Radionuclide-Labeled Biomaterials: A Novel Strategy for Tumor-Targeted Therapy
Abstract
:1. Introduction
2. Common Types of Radionuclides Used in Therapy
2.1. Beta Particle
2.1.1. Lutetium-177
2.1.2. Yttrium-90
2.1.3. Iodine-131
2.2. Alpha Particle
2.2.1. Radium-223
2.2.2. Astatine-211
2.2.3. Bismuth-213
2.3. Auger Electron
Iodine-125
3. Emerging Radionuclides
3.1. Terbium-161
3.2. Actinium-225
4. Innovation in Targeted Delivery Systems
4.1. Antibodies and Peptides
4.2. Small Molecules
4.3. Nanocarriers
4.4. Microspheres
4.5. Aptamers
4.6. Biological Carriers
4.7. Bone Cements
5. Advances in Theranostics
6. Combination Therapy Strategy
6.1. Radionuclide Therapy–Immunotherapy Combination
6.2. Radionuclide Therapy–Chemotherapy Synergy
6.3. Synergistic Radiotherapy–Photothermal Therapy
7. Applications in Tumor Therapy
7.1. Prostate Cancer
7.2. Breast Cancer
7.3. Neuroendocrine Tumors
7.4. Glioma
7.5. Melanoma
8. Challenges and Future Directions
8.1. Technical Challenges
8.2. Challenges in Clinical Translation
8.3. Future Directions
8.3.1. Development of Novel Isotopes and Labeling Techniques
8.3.2. Multifunctional Combined Treatment Strategies and Theranostics-Immuno/Gene Synergy
8.3.3. Application of Artificial Intelligence and Big Data
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TRT | Targeted Radionuclide Therapy |
LET | Linear Energy Transfer |
PRRT | Peptide Receptor Radionuclide Therapy |
SSTR | Somatostatin Receptor |
PSMA | Prostate-Specific Membrane Antigen |
HER2 | Human Epidermal Growth Factor Receptor 2 |
EGFR | Epidermal Growth Factor Receptor |
VEGFR | Vascular Endothelial Growth Factor Receptor |
NET | Norepinephrine Transporter |
mCRPC | Metastatic Castration-Resistant Prostate Cancer |
TNBC | Triple-Negative Breast Cancer |
GEP-NENs | Gastroenteropancreatic Neuroendocrine Neoplasms |
GBM | Glioblastoma Multiforme |
MDS | Myelodysplastic Syndromes |
PFS | Progression-Free Survival |
ICD | Immunogenic Cell Death |
DOTA | 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid |
DTPA | Diethylenetriaminepentaacetic acid |
NOTA | 1,4,7-Triazacyclononane-1,4,7-triacetic acid |
HEHA | Hexaazacyclohexadecane-N,N′,N′′,N′′′,N′′′′,N′′′′′-hexaacetic acid |
EDTA | Ethylenediaminetetraacetic acid |
CHX-DT | Cyclohexyl-diethylenetriaminepentaacetic acid |
PA | |
PEPA | p-isothiocyanatobenzyl-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid |
DOTP | 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetramethylenephosphonic acid |
LPy | Lipoyl-Pyridine |
Macropa | Macrocyclic Pyridinophane |
SPECT | Single-Photon Emission Computed Tomography |
PET | Positron Emission Tomography |
MRI | Magnetic Resonance Imaging |
PAI | Photoacoustic Imaging |
PTT | Photothermal Therapy |
PDT | Photodynamic Therapy |
RBE | Relative Biological Effectiveness |
RCY | Radiochemical Yield |
BFC | Bifunctional Chelator |
scFv | Single-Chain Variable Fragment |
mAb | Monoclonal Antibody |
F(ab′)2 | Fragment antigen-binding |
sdAb | Single-Domain Antibody |
EV | Extracellular Vesicle |
AuNPs | Gold Nanoparticles |
PIONs | Porous Iron Oxide Nanoparticles |
MPDA | Mesoporous Polydopamine |
SWNT | Single-Walled Carbon Nanotube |
PEG | Polyethylene Glycol |
iRGD | Internalizing RGD |
NK-1 | Neurokinin-1 |
MC1-R | Melanocortin 1 Receptor |
S1R | Sigma-1 Receptor |
GRPR | Gastrin-Releasing Peptide Receptor |
PSCA | Prostate Stem Cell Antigen |
DLL3 | Delta-Like Ligand 3 |
FRα | Folate Receptor Alpha |
