The Effect of Three-Dimensional Stabilization Thread Design on Biomechanical Fixation and Osseointegration in Type IV Bone
Abstract
1. Introduction
2. Materials and Methods
2.1. Implant Macrogeometries
2.2. Surgical Procedure
2.3. Biomechanical Testing
2.4. Histological Analysis
2.5. Nanoindentation Testing
2.6. Statistical Analysis
3. Results
3.1. Biomechanical Analysis
3.2. Qualitative Histological Evaluation
3.3. Histomorphometric Analysis
3.4. Nanoindentation Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, X.; Zhao, Y.; Peng, X.; Lu, C.; Wu, Z.; Xu, H.; Qin, Y.; Xu, Y.; Wang, Q.; Hao, Y.; et al. Comprehensive Overview of Interface Strategies in Implant Osseointegration. Adv. Funct. Mater. 2025, 35, 2418849. [Google Scholar] [CrossRef]
- Bosshardt, D.D.; Chappuis, V.; Buser, D. Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontology 2000 2017, 73, 22–40. [Google Scholar] [CrossRef] [PubMed]
- Marão, H.F.; Jimbo, R.; Neiva, R.; Gil, L.F.; Bowers, M.; Bonfante, E.A.; Tovar, N.; Janal, M.N.; Coelho, P.G. Cortical and Trabecular Bone Healing Patterns and Quantification for Three Different Dental Implant Systems. Int. J. Oral Maxillofac. Implant. 2017, 32, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Elias, C.N.; Rocha, F.A.; Nascimento, A.L.; Coelho, P.G. Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants. J. Mech. Behav. Biomed. Mater. 2012, 16, 169–180. [Google Scholar] [CrossRef]
- Stacchi, C.; Vercellotti, T.; Torelli, L.; Furlan, F.; Di Lenarda, R. Changes in Implant Stability Using Different Site Preparation Techniques: Twist Drills versus Piezosurgery. A Single-Blinded, Randomized, Controlled Clinical Trial. Clin. Implant. Dent. Relat. Res. 2013, 15, 188–197. [Google Scholar] [CrossRef]
- Chowdhary, R.; Jimbo, R.; Thomsen, C.; Carlsson, L.; Wennerberg, A. Biomechanical evaluation of macro and micro designed screw-type implants: An insertion torque and removal torque study in rabbits. Clin. Oral Implant. Res. 2011, 24, 342–346. [Google Scholar] [CrossRef]
- Shah, F.A.; Thomsen, P.; Palmquist, A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019, 84, 1–15. [Google Scholar] [CrossRef]
- Albrektsson, T.; Brånemark, P.I.; Hansson, H.A.; Lindström, J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop. Scand 1981, 52, 155–170. [Google Scholar] [CrossRef]
- Muktadar, A.K.; Gangaiah, M.; Chrcanovic, B.R.; Chowdhary, R. Evaluation of the effect of self-cutting and nonself-cutting thread designed implant with different thread depth on variable insertion torques: An histomorphometric analysis in rabbits. Clin. Implant. Dent. Relat. Res. 2018, 20, 507–514. [Google Scholar] [CrossRef]
- Augustin, G.; Davila, S.; Mihoci, K.; Udiljak, T.; Vedrina, D.S.; Antabak, A. Thermal osteonecrosis and bone drilling parameters revisited. Arch. Orthop. Trauma Surg. 2008, 128, 71–77. [Google Scholar] [CrossRef]
- Szmukler-Moncler, S.; Salama, H.; Reingewirtz, Y.; Dubruille, J.H. Timing of loading and effect of micromotion on bone-dental implant interface: Review of experimental literature. J. Biomed. Mater. Res. 1998, 43, 192–203. [Google Scholar] [CrossRef]
- Kreve, S.; Ferreira, I.; da Costa Valente, M.L.; Dos Reis, A.C. Relationship between dental implant macro-design and osseointegration: A systematic review. Oral Maxillofac. Surg. 2024, 28, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Orsini, E.; Giavaresi, G.; Trirè, A.; Ottani, V.; Salgarello, S. Dental implant thread pitch and its influence on the osseointegration process: An in vivo comparison study. Int. J. Oral Maxillofac. Implant. 2012, 27, 383–392. [Google Scholar]
