Q.; Mu, W.; Boudmyxay, K.; Liu, J.; Yang, P.; Duan, L. Spontaneous Phase Transition and Multistage Interfacial Mechanical Friction of Liquid Metals Induced CO2 Reduction at Room Temperature. Adv. Funct. Mater. 2025, 35, 2413156. [Google Scholar] [CrossRef]
- Lim, T.; Kim, H.J.; Won, S.; Kim, C.H.; Yoo, J.; Lee, J.H.; Son, K.S.; Nam, I.-W.; Kim, K.; Yeo, S.Y. Liquid metal-based electronic textiles coated with au nanoparticles as stretchable electrode materials for healthcare monitoring. ACS Appl. Nano Mater. 2023, 6, 8482–8494. [Google Scholar] [CrossRef]
- Wang, F.; Sun, X.; Zhou, Y.; Guo, X.; Wu, J.; Pan, X.; Cen, Y.; Pan, L.; Shi, Y. Recent Advances in Liquid Metal-Based Flexible Devices with Highly Sensitive, Plastic and Biocompatible in Bionic Electronics. Biomed. Mater. Devices 2025, 3, 170–192. [Google Scholar] [CrossRef]
- Wang, D.; Yu, Z.; Qi, Y.; Hu, K.; Zhou, T.; Liu, J.; Rao, W. Liquid metal nanoplatform based autologous cancer vaccines. ACS Nano 2023, 17, 13278–13295. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Teng, T.; Ma, Y.; Xiao, Y.; Zeng, M.; Fu, L.; Tang, Q. Liquid Metal: A New Approach to Diagnosis and Treatment of Cardiovascular Diseases. Adv. Mater. 2025, 37, 2505540. [Google Scholar] [CrossRef]
- Xu, H.; Lu, J.; Xi, Y.; Wang, X.; Liu, J. Liquid metal biomaterials: Translational medicines, challenges and perspectives. Natl. Sci. Rev. 2024, 11, nwad302. [Google Scholar] [CrossRef] [PubMed]
- Ansell, T.Y. Current Status of Liquid Metal Printing. J. Manuf. Mater. Process. 2021, 5, 31. [Google Scholar] [CrossRef]
- Lee, J.Y.; An, J.; Chua, C.K. Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 2017, 7, 120–133. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, Y.; Yuan, S.; Luo, N.; Li, J.; He, Y. 3D Printing of Liquid Metals: Recent Advancements and Challenges. Adv. Funct. Mater. 2023, 33, 2213312. [Google Scholar] [CrossRef]
- Yu, D.; Chi, G.; Mao, X.; Li, M.; Wang, Z.; Xing, C.; Hu, D.; Zhou, Q.; Li, Z.; Li, C.; et al. Volume-Metallization 3D-Printed Polymer Composites. Adv. Mater. 2024, 36, e2403088. [Google Scholar] [CrossRef]
- He, J.; Liang, S.; Li, F.; Yang, Q.; Huang, M.; He, Y.; Fan, X.; Wu, M. Recent development in liquid metal materials. ChemistryOpen 2021, 10, 360–372. [Google Scholar] [CrossRef]
- Park, Y.-G.; Kwon, Y.W.; Koh, C.S.; Kim, E.; Lee, D.H.; Kim, S.; Mun, J.; Hong, Y.-M.; Lee, S.; Kim, J.-Y. In-vivo integration of soft neural probes through high-resolution printing of liquid electronics on the cranium. Nat. Commun. 2024, 15, 1772. [Google Scholar] [CrossRef]
- Lin, Z.; Qiu, X.; Cai, Z.; Li, J.; Zhao, Y.; Lin, X.; Zhang, J.; Hu, X.; Bai, H. High internal phase emulsions gel ink for direct-ink-writing 3D printing of liquid metal. Nat. Commun. 2024, 15, 4806. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhu, F.; Wu, Z.; Xie, Y.; Qian, J.; Yin, J.; Yang, H. Suspension printing of liquid metal in yield-stress fluid for resilient 3D constructs with electromagnetic functions. npj Flex. Electron. 2022, 6, 50. [Google Scholar] [CrossRef]
- Xian, S.; Xu, Y.; Li, Y.; Wu, Z.; Xie, X.; Wu, Z.; Yang, X.; Zhong, Y. Flexible Triboelectric Sensor based on Catalyst-Diffusion Self-Encapsulated Conductive Liquid-Metal-Silicone Ink for Somatosensory Soft Robotic System. Adv. Funct. Mater. 2025, 35, 2412293. [Google Scholar] [CrossRef]
- Yu, D.; Wang, Z.; Chi, G.; Zhang, Q.; Fu, J.; Li, M.; Liu, C.; Zhou, Q.; Li, Z.; Chen, D. Hydraulic-driven adaptable morphing active-cooling elastomer with bioinspired bicontinuous phases. Nat. Commun. 2024, 15, 1179. [Google Scholar] [CrossRef]
- Ladd, C.; So, J.-H.; Muth, J.; Dickey, M.D. 3D printing of free standing liquid metal microstructures. Adv. Mater. 2013, 25, 5081–5085. [Google Scholar] [CrossRef]