CD133 | Cluster of Differentiation 133 |
αvβ3 | Integrin Alpha-V Beta-3 |
DAMPs | Damage-Associated Molecular Patterns |
FDA | Food and Drug Administration |
AI | Artificial Intelligence |
SIRT | Selective Internal Radiation Therapy |
PMMA | Polymethylmethacrylate |
EBRT | External Beam Radiation Therapy |
SELEX | Systematic Evolution of Ligands by Exponential Enrichment |
References
- Gill, M.R.; Falzone, N.; Du, Y.; Vallis, K.A. Targeted radionuclide therapy in combined-modality regimens. Lancet Oncol. 2017, 18, e414–e423. [Google Scholar] [CrossRef] [PubMed]
- Puttemans, J.; Dekempeneer, Y.; Eersels, J.L.; Hanssens, H.; Debie, P.; Keyaerts, M.; Windhorst, A.D.; van der Aa, F.; Lecocq, Q.; Breckpot, K.; et al. Preclinical Targeted α- and β−-Radionuclide Therapy in HER2-Positive Brain Metastasis Using Camelid Single-Domain Antibodies. Cancers 2020, 12, 1017. [Google Scholar] [CrossRef]
- Sharma, R.; Kameswaran, M.; Dash, A. Comparative In Vitro Cytotoxicity Studies of 177Lu-CHX-A″-DTPA-Trastuzumab and 177Lu-CHX-A″-DTPA-F(ab′)2-Trastuzumab in HER2-Positive Cancer Cell Lines. Cancer Biother. Radiopharm. 2020, 35, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.-T.K.; Zettlitz, K.A.; Dahlbom, M.; Reiter, R.E.; Wu, A.M. Evaluation of [131I]I- and [177Lu]Lu-DTPA-A11 Minibody for Radioimmunotherapy in a Preclinical Model of PSCA-Expressing Prostate Cancer. Mol. Imaging Biol. 2020, 22, 1380–1391. [Google Scholar] [CrossRef] [PubMed]
- Korsen, J.A.; Gutierrez, J.A.; Tully, K.M.; Carter, L.M.; Samuels, Z.V.; Khitrov, S.; Poirier, J.T.; Rudin, C.M.; Chen, Y.; Morris, M.J.; et al. Delta-like ligand 3–targeted radioimmunotherapy for neuroendocrine prostate cancer. Proc. Natl. Acad. Sci. USA 2022, 119, e2203820119. [Google Scholar] [CrossRef]
- Sharma, R.; Kameswaran, M.; Pandey, U.; Dash, A. Dose-dependent cell cycle arrest and apoptosis in HER2 breast cancer cells by 177Lu-CHX-A″-DTPA-Trastuzumab. J. Cancer Res. Ther. 2020, 16, 1426–1434. [Google Scholar] [CrossRef]
- Menon, S.R.; Mitra, A.; Chakraborty, A.; Tawate, M.; Sahu, S.; Rakshit, S.; Gaikwad, S.; Dhotre, G.; Damle, A.; Banerjee, S. Clinical Dose Preparation of [177Lu]Lu-DOTA-Pertuzumab Using Medium Specific Activity [177Lu]LuCl3 for Radioimmunotherapy of Breast and Epithelial Ovarian Cancers, with HER2 Receptor Overexpression. Cancer Biother. Radiopharm. 2022, 37, 384–402. [Google Scholar] [CrossRef]
- Solomon, V.R.; Barreto, K.; Bernhard, W.; Alizadeh, E.; Causey, P.; Perron, R.; Gendron, D.; Alam, M.K.; Carr, A.; Geyer, C.R.; et al. Nimotuzumab Site-Specifically Labeled with 89Zr and 225Ac Using SpyTag/SpyCatcher for PET Imaging and Alpha Particle Radioimmunotherapy of Epidermal Growth Factor Receptor Positive Cancers. Cancers 2020, 12, 3449. [Google Scholar] [CrossRef]
- Behnammanesh, H.; Jokar, S.; Erfani, M.; Geramifar, P.; Sabzevari, O.; Amini, M.; Mazidi, S.M.; Hajiramezanali, M.; Beiki, D. Design, preparation and biological evaluation of a 177Lu-labeled somatostatin receptor antagonist for targeted therapy of neuroendocrine tumors. Bioorganic Chem. 2020, 94, 103381. [Google Scholar] [CrossRef]
- Liu, W.; Ma, H.; Liang, R.; Chen, X.; Li, H.; Lan, T.; Yang, J.; Liao, J.; Qin, Z.; Yang, Y.; et al. Targeted Alpha Therapy of Glioma Using 211At-Labeled Heterodimeric Peptide Targeting Both VEGFR and Integrins. Mol. Pharm. 2022, 19, 3206–3216. [Google Scholar] [CrossRef]