- Steigenga, J.; Al-Shammari, K.; Misch, C.; Nociti, F.H., Jr.; Wang, H.L. Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits. J. Periodontol. 2004, 75, 1233–1241. [Google Scholar] [CrossRef]
- Chien, S.-K.; Hsue, S.-S.; Lin, C.-S.; Kuo, T.-F.; Wang, D.-J.; Yang, J.-C.; Lee, S.-Y. Influence of thread design on dental implant osseointegration assayed using the Lan-Yu mini-pig model. J. Med Biol. Eng. 2017, 37, 627–638. [Google Scholar] [CrossRef]
- Silva, G.A.F.; Faot, F.; da Rosa Possebon, A.P.; da Silva, W.J.; Cury, A.A.D.B. Effect of macrogeometry and bone type on insertion torque, primary stability, surface topography damage and titanium release of dental implants during surgical insertion into artificial bone. J. Mech. Behav. Biomed. Mater. 2021, 119, 104515. [Google Scholar] [CrossRef]
- dos Reis-Neta, G.R.; Cerqueira, G.F.M.; Ribeiro, M.C.O.; Magno, M.B.; Vásquez, G.A.M.; Maia, L.C.; Cury, A.A.D.B.; Marcello-Machado, R.M. Is the clinical performance of dental implants influenced by different macrogeometries? A systematic review and meta-analysis. J. Prosthet. Dent. 2024, in press. [Google Scholar] [CrossRef]
- Heimes, D.; Becker, P.; Pabst, A.; Smeets, R.; Kraus, A.; Hartmann, A.; Sagheb, K.; Kämmerer, P.W. How does dental implant macrogeometry affect primary implant stability? A narrative review. Int. J. Implant. Dent. 2023, 9, 20. [Google Scholar] [CrossRef]
- Coelho, P.G.; Jimbo, R.; Tovar, N.; Bonfante, E.A. Osseointegration: Hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dent. Mater. 2015, 31, 37–52. [Google Scholar] [CrossRef]
- Friberg, B.; Ekestubbe, A.; Mellström, D.; Sennerby, L. Brånemark implants and osteoporosis: A clinical exploratory study. Clin. Implant. Dent. Relat. Res. 2001, 3, 50–56. [Google Scholar] [CrossRef]
- Alifarag, A.M.; Lopez, C.D.; Neiva, R.F.; Tovar, N.; Witek, L.; Coelho, P.G. Atemporal osseointegration: Early biomechanical stability through osseodensification. J. Orthop. Res. 2018, 36, 2516–2523. [Google Scholar] [CrossRef]
- Wang, T.M.; Lee, M.S.; Wang, J.S.; Lin, L.D. The effect of implant design and bone quality on insertion torque, resonance frequency analysis, and insertion energy during implant placement in low or low- to medium-density bone. Int. J. Prosthodont. 2015, 28, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Coelho, P.G.; Jimbo, R. Osseointegration of metallic devices: Current trends based on implant hardware design. Arch. Biochem. Biophys. 2014, 561, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Barton, P.E.; Bellanca, J.J.; Lewis, T.P.; Molz, F.J. Three-Dimensional Stabilization Thread Form for Dental Implants. U.S. Patent 11,382,724, 12 July 2022. [Google Scholar]
- Barton, P.E.; Bellanca, J.J.; Lewis, T.P.; Molz, F.J. Three-Dimensional Stabilization Thread Form for Dental Implants. U.S. Patent 11,944,516, 2 April 2024. [Google Scholar]
- Slavin, B.V.; Nayak, V.V.; Bergamo, E.T.P.; Costello, J.P.; Ehlen, Q.T.; Stauber, Z.M.; Fullerton, N.; Witek, L.; Coelho, P.G. Impact of three-dimensional stabilization thread design on biomechanical fixation and osseointegration of endosteal implants. J. Mech. Behav. Biomed. Mater. 2025, 168, 107004. [Google Scholar] [CrossRef]
- Bayraktar, H.H.; Morgan, E.F.; Niebur, G.L.; Morris, G.E.; Wong, E.K.; Keaveny, T.M. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 2004, 37, 27–35. [Google Scholar] [CrossRef]
- Tapered Pro Dental Implant. Available online: https://www.biohorizons.com/products/taperedpro# (accessed on 10 April 2025).