- Khondoker, M.A.; Ostashek, A.; Sameoto, D. Direct 3d printing of stretchable circuits via liquid metal co-extrusion within thermoplastic filaments. Adv. Eng. Mater. 2019, 21, 1900060. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Y.; Fan, D.; Li, J.; Kim, C.K.; Guo, D.; Li, G. Revolutionizing flexible Electronics: Integrating liquid metal DIW 3D printing by bimolecular interpenetrating network. Chem. Eng. J. 2024, 488, 151013. [Google Scholar] [CrossRef]
- Singh, M.; Bhuyan, P.; Jeong, S.; Park, S. Directly Printable, Non-Smearable and Stretchable Conductive Ink Enabled by Liquid Metal Microparticles Interstitially Engineered in Highly Entangled Elastomeric Matrix. Adv. Funct. Mater. 2025, 35, 2412178. [Google Scholar] [CrossRef]
- Wei, J.; Chen, H.; Pan, F.; Zhang, H.; Yuan, T.; Fang, Y.; Bai, Z.; Yang, K.; Li, Y.; Ping, H. 3D-printable liquid metal-based hydrogel for use as a multifunctional epidermal sensor. Nanoscale 2025, 17, 5681–5688. [Google Scholar] [CrossRef]
- Lee, B.; Cho, H.; Moon, S.; Ko, Y.; Ryu, Y.-S.; Kim, H.; Jeong, J.; Chung, S. Omnidirectional printing of elastic conductors for three-dimensional stretchable electronics. Nat. Electron. 2023, 6, 307–318. [Google Scholar] [CrossRef]
- Yamagishi, K.; Ching, T.; Chian, N.; Tan, M.; Zhou, W.; Huang, S.Y.; Hashimoto, M. Flexible and stretchable liquid-metal microfluidic electronics using directly printed 3D microchannel networks. Adv. Funct. Mater. 2024, 34, 2311219. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, X.; Cole, T.; Lu, H.; Hang, J.; Li, W.; Tang, S.-Y.; Boyer, C.; Davis, T.P.; Qiao, R. 3D-printed liquid metal polymer composites as NIR-responsive 4D printing soft robot. Nat. Commun. 2023, 14, 7815. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, H.; Sun, X.; Bai, J.; Zhang, J. 3D-printed liquid metal-in-hydrogel solar evaporator: Merging spectrum-manipulated micro-nano architecture and surface engineering for solar desalination. ACS Nano 2024, 18, 5847–5863. [Google Scholar] [CrossRef]
- Chiu, Y.C.; Kuo, F.C.; Lin, Y.H.; Liao, Y.C. High Solid Content Liquid Metal Ink for Flexible Printed Circuits: Formulation, Stability, and Multi-Layer Integration. Adv. Mater. Technol. 2025, e00333. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Bi, P.; Zhang, Y.; Li, L.; Guo, J.; Zhang, Y.; Niu, X.; Wang, Y.; Hu, L. Electrochemically enabled embedded three-dimensional printing of freestanding gallium wire-like structures. ACS Appl. Mater. Interfaces 2020, 12, 53966–53972. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J. Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink. Sci. China Technol. Sci. 2014, 57, 1721–1728. [Google Scholar] [CrossRef]
- Deng, F.; Nguyen, Q.-K.; Zhang, P. Multifunctional liquid metal lattice materials through hybrid design and manufacturing. Addit. Manuf. 2020, 33, 101117. [Google Scholar] [CrossRef]
- Xing, R.; Xu, G.; Qu, N.; Zhou, R.; Yang, J.; Kong, J. 3D printing of liquid-metal-in-ceramic metamaterials for high-efficient microwave absorption. Adv. Funct. Mater. 2024, 34, 2307499. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, J.; Lu, Y.; Mei, D. 3D printing of liquid metal based tactile sensor for simultaneously sensing of temperature and forces. Int. J. Smart Nano Mater. 2021, 12, 269–285. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Zhang, X.; Shi, G.; He, Y.; Cui, Z.; Zhang, X.; Fu, P.; Liu, M.; Qiao, X. High colloidal stable carbon dots armored liquid metal nano-droplets for versatile 3D/4D printing through digital light processing (DLP). Energy Environ. Mater. 2024, 7, e12609. [Google Scholar] [CrossRef]
- Gannarapu, A.; Gozen, B.A. Freeze-printing of liquid metal alloys for manufacturing of 3D, conductive, and flexible networks. Adv. Mater. Technol. 2016, 1, 1600047. [Google Scholar] [CrossRef]
- Khan, Z.; Koltay, P.; Zengerle, R.; Kartmann, S.; Shu, Z. One-Stop Hybrid Printing of Bulk Metal and Polymer for 3D Electronics. Adv. Eng. Mater. 2024, 26, 2300922. [Google Scholar] [CrossRef]
- Ames, D.C.; Lazarus, N.; Mueller, J. Liquid metal core–shell 3D printing. Adv. Eng. Mater. 2025, 27, 2402959. [Google Scholar] [CrossRef]