- Hatazawa, J. The Clinical Value of Breast Specific Gamma Imaging and Positron Imaging: An Update. Semin. Nucl. Med. 2022, 52, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Fendler, W.P.; Calais, J.; Eiber, M.; Flavell, R.R.; Mishoe, A.; Feng, F.Y.; Nguyen, H.G.; Reiter, R.E.; Rettig, M.B.; Okamoto, S.; et al. Assessment of 68Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer: A Prospective Single-Arm Clinical Trial. JAMA Oncol. 2019, 5, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, R.; Grudzinski, J.J.; Aluicio-Sarduy, E.; Massey, C.F.; Pinchuk, A.N.; Bitton, A.N.; Patel, R.; Zhang, R.; Rao, A.V.; Iyer, G.; et al. 177Lu-NM600 Targeted Radionuclide Therapy Extends Survival in Syngeneic Murine Models of Triple-Negative Breast Cancer. J. Nucl. Med. 2020, 61, 1187–1194. [Google Scholar] [CrossRef]
- Salvanou, E.A.; Stellas, D.; Tsoukalas, C.; Mavroidi, B.; Paravatou-Petsotas, M.; Kalogeropoulos, N.; Xanthopoulos, S.; Denat, F.; Laurent, G.; Bazzi, R.; et al. A Proof-of-Concept Study on the Therapeutic Potential of Au Nanoparticles Radiolabeled with the Alpha-Emitter Actinium-225. Pharmaceutics 2020, 12, 188. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, F.; Turker, M.Z.; Ma, K.; Zanzonico, P.; Gallazzi, F.; Shah, M.A.; Prater, A.R.; Wiesner, U.; Bradbury, M.S.; et al. Targeted melanoma radiotherapy using ultrasmall 177Lu-labeled α-melanocyte stimulating hormone-functionalized core-shell silica nanoparticles. Biomaterials 2020, 241, 119858. [Google Scholar] [CrossRef]
- Salvanou, E.-A.; Kolokithas-Ntoukas, A.; Liolios, C.; Xanthopoulos, S.; Paravatou-Petsotas, M.; Tsoukalas, C.; Avgoustakis, K.; Bouziotis, P. Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with 68Ga and 177Lu as Potential Theranostic Agents. Nanomaterials 2022, 12, 2490. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, S.; Sahnoun, S.E.M.; Szymura, A.; Pes, J.; Habib, S.; Florea, A.; Schäfer, L.; Buhl, E.M.; Morgenroth, A.; Habib, P.; et al. Validation of Dual-Action Chemo-Radio-Labeled Nanocarriers with High Efficacy against Triple-Negative Breast Cancer. ACS Appl. Mater. Interfaces 2023, 15, 48963–48977. [Google Scholar] [CrossRef]
- Cvjetinović, Đ.; Prijović, Ž.; Janković, D.; Radović, M.; Mirković, M.; Milanović, Z.; Mojović, M.; Škalamera, Đ.; Vranješ-Đurić, S. Bioevaluation of glucose-modified liposomes as a potential drug delivery system for cancer treatment using 177-Lu radiotracking. J. Control. Release 2021, 332, 301–311. [Google Scholar] [CrossRef]
- Lee, Y.B.; Nam, J.Y.; Cho, E.J.; Lee, J.H.; Yu, S.J.; Kim, H.C.; Paeng, J.C.; Yoon, J.H.; Kim, Y.J. A Phase I/IIa Trial of Yttrium-90 Radioembolization in Combination with Durvalumab for Locally Advanced Unresectable Hepatocellular Carcinoma. Clin. Cancer Res. 2023, 29, 3650–3658. [Google Scholar] [CrossRef]
- Rubira, L.; Deshayes, E.; Santoro, L.; Kotzki, P.O.; Fersing, C. 225Ac-Labeled Somatostatin Analogs in the Management of Neuroendocrine Tumors: From Radiochemistry to Clinic. Pharmaceutics 2023, 15, 1051. [Google Scholar] [CrossRef]
- Chandler, C.S.; Bell, M.M.; Chung, S.K.; Veach, D.R.; Fung, E.K.; Punzalan, B.; Burnes Vargas, D.; Patel, M.; Xu, H.; Guo, H.F.; et al. Intraperitoneal Pretargeted Radioimmunotherapy for Colorectal Peritoneal Carcinomatosis. Mol. Cancer Ther. 2022, 21, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Kapalatiya, H.; Madav, Y.; Tambe, V.S.; Wairkar, S. Enzyme-responsive smart nanocarriers for targeted chemotherapy: An overview. Drug Deliv. Transl. Res. 2022, 12, 1293–1305. [Google Scholar] [CrossRef] [PubMed]