- Huang, Y.-C.; Huang, Y.-C.; Ding, S.-J. Primary stability of implant placement and loading related to dental implant materials and designs: A literature review. J. Dent. Sci. 2023, 18, 1467–1476. [Google Scholar] [CrossRef]
- Bavetta, G.; Bavetta, G.; Randazzo, V.; Cavataio, A.; Paderni, C.; Grassia, V.; Dipalma, G.; Gargiulo Isacco, C.; Scarano, A.; De Vito, D.; et al. A retrospective study on insertion torque and implant stability quotient (ISQ) as stability parameters for immediate loading of implants in fresh extraction sockets. Biomed Res. Int. 2019, 2019, 9720419. [Google Scholar] [CrossRef]
- Bavetta, G.; Paderni, C.; Bavetta, G.; Randazzo, V.; Cavataio, A.; Seidita, F.; Khater, A.G.; Gehrke, S.A.; Tari, S.R.; Scarano, A.J.P. ISQ for Assessing Implant Stability and Monitoring Healing: A Prospective Observational Comparison between Two Devices. Prosthesis 2024, 6, 357–371. [Google Scholar] [CrossRef]
- Rosas-Díaz, J.; Guerrero, M.E.; Córdova-Limaylla, N.; Galindo-Gómez, M.; García-Luna, M.; Cayo-Rojas, C.J.B. The Influence of the Degree of Dental Implant Insertion Compression on Primary Stability Measured by Resonance Frequency and Progressive Insertion Torque: In Vitro Study. Biomedicines 2024, 12, 2878. [Google Scholar] [CrossRef]
- Dhaliwal, J.S.; Albuquerque, R.F.; Fakhry, A.; Kaur, S.; Feine, J.S. Customized SmartPeg for measurement of resonance frequency of mini dental implants. Int. J. Implant. Dent. 2017, 3, 4. [Google Scholar] [CrossRef]
- Ajami, E.; Fu, C.; Wen, H.B.; Bassett, J.; Park, S.J.; Pollard, M. Early Bone Healing on Hydroxyapatite-Coated and Chemically-Modified Hydrophilic Implant Surfaces in an Ovine Model. Int. J. Mol. Sci. 2021, 22, 9361. [Google Scholar] [CrossRef]
- Huang, H.; Wu, G.; Hunziker, E. The clinical significance of implant stability quotient (ISQ) measurements: A literature review. J. Oral Biol. Craniofac. Res. 2020, 10, 629–638. [Google Scholar] [CrossRef]
- Ernst, S.; Stübinger, S.; Schüpbach, P.; Sidler, M.; Klein, K.; Ferguson, S.J.; von Rechenberg, B. Comparison of two dental implant surface modifications on implants with same macrodesign: An experimental study in the pelvic sheep model. Clin. Oral Implant. Res. 2015, 26, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Lemos, B.F.; Lopez-Jarana, P.; Falcao, C.; Ríos-Carrasco, B.; Gil, J.; Ríos-Santos, J.V.; Herrero-Climent, M. Effects of Different Undersizing Site Preparations on Implant Stability. Int. J. Environ. Res. Public Health 2020, 17, 8965. [Google Scholar] [CrossRef]
- Sarfaraz, H.; Johri, S.; Sucheta, P.; Rao, S. Study to assess the relationship between insertion torque value and implant stability quotient and its influence on timing of functional implant loading. J. Indian Prosthodont. Soc. 2018, 18, 139–146. [Google Scholar] [CrossRef]
- Granato, R.; Bergamo, E.T.; Witek, L.; Bonfante, E.A.; Marin, C.; Greenberg, M.; Kurgansky, G.; Coelho, P.G. Clinical, histological, and nanomechanical parameters of implants placed in healthy and metabolically compromised patients. J. Dent. 2020, 100, 103436. [Google Scholar] [CrossRef]
- Testori, T.; Del Fabbro, M.; Szmukler-Moncler, S.; Francetti, L.; Weinstein, R.L. Immediate occlusal loading of Osseotite implants in the completely edentulous mandible. Int. J. Oral Maxillofac. Implant. 2003, 18, 544–551. [Google Scholar]
- Torroella-Saura, G.; Mareque-Bueno, J.; Cabratosa-Termes, J.; Hernández-Alfaro, F.; Ferrés-Padró, E.; Calvo-Guirado, J.L. Effect of implant design in immediate loading. A randomized, controlled, split-mouth, prospective clinical trial. Clin. Oral Implant. Res. 2015, 26, 240–244. [Google Scholar] [CrossRef]
- Halldin, A.; Jimbo, R.; Johansson, C.B.; Wennerberg, A.; Jacobsson, M.; Albrektsson, T.; Hansson, S.J.B. The effect of static bone strain on implant stability and bone remodeling. Bone 2011, 49, 783–789. [Google Scholar] [CrossRef]