- Lu, Q.; Fang, T.; Ye, C.; Li, Y.; Wu, M.; Sun, Y.; Kong, D.; Wang, X.; Lu, Y.Q. Highly Conductive Liquid Metal Emulsion Gels for Three-Dimensionally Printed Stretchable Electronics. Adv. Sci. 2025, e03449. [Google Scholar] [CrossRef]
- Shan, X.; Feng, W.; Cui, Z.; Guo, M.; Huang, H.; Wang, J.; Zhu, X.; Yuan, R.; Cao, Y.; Wang, B. Ubiquitous liquid metal 3D printing: From gas, liquid to rigid media. Adv. Funct. Mater. 2025, 35, 2421571. [Google Scholar] [CrossRef]
- Feig, V.R.; Remlova, E.; Muller, B.; Kuosmanen, J.L.; Lal, N.; Ginzburg, A.; Nan, K.; Patel, A.; Jebran, A.M.; Bantwal, M.P. Actively triggerable metals via liquid metal embrittlement for biomedical applications. Adv. Mater. 2023, 35, 2208227. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Fan, L.; Wang, X.; Shang, L.; Zhang, H.; Zhao, Y. Liquid metal hybrid antibacterial hydrogel scaffolds from 3D printing for wound healing. Chem. Eng. J. 2024, 496, 153805. [Google Scholar] [CrossRef]
- Tian, R.; Chen, J.; Zhu, M.; Qi, D.; Chen, X. Flexible three-dimensional integrated circuits (3D ICs) based on liquid metal. Wearable Electron. 2025, 2, 1–17. [Google Scholar] [CrossRef]
- Park, T.H.; Kim, J.H.; Seo, S. Facile and rapid method for fabricating liquid metal electrodes with highly precise patterns via one-step coating. Adv. Funct. Mater. 2020, 30, 2003694. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, Q.; Wu, M.; Sun, Y.; Wang, S.; Wang, X.; Lu, M.-H.; Kong, D. Intrinsically stretchable light-emitting drawing displays. npj Flex. Electron. 2024, 8, 1. [Google Scholar] [CrossRef]
- Duan, L.; Zhang, Y.; Zhao, J.; Zhang, J.; Li, Q.; Chen, Y.; Liu, J.; Liu, Q. Unique and excellent paintable liquid metal for fluorescent displays. ACS Appl. Mater. Interfaces 2022, 14, 23951–23963. [Google Scholar] [CrossRef]
- Duan, L.; Zhou, T.; Zhang, Y.; Zhao, J.; Zheng, H.; Zi, B.; Zhang, J.; Li, Q.; Liu, J.; Liu, Q. Surface optics and color effects of liquid metal materials. Adv. Mater. 2023, 35, 2210515. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Daeneke, T.; Tang, J. The atomic intelligence of liquid metals. Science 2024, 385, 372–373. [Google Scholar] [CrossRef]
- Tang, J.; Christofferson, A.J.; Sun, J.; Zhai, Q.; Kumar, P.V.; Yuwono, J.A.; Tajik, M.; Meftahi, N.; Tang, J.; Dai, L. Dynamic configurations of metallic atoms in the liquid state for selective propylene synthesis. Nat. Nanotechnol. 2024, 19, 306–310. [Google Scholar] [CrossRef]
- Tang, J.; Meftahi, N.; Christofferson, A.J.; Sun, J.; Yu, R.; Rahim, M.A.; Tang, J.; Mao, G.; Daeneke, T.; Kaner, R.B. Molten Sn solvent expands liquid metal catalysis. Nat. Commun. 2025, 16, 907. [Google Scholar] [CrossRef]
- Liang, S.T.; Wang, H.Z.; Liu, J. Progress, Mechanisms and Applications of Liquid-Metal Catalyst Systems. Chem.—Eur. J. 2018, 24, 17616–17626. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Zeng, M.; Fu, L. Emerging liquid metal catalysts. J. Phys. Chem. Lett. 2023, 14, 10054–10066. [Google Scholar] [CrossRef]
- Zuraiqi, K.; Zavabeti, A.; Clarke-Hannaford, J.; Murdoch, B.J.; Shah, K.; Spencer, M.J.; McConville, C.F.; Daeneke, T.; Chiang, K. Direct conversion of CO2 to solid carbon by Ga-based liquid metals. Energy Environ. Sci. 2022, 15, 595–600. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Guo, J.Z.; Cao, J.M.; Wang, X.T.; Zhao, X.X.; Zheng, X.Y.; Li, W.H.; Sun, Z.H.; Liang, H.J.; Wu, X.L. An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv. Mater. 2022, 34, 2110108. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Q.; Wu, K.; Li, Y.; Chen, J.; Jiang, D.; Li, Y.; Yu, Z.; Yu, C. Integrated and Automated: Liquid Metal-based System for Full Cycle CO2-to-Carbon Conversion. Adv. Energy Mater. 2024, 14, 2400883. [Google Scholar] [CrossRef]