- Hennrich, U.; Eder, M. [177Lu]Lu-PSMA-617 (PluvictoTM): The First FDA-Approved Radiotherapeutical for Treatment of Prostate Cancer. Pharmaceuticals 2022, 15, 1292. [Google Scholar] [CrossRef]
- Vogel, W.V.; van der Marck, S.C.; Versleijen, M.W.J. Challenges and future options for the production of lutetium-177. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2329–2335. [Google Scholar] [CrossRef]
- Ahmadzadehfar, H.; Rahbar, K.; Kürpig, S.; Bögemann, M.; Claesener, M.; Eppard, E.; Gärtner, F.; Rogenhofer, S.; Schäfers, M.; Essler, M. Early side effects and first results of radioligand therapy with 177Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: A two-centre study. EJNMMI Res. 2015, 5, 114. [Google Scholar] [CrossRef]
- Dash, A.; Pillai, M.R.; Knapp, F.F., Jr. Production of 177Lu for Targeted Radionuclide Therapy: Available Options. Nucl. Med. Mol. Imaging 2015, 49, 85–107. [Google Scholar] [CrossRef] [PubMed]
- Price, E.W.; Orvig, C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev. 2014, 43, 260–290. [Google Scholar] [CrossRef]
- Kwekkeboom, D.J.; Bakker, W.H.; Kooij, P.P.; Konijnenberg, M.W.; Srinivasan, A.; Erion, J.L.; Schmidt, M.A.; Bugaj, J.L.; de Jong, M.; Krenning, E.P. [177Lu-DOTA0,Tyr3]octreotate: Comparison with [111In-DTPA0]octreotide in patients. Eur. J. Nucl. Med. 2001, 28, 1319–1325. [Google Scholar] [CrossRef]
- Jødal, L. Beta emitters and radiation protection. Acta Oncol. 2009, 48, 308–313. [Google Scholar] [CrossRef]
- Kong, G.; Callahan, J.; Hofman, M.S.; Pattison, D.A.; Akhurst, T.; Michael, M.; Eu, P.; Hicks, R.J. High clinical and morphologic response using 90Y-DOTA-octreotate sequenced with 177Lu-DOTA-octreotate induction peptide receptor chemoradionuclide therapy (PRCRT) for bulky neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 476–489. [Google Scholar] [CrossRef]
- Westcott, M.A.; Coldwell, D.M.; Liu, D.M.; Zikria, J.F. The development, commercialization, and clinical context of yttrium-90 radiolabeled resin and glass microspheres. Adv. Radiat. Oncol. 2016, 1, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Kostelnik, T.I.; Orvig, C. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chem. Rev. 2019, 119, 902–956. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, R.; Dash, A.; Pillai, M.R. Availability of yttrium-90 from strontium-90: A nuclear medicine perspective. Cancer Biother. Radiopharm. 2012, 27, 621–641. [Google Scholar] [CrossRef]
- Abbasi, I.A.; Zaidi, J.H.; Arif, M.; Waheed, S.; Subhani, M.S. Measurement of fission neutron spectrum averaged cross sections of some threshold reactions on zirconium: Production possibility of no-carrier-added 90Y in a nuclear reactor. Radiochim. Acta 2006, 94, 381–384. [Google Scholar] [CrossRef]
- Chinol, M.; Bodei, L.; Cremonesi, M.; Paganelli, G. Receptor-mediated radiotherapy with 90Y-DOTA-DPhe1-Tyr3-octreotide: The experience of the european institute of oncology group. Semin. Nucl. Med. 2002, 32, 141–147. [Google Scholar] [CrossRef]
- Kunikowska, J.; Królicki, L.; Hubalewska-Dydejczyk, A.; Mikołajczak, R.; Sowa-Staszczak, A.; Pawlak, D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: Which is a better therapy option? Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1788–1797. [Google Scholar] [CrossRef]