- Chamay, A.; Tschantz, P. Mechanical influences in bone remodeling. Experimental research on Wolff’s law. J. Biomech. 1972, 5, 173–180. [Google Scholar] [CrossRef]
- Ferrari, D.S.; Piattelli, A.; Iezzi, G.; Faveri, M.; Rodrigues, J.A.; Shibli, J.A. Effect of lateral static load on immediately restored implants: Histologic and radiographic evaluation in dogs. Clin. Oral Implant. Res. 2015, 26, e51–e56. [Google Scholar] [CrossRef]
- Korabi, R.; Shemtov-Yona, K.; Dorogoy, A.; Rittel, D.J.S.R. The failure envelope concept applied to the bone-dental implant system. Sci. Rep. 2017, 7, 2051. [Google Scholar] [CrossRef] [PubMed]
- Ruffoni, D.; Wirth, A.J.; Steiner, J.A.; Parkinson, I.H.; Müller, R.; van Lenthe, G.H.J.B. The different contributions of cortical and trabecular bone to implant anchorage in a human vertebra. Bone 2012, 50, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Wirth, A.; Müller, R.; van Lenthe, G.H.J.E.C.M. Computational analyses of small endosseous implants in osteoporotic bone. Eur. Cells Mater. 2010, 20, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Jimbo, R.; Sawase, T.; Shibata, Y.; Hirata, K.; Hishikawa, Y.; Tanaka, Y.; Bessho, K.; Ikeda, T.; Atsuta, M. Enhanced osseointegration by the chemotactic activity of plasma fibronectin for cellular fibronectin positive cells. Biomaterials 2007, 28, 3469–3477. [Google Scholar] [CrossRef]
- Raghavendra, S.; Wood, M.C.; Taylor, T.D. Early wound healing around endosseous implants: A review of the literature. Int. J. Oral Maxillofac. Implant. 2005, 20, 425–431. [Google Scholar]
- Oftadeh, R.; Perez-Viloria, M.; Villa-Camacho, J.C.; Vaziri, A.; Nazarian, A. Biomechanics and mechanobiology of trabecular bone: A review. J. Biomech. Eng. 2015, 137, 010802. [Google Scholar] [CrossRef]
- Bergamo, E.T.P.; de Oliveira, P.G.F.P.; Campos, T.M.B.; Bonfante, E.A.; Tovar, N.; Boczar, D.; Nayak, V.V.; Coelho, P.G.; Witek, L. Osseointegration of implant surfaces in metabolic syndrome and type-2 diabetes mellitus. J. Biomed. Mater. Res. Part B Appl. Biomater. 2024, 112, e35382. [Google Scholar] [CrossRef]
- Schlegel, K.; Prechtl, C.; Möst, T.; Seidl, C.; Lutz, R.; Von Wilmowsky, C. Osseointegration of SLA ctive implants in diabetic pigs. Clin. Oral Implant. Res. 2013, 24, 128–134. [Google Scholar] [CrossRef]
- Ajami, E.; Bell, S.; Liddell, R.S.; Davies, J.E. Early bone anchorage to micro-and nano-topographically complex implant surfaces in hyperglycemia. Acta Biomater. 2016, 39, 169–179. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias, N.J.; Nayak, V.V.; Castellano, A.; Witek, L.; Souza, B.M.d.; Bergamo, E.T.P.; Almada, R.; Slavin, B.V.; Bonfante, E.A.; Coelho, P.G. The Effect of Three-Dimensional Stabilization Thread Design on Biomechanical Fixation and Osseointegration in Type IV Bone. Biomimetics 2025, 10, 395. https://doi.org/10.3390/biomimetics10060395
Iglesias NJ, Nayak VV, Castellano A, Witek L, Souza BMd, Bergamo ETP, Almada R, Slavin BV, Bonfante EA, Coelho PG. The Effect of Three-Dimensional Stabilization Thread Design on Biomechanical Fixation and Osseointegration in Type IV Bone. Biomimetics. 2025; 10(6):395. https://doi.org/10.3390/biomimetics10060395
Chicago/Turabian StyleIglesias, Nicholas J., Vasudev Vivekanand Nayak, Arthur Castellano, Lukasz Witek, Bruno Martins de Souza, Edmara T. P. Bergamo, Ricky Almada, Blaire V. Slavin, Estevam A. Bonfante, and Paulo G. Coelho. 2025. "The Effect of Three-Dimensional Stabilization Thread Design on Biomechanical Fixation and Osseointegration in Type IV Bone" Biomimetics 10, no. 6: 395. https://doi.org/10.3390/biomimetics10060395
APA StyleIglesias, N. J., Nayak, V. V., Castellano, A., Witek, L., Souza, B. M. d., Bergamo, E. T. P., Almada, R., Slavin, B. V., Bonfante, E. A., & Coelho, P. G. (2025). The Effect of Three-Dimensional Stabilization Thread Design on Biomechanical Fixation and Osseointegration in Type IV Bone. Biomimetics, 10(6), 395. https://doi.org/10.3390/biomimetics10060395