- Chen, X.; Liu, J.; Wang, Q.; Fu, M.; Li, Y.; He, J.; Zhan, W.; Liu, L.; Jiang, D.; Li, Y. Room-temperature CO2-to-carbon conversion facilitated by copper-gallium liquid metal. Chem. Eng. J. 2025, 507, 160589. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, J.; Xing, Z.; Guo, M.; Xie, H.; Ma, W.; Liu, J. Microwave-powered liquid metal degradation of polyolefins. Adv. Mater. 2025, 37, 2412539. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Jin, D.; Li, H.; Zhu, X.; Zheng, T.; Xu, Z.; Chen, Y.; Liu, X.; Song, Y.; Wang, D. Liquid Metal Amplified Charge Separation in Photocatalytic Micro/Nanomotors for Antibacterial Therapy. ACS Nano 2025, 19, 20037–20050. [Google Scholar] [CrossRef]
- Cao, M.; Liu, B.; He, X.; Xi, K.; Li, G.; Huang, L.; Yang, P.; Wu, Y. Liquid metal based flowable regenerative catalyst for electrochemical nitrate reduction. Chem. Eng. J. 2024, 499, 156005. [Google Scholar] [CrossRef]
- Song, J.; Liu, J.; Zhu, X.; Mou, X.; Zheng, H.; Zhou, H.; Wang, W.; Guan, Y.; Tang, J.; Lin, Y. Gallium-Based Eutectic Alloys as Liquid Electron Donors to Ruthenium Single-Atom Catalysts for Selective Hydrogenation of Vanillin. Angew. Chem. 2025, 137, e202505073. [Google Scholar] [CrossRef]
- Parker, C.J.; Krishnamurthi, V.; Zuraiqi, K.; Nguyen, C.K.; Irfan, M.; Jabbar, F.; Yang, D.; Aukarasereenont, M.P.; Mayes, E.L.; Murdoch, B.J. Synthesis of planet-like liquid metal nanodroplets with promising properties for catalysis. Adv. Funct. Mater. 2024, 34, 2304248. [Google Scholar] [CrossRef]
- Murguía-Ceja, K.; Espino, J.; Montiel, E.; Rivero, M.; Orozco, S. Photocatalytic degradation of an emerging pollutant with Cu-doped gallium-based liquid metal catalysts, under visible illumination. Top. Catal. 2025, 68, 1611–1628. [Google Scholar] [CrossRef]
- Zhai, Z.; Li, C.; Wang, T.; Yu, H.; Li, M.; Li, C. Electromagnetically Heating and Oscillating Liquid Metal for Catalyzing Polyester Depolymerization. Adv. Mater. 2025, 37, 2502011. [Google Scholar] [CrossRef]
- Polo-Garzon, F.; Wu, Z.; Li, Y.; Zhang, J.; Yu, X.; Toups, E.; Lopez-Honorato, E.; Damron, J.T.; Foster, J.C.; Cheng, Y. Low-temperature dechlorination of polyvinyl chloride (PVC) for production of H2 and carbon materials using liquid metal catalysts. Sci. Adv. 2024, 10, eadm9963. [Google Scholar] [CrossRef]
- Boo, J.; Lee, S.J.; Park, N.-K.; Kim, M.; Kang, D. Catalytic decomposition of NO using molten gallium: An experimental and computational study. Mol. Catal. 2023, 543, 113144. [Google Scholar] [CrossRef]
- Crawford, J.; Yin, H.; Du, A.; O’Mullane, A.P. Nitrate-to-ammonia conversion at an INSN-enriched liquid-metal electrode. Angew. Chem. Int. Ed. 2022, 61, e202201604. [Google Scholar] [CrossRef]
- Zuraiqi, K.; Jin, Y.; Parker, C.J.; Meilak, J.; Meftahi, N.; Christofferson, A.J.; Russo, S.P.; Spencer, M.J.; Zhu, H.Y.; Wang, L. Unveiling metal mobility in a liquid Cu–Ga catalyst for ammonia synthesis. Nat. Catal. 2024, 7, 1044–1052. [Google Scholar] [CrossRef]
- Nie, X.; Hu, J.; Lei, M.; Li, G.; Zeng, Y.; Li, C. Humid-Air Stable and High-conductivity Fluoride Solid Electrolytes Induced by Liquid Metal Activation and Ga2O3 in situ Catalysis. Adv. Energy Mater. 2025, 15, 2402997. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Li, G.; Hou, Y.; Cao, M.; Wei, C.; Yang, P.; Huang, L.; Wu, Y. Simple, fast, and energy saving: Room temperature synthesis of high-entropy alloy by liquid-metal-mediated mechanochemistry. Matter 2025, 8, 101986. [Google Scholar] [CrossRef]
- Sun, X.; Li, H. Recent progress of Ga-based liquid metals in catalysis. RSC Adv. 2022, 12, 24946–24957. [Google Scholar] [CrossRef]
- Moritz, M.; Maisel, S.; Raman, N.; Wittkämper, H.; Wichmann, C.; Grabau, M.; Kahraman, D.; Steffen, J.; Taccardi, N.; Görling, A. Supported catalytically active liquid metal solutions: Liquid metal catalysis with ternary alloys, enhancing activity in propane dehydrogenation. ACS Catal. 2024, 14, 6440–6450. [Google Scholar] [CrossRef]
- Long, F.; Zhang, B.; Cao, X.; Zhang, X.; Ying, H.; Xu, J.; Zhu, C. Unrevealing liquid metal Ga isolated Pt atom catalysts efficient hydrogenation capability of acid to alkanes. Appl. Catal. B Environ. Energy 2025, 365, 124915. [Google Scholar] [CrossRef]