- Ferris, T.; Carroll, L.; Jenner, S.; Aboagye, E.O. Use of radioiodine in nuclear medicine—A brief overview. J. Label. Compd. Radiopharm. 2021, 64, 92–108. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, A.; Liu, Y.; Xu, C.; Tang, L.; Yuan, H.; Liu, Q.; Wang, X.; Feng, D.; Wang, L.; et al. Radioactive Iodine Therapy in Patients with Differentiated Thyroid Cancer: Study of External Dose Rate Attenuation Law and Individualized Patient Management. Thyroid 2019, 29, 93–100. [Google Scholar] [CrossRef]
- Senturk, H.E.; Camliyer, H. A New Learning Model on Physical Education: 5E Learning Cycle. Univers. J. Educ. Res. 2016, 4, 26–29. [Google Scholar] [CrossRef]
- Guo, J.; Xiong, H.; Liu, H.; Zhang, T.; Sun, X. Radioiodine based biomedical carriers for cancer theranostics. Coord. Chem. Rev. 2023, 497, 215430. [Google Scholar] [CrossRef]
- El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Boulaich, Y.; Boukhal, H. Feasibility analysis of I-131 production in the Moroccan TRIGA research reactor. Ann. Nucl. Energy 2015, 78, 140–145. [Google Scholar] [CrossRef]
- Soelberg, N.R.; Garn, T.G.; Greenhalgh, M.R.; Law, J.D.; Jubin, R.; Strachan, D.M.; Thallapally, P.K. Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities. Sci. Technol. Nucl. Install. 2013, 2013, 702496. [Google Scholar] [CrossRef]
- Bartholomew, R.M.; Brown, F.; Hawkings, R.C.; Merritt, W.F.; Yaffe, L. THE FISSION YIELD OF I131 IN THE THERMAL NEUTRON FISSION OF U235. Can. J. Chem. 1953, 31, 120–125. [Google Scholar] [CrossRef]
- Mushtaq, S.; Jeon, J.; Shaheen, A.; Jang, B.S.; Park, S.H. Critical analysis of radioiodination techniques for micro and macro organic molecules. J. Radioanal. Nucl. Chem. 2016, 309, 859–889. [Google Scholar] [CrossRef]
- Bruland, Ø.S.; Nilsson, S.; Fisher, D.R.; Larsen, R.H. High-Linear Energy Transfer Irradiation Targeted to Skeletal Metastases by the α-Emitter 223Ra: Adjuvant or Alternative to Conventional Modalities? Clin. Cancer Res. 2006, 12, 6250s–6257s. [Google Scholar] [CrossRef]
- Kluetz, P.G.; Pierce, W.; Maher, V.E.; Zhang, H.; Tang, S.; Song, P.; Liu, Q.; Haber, M.T.; Leutzinger, E.E.; Al-Hakim, A.; et al. Radium Ra 223 dichloride injection: U.S. Food and Drug Administration drug approval summary. Clin. Cancer Res. 2014, 20, 9–14. [Google Scholar] [CrossRef]
- Marques, I.A.; Neves, A.R.; Abrantes, A.M.; Pires, A.S.; Tavares-da-Silva, E.; Figueiredo, A.; Botelho, M.F. Targeted alpha therapy using Radium-223: From physics to biological effects. Cancer Treat. Rev. 2018, 68, 47–54. [Google Scholar] [CrossRef]
- Abou, D.S.; Thiele, N.A.; Gutsche, N.T.; Villmer, A.; Zhang, H.; Woods, J.J.; Baidoo, K.E.; Escorcia, F.E.; Wilson, J.J.; Thorek, D.L.J. Towards the stable chelation of radium for biomedical applications with an 18-membered macrocyclic ligand. Chem. Sci. 2021, 12, 3733–3742. [Google Scholar] [CrossRef]
- Zalutsky, M.R.; Vaidyanathan, G. Astatine-211-labeled radiotherapeutics: An emerging approach to targeted alpha-particle radiotherapy. Curr. Pharm. Des. 2000, 6, 1433–1455. [Google Scholar] [CrossRef]
- Poty, S.; Francesconi, L.C.; McDevitt, M.R.; Morris, M.J.; Lewis, J.S. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies—Part 1. J. Nucl. Med. 2018, 59, 878–884. [Google Scholar] [CrossRef]
- Goodhead, D.T.; Munson, R.J.; Thacker, J.; Cox, R. Mutation and inactivation of cultured mammalian cells exposed to beams of accelerated heavy ions IV. Biophysical interpretation. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1980, 37, 135–167. [Google Scholar] [CrossRef] [PubMed]