- Rahim, M.A.; Tang, J.; Christofferson, A.J.; Kumar, P.V.; Meftahi, N.; Centurion, F.; Cao, Z.; Tang, J.; Baharfar, M.; Mayyas, M. Low-temperature liquid platinum catalyst. Nat. Chem. 2022, 14, 935–941. [Google Scholar] [CrossRef]
- Zhou, Y.; Santos, S.; Shamzhy, M.; Marinova, M.; Blanchenet, A.-M.; Kolyagin, Y.G.; Simon, P.; Trentesaux, M.; Sharna, S.; Ersen, O. Liquid metals for boosting stability of zeolite catalysts in the conversion of methanol to hydrocarbons. Nat. Commun. 2024, 15, 2228. [Google Scholar] [CrossRef]
- Zhou, Y.; Fang, G.; Peron, D.; Marinova, M.; Zholobenko, V.; Khodakov, A.Y.; Ordomsky, V.V. Liquid Metal-Assisted Acylation of Phenols over Zeolite Catalysts. ACS Catal. 2024, 14, 7806–7813. [Google Scholar] [CrossRef]
- Gao, Y.; Ota, H.; Schaler, E.W.; Chen, K.; Zhao, A.; Gao, W.; Fahad, H.M.; Leng, Y.; Zheng, A.; Xiong, F. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv. Mater. 2017, 29, 1701985. [Google Scholar] [CrossRef]
- Dong, H.; Wang, Z.; Yang, C.; Chang, Y.; Wang, Y.; Li, Z.; Deng, Y.; He, Z. Liquid metal-based flexible sensing and wireless charging system for smart tire strain monitoring. IEEE Sens. J. 2023, 24, 1304–1312. [Google Scholar] [CrossRef]
- Yao, B.; Lü, X.; Wang, Y.; Bai, N.; Chen, C.; Wang, S.; Su, H.; Zhang, Y. Ultrasensitive, highly stable, and stretchable strain sensor using gated liquid metal channel. Adv. Funct. Mater. 2024, 34, 2314298. [Google Scholar] [CrossRef]
- Xu, H.-C.; Liu, Y.; Mo, Y.-P.; Chen, Z.-Y.; Pan, X.-J.; Bao, R.-R.; Pan, C.-F. All-fiber anti-jamming capacitive pressure sensors based on liquid metals. Rare Met. 2025, 44, 4839–4850. [Google Scholar] [CrossRef]
- Li, N.; Zhan, F.; Guo, M.; Yuan, X.; Chen, X.; Li, Y.; Zhang, G.; Wang, L.; Liu, J. Fingertip-Inspired Spatially Anisotropic Inductive Liquid Metal Sensors with Ultra-Wide Range, High Linearity and Exceptional Stability. Adv. Mater. 2025, 37, 2419524. [Google Scholar] [CrossRef]
- Chen, X.; Lin, H.; Gao, X.; Deng, Y.; Sun, X.; Sun, M.; Wang, L.; Quan, L.; Bao, W.; Li, W. Liquid metal microparticles enabled low-cost, compact, and sensitive humidity sensors for in situ moisture monitoring. Mater. Horiz. 2025. [Google Scholar] [CrossRef]
- Chung, K.Y.; Xu, B.; Tan, D.; Yang, Q.; Li, Z.; Fu, H. Naturally crosslinked biocompatible carbonaceous liquid metal aqueous ink printing wearable electronics for multi-sensing and energy harvesting. Nano-Micro Lett. 2024, 16, 149. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xu, P.; Chang, B.; Ning, J.; Yan, T.; Yang, Z.; Lu, H. Hierarchical structure by self-sedimentation of liquid metal for flexible sensor integrating pressure detection and triboelectric nanogenerator. Adv. Funct. Mater. 2024, 34, 2400363. [Google Scholar] [CrossRef]
- Kim, H.; Kim, G.; Kang, J.H.; Oh, M.J.; Qaiser, N.; Hwang, B. Intrinsically conductive and highly stretchable liquid metal/carbon nanotube/elastomer composites for strain sensing and electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 2025, 8, 14. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, X.; Li, Z.; Chan, C.P.Y.; Lai, K.W.C. Liquid-metal-based multichannel strain sensor for sign language gesture classification using machine learning. ACS Appl. Mater. Interfaces 2025, 17, 6957–6968. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, J.; Luo, W.; Liu, Q.; Wang, C.; Ren, B.; Cao, Y.; Han, J.; Li, Y. Effect of sodium alginate modification on low-temperature strain-sensing properties of liquid metal hydrogel. ACS Appl. Polym. Mater. 2024, 6, 4673–4686. [Google Scholar] [CrossRef]
- Wang, J.; Ren, S.; Jia, X.; Jia, Y. Liquid metal and carbon nanofiber-based strain sensor for monitoring gesture, voice, and physiological signals. ACS Appl. Nano Mater. 2024, 7, 1664–1673. [Google Scholar] [CrossRef]
- Lee, S.; Byun, S.H.; Kim, C.Y.; Cho, S.; Park, S.; Sim, J.Y.; Jeong, J.W. Beyond human touch perception: An adaptive robotic skin based on gallium microgranules for pressure sensory augmentation. Adv. Mater. 2022, 34, 2204805. [Google Scholar] [CrossRef]
- Luo, R.; Wu, H.; Liu, Y.; Yan, C.; Zhou, K.; Shi, Y. Additively manufactured liquid metal–based piezoresistive device with dual functions of force sensing and mechanical energy absorption. Mater. Today 2025, 84, 65–74. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Xu, H.; Yang, Q.; Luo, Z.; Li, C.; Kai, L.; Meng, Y.; Zhang, J.; Liang, J. Microstructured Liquid Metal-Based Embedded-Type Sensor Array for Curved Pressure Mapping. Adv. Sci. 2025, 12, 2413233. [Google Scholar] [CrossRef]
- Gong, M.; Tu, C.; Lin, X.; Wang, F.; Lian, H.; Cui, Z.; Chen, X. Liquid Metal-Graphene composite conductive nanofiber flexible pressure sensor for dynamic health monitoring. Mater. Des. 2025, 252, 113811. [Google Scholar] [CrossRef]
- Wang, J.; Jia, X.; Yu, D.; Yao, L.; Jia, Y. One-Step Molded Free-Standing Liquid Metal Electrode and Its Application in Wearable Pressure Sensors. ACS Appl. Nano Mater. 2025, 8, 4067–4076. [Google Scholar] [CrossRef]
- Wu, H.; Luo, R.; Li, Z.; Tian, Y.; Yuan, J.; Su, B.; Zhou, K.; Yan, C.; Shi, Y. Additively Manufactured Flexible Liquid Metal–Coated Self-Powered Magnetoelectric Sensors with High Design Freedom. Adv. Mater. 2024, 36, 2307546. [Google Scholar] [CrossRef] [PubMed]
- Kouediatouka, A.N.; Wang, J.; Mawignon, F.J.; Wang, W.; Liu, Q.; Meng, Z.; Makanda, I.L.D.; Djandja, O.S.; Dong, G. Carbon nanotube/liquid metal hybrid coating-based flexible pressure piezoresistive sensors. Chem. Eng. J. 2024, 481, 148637. [Google Scholar] [CrossRef]
- Chen, X.; Wan, H.; Guo, R.; Wang, X.; Wang, Y.; Jiao, C.; Sun, K.; Hu, L. A double-layered liquid metal-based electrochemical sensing system on fabric as a wearable detector for glucose in sweat. Microsyst. Nanoeng. 2022, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chang, H.; Wang, S.; Wang, D.; Xue, M.; Liu, J.; Rao, W. Biomimetic liquid metal mechatronic devices. Adv. Funct. Mater. 2023, 33, 2303312. [Google Scholar] [CrossRef]
- Guan, M.; Huang, Z.; Bao, Z.; Ou, Y.; Zou, S.; Liu, G. Gold nanoparticles incorporated liquid metal for wearable sensors and wound healing. Chem. Eng. J. 2025, 508, 161120. [Google Scholar] [CrossRef]
- Nguyen, C.K.; Taylor, P.D.; Zavabeti, A.; Alluhaybi, H.; Almalki, S.; Guo, X.; Irfan, M.; Kobaisi, M.A.; Ippolito, S.J.; Spencer, M.J. Instant-in-Air Liquid Metal Printed Ultrathin Tin Oxide for High-Performance Ammonia Sensors. Adv. Funct. Mater. 2024, 34, 2309342. [Google Scholar] [CrossRef]
- Kim, M.-G.; Alrowais, H.; Kim, C.; Yeon, P.; Ghovanloo, M.; Brand, O. All-soft, battery-free, and wireless chemical sensing platform based on liquid metal for liquid-and gas-phase VOC detection. Lab Chip 2017, 17, 2323–2329. [Google Scholar] [CrossRef]
- Ren, Y.; Sun, X.; Liu, J. Advances in liquid metal-enabled flexible and wearable sensors. Micromachines 2020, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Baharfar, M.; Kalantar-Zadeh, K. Emerging role of liquid metals in sensing. ACS Sens. 2022, 7, 386–408. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Yin, X.; Sun, K.; Duan, J.; Tan, L.; Li, X. Floatable Liquid Metal Porous Hydrogel with Hydrogen Production for Flexible Sensor and Energy Harvesting. Small 2025, 2505981. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, Q.; Chen, M.; Long, K.; Su, C.; Li, J.; Huang, M.; Lu, A.; Guo, S. Stretchable, adhesive, conductive hydrogel initiated by liquid metal complex for multi-functional sensing. Chem. Eng. J. 2024, 496, 153674. [Google Scholar] [CrossRef]
- Zou, Y.; Liao, Z.; Zhang, R.; Song, S.; Yang, Y.; Xie, D.; Liu, X.; Wei, L.; Liu, Y.; Song, Y. Cellulose nanofibers/liquid metal hydrogels with high tensile strength, environmental adaptability and electromagnetic shielding for temperature monitoring and strain sensors. Carbohydr. Polym. 2025, 348, 122788. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, J.; Wang, G.; Zhao, Y.; Shen, B.; Zheng, W. Stretchable and translucent liquid-metal composite mesh for multifunctional electromagnetic shielding/sensing and Joule heating. Compos. Sci. Technol. 2024, 249, 110512. [Google Scholar] [CrossRef]