- Sgouros, G.; Roeske, J.C.; McDevitt, M.R.; Palm, S.; Allen, B.J.; Fisher, D.R.; Brill, A.B.; Song, H.; Howell, R.W.; Akabani, G.; et al. MIRD Pamphlet No. 22 (abridged): Radiobiology and dosimetry of α-particle emitters for targeted radionuclide therapy. J. Nucl. Med. 2010, 51, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zalutsky, M.R. Production, purification and availability of 211At: Near term steps towards global access. Nucl. Med. Biol. 2021, 100–101, 12–23. [Google Scholar] [CrossRef]
- Li, F.; Yang, Y.; Liao, J.; Liu, N. Recent progress of astatine-211 in endoradiotherapy: Great advances from fundamental properties to targeted radiopharmaceuticals. Chin. Chem. Lett. 2022, 33, 3325–3338. [Google Scholar] [CrossRef]
- Yang, H.; Wilson, J.J.; Orvig, C.; Li, Y.; Wilbur, D.S.; Ramogida, C.F.; Radchenko, V.; Schaffer, P. Harnessing α-Emitting Radionuclides for Therapy: Radiolabeling Method Review. J. Nucl. Med. 2022, 63, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Lindegren, S.; Frost, S.; Bäck, T.; Haglund, E.; Elgqvist, J.; Jensen, H. Direct procedure for the production of 211At-labeled antibodies with an ε-lysyl-3-(trimethylstannyl)benzamide immunoconjugate. J. Nucl. Med. 2008, 49, 1537–1545. [Google Scholar] [CrossRef]
- Berdal, M.; Gouard, S.; Eychenne, R.; Marionneau-Lambot, S.; Croyal, M.; Faivre-Chauvet, A.; Chérel, M.; Gaschet, J.; Gestin, J.F.; Guérard, F. Investigation on the reactivity of nucleophilic radiohalogens with arylboronic acids in water: Access to an efficient single-step method for the radioiodination and astatination of antibodies. Chem. Sci. 2020, 12, 1458–1468. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, A.; Apostolidis, C.; Bruchertseifer, F. Supply and Clinical Application of Actinium-225 and Bismuth-213. Semin. Nucl. Med. 2020, 50, 119–123. [Google Scholar] [CrossRef]
- Kratochwil, C.; Giesel, F.L.; Bruchertseifer, F.; Mier, W.; Apostolidis, C.; Boll, R.; Murphy, K.; Haberkorn, U.; Morgenstern, A. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: A first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 2106–2119. [Google Scholar] [CrossRef]
- Kratochwil, C.; Bruchertseifer, F.; Giesel, F.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. Ac-225-DOTATOC–dose finding for alpha particle emitter based radionuclide therapy of neuroendocrine tumors. J. Nucl. Med. 2015, 56, 1232. [Google Scholar]
- Morgenstern, A.; Bruchertseifer, F.; Apostolidis, C. Bismuth-213 and actinium-225—Generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotopes. Curr. Radiopharm. 2012, 5, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Ermolaev, S.V.; Vasiliev, A.N.; Skasyrskaya, A.K.; Lapshina, E.V.; Khaliullina, D.R.; Libanova, O.N. 225Ac/213Bi generator for direct synthesis of 213Bi-labeled bioconjugates. Nucl. Med. Biol. 2025, 140–141, 108975. [Google Scholar] [CrossRef] [PubMed]
- Šimeček, J.; Hermann, P.; Seidl, C.; Bruchertseifer, F.; Morgenstern, A.; Wester, H.J.; Notni, J. Efficient formation of inert Bi-213 chelates by tetraphosphorus acid analogues of DOTA: Towards improved alpha-therapeutics. EJNMMI Res. 2018, 8, 78. [Google Scholar] [CrossRef]
- Wilson, J.J.; Ferrier, M.; Radchenko, V.; Maassen, J.R.; Engle, J.W.; Batista, E.R.; Martin, R.L.; Nortier, F.M.; Fassbender, M.E.; John, K.D.; et al. Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes. Nucl. Med. Biol. 2015, 42, 428–438. [Google Scholar] [CrossRef]