- Ma, S.; Xue, P.; Valenzuela, C.; Zhang, X.; Chen, Y.; Liu, Y.; Yang, L.; Xu, X.; Wang, L. Highly stretchable and conductive MXene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuators. Adv. Funct. Mater. 2024, 34, 2309899. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Zhuo, F.; Chen, H.; Cao, H.; Fu, Y.; Xie, J.; Duan, H. Superior compressive and tensile bi-directional strain sensing capabilities achieved using liquid metal Hybrid-Hydrogels empowered by Machine learning algorithms. Chem. Eng. J. 2024, 479, 147790. [Google Scholar] [CrossRef]
- Li, N.; Yuan, X.; Li, Y.; Zhang, G.; Yang, Q.; Zhou, Y.; Guo, M.; Liu, J. Bioinspired liquid metal based soft humanoid robots. Adv. Mater. 2024, 36, 2404330. [Google Scholar] [CrossRef]
- Jamalzadegan, S.; Kim, S.; Mohammad, N.; Koduri, H.; Hetzler, Z.; Lee, G.; Dickey, M.D.; Wei, Q. Liquid Metal-Based Biosensors: Fundamentals and Applications. Adv. Funct. Mater. 2024, 34, 2308173. [Google Scholar] [CrossRef]
- Gu, L.; Poddar, S.; Lin, Y.; Long, Z.; Zhang, D.; Zhang, Q.; Shu, L.; Qiu, X.; Kam, M.; Javey, A. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 2020, 581, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.G.; Jang, J.; Cui, G.; Lee, S.; Jeong, H.; Kang, H.; Seo, H.; Kim, S.; Kim, E.; Lee, J. Liquid-metal-based three-dimensional microelectrode arrays integrated with implantable ultrathin retinal prosthesis for vision restoration. Nat. Nanotechnol. 2024, 19, 688–697. [Google Scholar] [CrossRef]
- Hu, H.; Huang, H.; Li, M.; Gao, X.; Yin, L.; Qi, R.; Wu, R.S.; Chen, X.; Ma, Y.; Shi, K. A wearable cardiac ultrasound imager. Nature 2023, 613, 667–675. [Google Scholar] [CrossRef]
- Wang, X.; Cui, Z.; Jia, Q.; Hao, C.; Wu, B.; Wang, B.; Shan, X.; Gao, J.; Du, M.; Li, Y. Injectable Bismuth-Based Composite Enable Bone Defect Repair for Osteosarcoma Treatment and Mild Magnetothermal Bone Regeneration. Adv. Funct. Mater. 2025, 2501317. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, Z.; Wu, H.; Li, R.; Li, J.; Wang, C.; Yi, L.; Zeng, M.; Huang, C.; Fu, L. Antibacterial-osteogenic integrated liquid metal nanomedicine for periodontitis treatment. Cell Biomater. 2025, 1, 100009. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, B.; Gao, J.; Lang, Y.; Lv, X.; Deng, Z.; Gui, L.; Liu, J.; Tang, R.; Li, L. Liquid metal-based electrode array for neural signal recording. Bioengineering 2023, 10, 578. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, G.; Sun, L.; Ye, F.; Shen, X.; Zhao, Y. Claw-inspired microneedle patches with liquid metal encapsulation for accelerating incisional wound healing. Chem. Eng. J. 2021, 406, 126741. [Google Scholar] [CrossRef]
- Shi, C.; Zou, Z.; Lei, Z.; Zhu, P.; Zhang, W.; Xiao, J. Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and reconfigurable wearable electronics. Sci. Adv. 2020, 6, eabd0202. [Google Scholar] [CrossRef]
- Lee, G.H.; Woo, H.; Yoon, C.; Yang, C.; Bae, J.Y.; Kim, W.; Lee, D.H.; Kang, H.; Han, S.; Kang, S.K. A Personalized Electronic Tattoo for Healthcare Realized by On-the-Spot Assembly of an Intrinsically Conductive and Durable Liquid-Metal Composite. Adv. Mater. 2022, 34, 2204159. [Google Scholar] [CrossRef]
- Fang, P.; Ji, X.; Zhao, X.; Yan-Do, R.; Wan, Y.; Wang, Y.; Zhang, Y.; Shi, P. Self-healing electronics for prognostic monitoring of methylated circulating tumor DNAs. Adv. Mater. 2023, 35, 2207282. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhang, P.; Wang, D.; Liu, J.; Rao, W. Liquid metal hybrid platform-mediated ice–fire dual noninvasive conformable melanoma therapy. ACS Appl. Mater. Interfaces 2020, 12, 27984–27993. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Zhu, X.; Fan, L.; He, Y.; Yang, C.; Guo, R.; Chen, S.; Sun, X.; Liu, J. Phase-transitional bismuth-based metals enable rapid embolotherapy, hyperthermia, and biomedical imaging. Adv. Mater. 2022, 34, 2205002. [Google Scholar] [CrossRef]