- Ohga, S.; Nakamura, K.; Shioyama, Y.; Tatsugami, K.; Sasaki, T.; Nonoshita, T.; Yoshitake, T.; Asai, K.; Hirata, H.; Naito, S.; et al. Acute urinary morbidity after a permanent 125I implantation for localized prostate cancer. J. Radiat. Res. 2014, 55, 1178–1183. [Google Scholar] [CrossRef]
- Martens, C.; Pond, G.; Webster, D.; McLean, M.; Gillan, C.; Crook, J. Relationship of the International Prostate Symptom score with urinary flow studies, and catheterization rates following 125I prostate brachytherapy. Brachytherapy 2006, 5, 9–13. [Google Scholar] [CrossRef]
- Ragde, H.; Blasko, J.C.; Grimm, P.D.; Kenny, G.M.; Sylvester, J.E.; Hoak, D.C.; Landin, K.; Cavanagh, W. Interstitial iodine-125 radiation without adjuvant therapy in the treatment of clinically localized prostate carcinoma. Cancer 1997, 80, 442–453. [Google Scholar] [CrossRef]
- Ragde, H.; Blasko, J.C.; Grimm, P.D.; Kenny, G.M.; Sylvester, J.; Hoak, D.C.; Cavanagh, W.; Landin, K. Brachytherapy for clinically localized prostate cancer: Results at 7- and 8-year follow-up. Semin. Surg. Oncol. 1997, 13, 438–443. [Google Scholar] [CrossRef]
- Robertson, D.M. Changing concepts in the management of choroidal melanoma. Am. J. Ophthalmol. 2003, 136, 161–170. [Google Scholar] [CrossRef]
- Singh, A.D.; Kivelä, T. The collaborative ocular melanoma study. Ophthalmol. Clin. North Am. 2005, 18, 129–142. [Google Scholar] [CrossRef]
- Margo, C.E. The Collaborative Ocular Melanoma Study: An overview. Cancer Control 2004, 11, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Joshi, P.V.; Jagadeesan, K.C.; Manolkar, R.B.; Mathakar, A.R.; Chirayil, V.; Thakare, S.V.; Dash, A.; Pillai, M.R.A. Production of 125I from Neutron Irradiation of Natural Xe Gas and a Wet Distillation Process for Radiopharmaceutical Applications. Ind. Eng. Chem. Res. 2012, 51, 8575–8582. [Google Scholar] [CrossRef]
- Lehenberger, S.; Barkhausen, C.; Cohrs, S.; Fischer, E.; Grünberg, J.; Hohn, A.; Köster, U.; Schibli, R.; Türler, A.; Zhernosekov, K. The low-energy β− and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy. Nucl. Med. Biol. 2011, 38, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Al-Ibraheem, A.; Doudeen, R.M.; Juaidi, D.; Abufara, A.; Maus, S. 161Tb-PSMA Radioligand Therapy: First-in-Humans SPECT/CT Imaging. J. Nucl. Med. 2023, 64, 1322–1323. [Google Scholar] [CrossRef]
- Fedotova, A.; Aliev, R.A.; Egorova, B.V.; Kormazeva, E.S.; Konevega, A.L.; Belyshev, S.S.; Khankin, V.V.; Kuznetsov, A.; Kalmykov, S.N. Photonuclear production of medical radioisotopes 161Tb and 155Tb. Appl. Radiat. Isot. 2023, 198, 110840. [Google Scholar] [CrossRef]
- Müller, C.; Zhernosekov, K.; Köster, U.; Johnston, K.; Dorrer, H.; Hohn, A.; van der Walt, N.T.; Türler, A.; Schibli, R. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β−-radionuclide therapy: An in vivo proof-of-concept study with a new receptor-targeted folate derivative. J. Nucl. Med. 2012, 53, 1951–1959. [Google Scholar] [CrossRef]
- Borgna, F.; Barritt, P.; Grundler, P.V.; Talip, Z.; Cohrs, S.; Zeevaart, J.R.; Köster, U.; Schibli, R.; van der Meulen, N.P.; Müller, C. Simultaneous Visualization of 161Tb- and 177Lu-Labeled Somatostatin Analogues Using Dual-Isotope SPECT Imaging. Pharmaceutics 2021, 13, 536. [Google Scholar] [CrossRef]
- Pommé, S.; Marouli, M.; Suliman, G.; Dikmen, H.; Van Ammel, R.; Jobbágy, V.; Dirican, A.; Stroh, H.; Paepen, J.; Bruchertseifer, F.; et al. Measurement of the 225Ac half-life. Appl. Radiat. Isot. 2012, 70, 2608–2614. [Google Scholar] [CrossRef]