- He, Y.; Zhao, Y.; Fan, L.; Wang, X.; Duan, M.; Wang, H.; Zhu, X.; Liu, J. Injectable affinity and remote magnetothermal effects of Bi-based alloy for long-term bone defect repair and analgesia. Adv. Sci. 2021, 8, 2100719. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Zhang, P.; Kadavan, F.S.P.; Xu, Z.; Nguyen, T.T.; Li, W.; Nguyen, M.T.; Nguyen, C.K.; Pham, D.Q.; Pham, T.G.T. Multifunctional Hydroxyapatite Coated with Gallium Liquid Metal-Based Silver Nanoparticles for Infection Prevention and Bone Regeneration. Adv. Funct. Mater. 2025, 2423496. [Google Scholar] [CrossRef]
- Chen, W.; Tang, Q.; Zhong, W.; Lai, M.; Shi, S.; Tan, J.; Luo, Z.; Liu, X.; Ye, Z.; He, R. Directly Printable and Adhesive Liquid Metal Ink for Wearable Devices. Adv. Funct. Mater. 2025, 35, 2411647. [Google Scholar] [CrossRef]
- Peng, Y.; Song, J.; Zhang, Y.; Liu, H.; Dong, J.; Huang, H.; Weng, M.; Huang, Y. Permeable, Wet-Adhesive, and EMI-Resistant Liquid Metal Electronic Skin for High-Fidelity Electrophysiological Monitoring in Sweaty and Electromagnetic Environments. Adv. Mater. 2025, e08041. [Google Scholar] [CrossRef] [PubMed]
LM | Melting Point [°C] | Density [103 kg m−3] | Electrical Conductivity [106 S m−1] | Thermal Conductivity [W m−1 K−1] |
---|---|---|---|---|
Ga | 29.76 | 5.91 (at 25 °C) | 3.7 | 29.3 |
EGaIn | 15.00 | 6.28 (at 20 °C) | 3.4 | 26.6 |
Galinstan | −19.00 | 6.44 (at 20 °C) | 3.5 | 16.5 |
BiIn48.8Sn19.6 | 60.20 | 8.04 | 1.9 | 14.5 |
Printing Technology | Advantages | Limitations | Technical Parameters | Applications |
---|---|---|---|---|
Direct-Ink Writing | High precision; simple control | Poor stability; easily oxidized | Moderate printing speed | Neural probes; interconnects |
Embedded Printing | High stretchability | low throughput | Slow printing speed; high shape fidelity | Bioelectronics; morphing systems |
Extrusion and Infiltration Printing | Excellent material compatibility | Lower resolution; non-reusable | Fast printing speed | Thermal regulators; microelectronics |
Sensor Type | Stretchability | Gauge Factor (GF) | Conductivity/ Stability | Applications | Ref. |
---|---|---|---|---|---|
LM hydrogel (SA-modified) | 382% | 3.66 | Conductive at −40 °C | Low-temperature wearable electronics | [117] |
LM/CNT/PDMS ternary composite | 50–100% | 5.35 | Low hysteresis <5% | Continuous wearable monitoring | [115] |
LM/Ni magnetic particle composite | 300% | 5.17 | <8% after 2000 cycles | Flexible human–machine interfaces | [116] |
Sensor Type | Stretchability | Sensitivity | Response Speed | Applications | Ref. |
---|---|---|---|---|---|
LM microelectrode sensing array | Flexible | 7.42 kPa−1 | 54 ms | Pressure mapping | [121] |
LM-carbon nanofiber foam strain sensor | Lightweight flexible | 3.8 kPa−1 | 83 ms | Physiological signal detection | [123] |
Tunable dual-mode LM pressure sensor | Adaptive | Soft mode: 16.97 kPa−1; Rigid mode: up to 1.45 MPa | / | wide-range pressure sensing | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.-R.; Li, Y.-L.; Yi, Y.-K.; Bao, H.-Y. Multifunctional Liquid Metal for Biomimicry Application. Biomimetics 2025, 10, 574. https://doi.org/10.3390/biomimetics10090574
Xu Y-R, Li Y-L, Yi Y-K, Bao H-Y. Multifunctional Liquid Metal for Biomimicry Application. Biomimetics. 2025; 10(9):574. https://doi.org/10.3390/biomimetics10090574
Chicago/Turabian StyleXu, Yi-Ran, You-Long Li, Yu-Kun Yi, and Heng-Yang Bao. 2025. "Multifunctional Liquid Metal for Biomimicry Application" Biomimetics 10, no. 9: 574. https://doi.org/10.3390/biomimetics10090574
APA StyleXu, Y.-R., Li, Y.-L., Yi, Y.-K., & Bao, H.-Y. (2025). Multifunctional Liquid Metal for Biomimicry Application. Biomimetics, 10(9), 574. https://doi.org/10.3390/biomimetics10090574