- Hofman, M.S.; Emmett, L.; Sandhu, S.; Iravani, A.; Buteau, J.P.; Joshua, A.M.; Goh, J.C.; Pattison, D.A.; Tan, T.H.; Kirkwood, I.D.; et al. Overall survival with [177Lu]Lu-PSMA-617 versus cabazitaxel in metastatic castration-resistant prostate cancer (TheraP): Secondary outcomes of a randomised, open-label, phase 2 trial. Lancet Oncol. 2024, 25, 99–107. [Google Scholar] [CrossRef]
- Radchenko, V.; Mastren, T.; Meyer, C.A.L.; Ivanov, A.S.; Bryantsev, V.S.; Copping, R.; Denton, D.; Engle, J.W.; Griswold, J.R.; Murphy, K.; et al. Radiometric evaluation of diglycolamide resins for the chromatographic separation of actinium from fission product lanthanides. Talanta 2017, 175, 318–324. [Google Scholar] [CrossRef]
- Rahman, A.; Babu, M.H.; Ovi, M.K.; Zilani, M.M.; Eithu, I.S.; Chakraborty, A. Actinium-225 in Targeted Alpha Therapy. J. Med. Phys. 2024, 49, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Boll, R.A.; Malkemus, D.; Mirzadeh, S. Production of actinium-225 for alpha particle mediated radioimmunotherapy. Appl. Radiat. Isot. 2005, 62, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, C.; Molinet, R.; Rasmussen, G.; Morgenstern, A. Production of Ac-225 from Th-229 for targeted α therapy. Anal. Chem. 2005, 77, 6288–6291. [Google Scholar] [CrossRef]
- Melville, G.; Meriarty, H.; Metcalfe, P.; Knittel, T.; Allen, B.J. Production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226. Appl. Radiat. Isot. 2007, 65, 1014–1022. [Google Scholar] [CrossRef]
- Robertson, A.K.H.; Ramogida, C.F.; Schaffer, P.; Radchenko, V. Development of 225Ac Radiopharmaceuticals: TRIUMF Perspectives and Experiences. Curr. Radiopharm. 2018, 11, 156–172. [Google Scholar] [CrossRef]
- Davis, I.A.; Glowienka, K.A.; Boll, R.A.; Deal, K.A.; Brechbiel, M.W.; Stabin, M.; Bochsler, P.N.; Mirzadeh, S.; Kennel, S.J. Comparison of 225actinium chelates: Tissue distribution and radiotoxicity. Nucl. Med. Biol. 1999, 26, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Chappell, L.L.; Deal, K.A.; Dadachova, E.; Brechbiel, M.W. Synthesis, conjugation, and radiolabeling of a novel bifunctional chelating agent for 225Ac radioimmunotherapy applications. Bioconjugate Chem. 2000, 11, 510–519. [Google Scholar] [CrossRef]
- McDevitt, M.R.; Ma, D.; Simon, J.; Frank, R.K.; Scheinberg, D.A. Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl. Radiat. Isot. 2002, 57, 841–847. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sharma, R.; Vats, K.; Sarma, H.D.; Mukherjee, A.; Das, T.; Satpati, D. Synthesis and comparative evaluation of 177Lu-labeled PEG and non-PEG variant peptides as HER2-targeting probes. Sci. Rep. 2022, 12, 15720. [Google Scholar] [CrossRef]
- Zheng, S.; Lin, R.; Chen, S.; Zheng, J.; Lin, Z.; Zhang, Y.; Xue, Q.; Chen, Y.; Zhang, J.; Lin, K.; et al. Characterization of the benign lesions with increased 68Ga-FAPI-04 uptake in PET/CT. Ann. Nucl. Med. 2021, 35, 1312–1320. [Google Scholar] [CrossRef]
- Gressler, S.; Hipfinger, C.; Part, F.; Pavlicek, A.; Zafiu, C.; Giese, B. A systematic review of nanocarriers used in medicine and beyond—Definition and categorization framework. J. Nanobiotechnology 2025, 23, 90. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yuan, G.; Xu, Y.; Gao, Y.; Mao, Q.; Zhang, Y.; Bai, L.; Li, W.; Wu, A.; Hu, W.; et al. Photoacoustic and magnetic resonance imaging-based gene and photothermal therapy using mesoporous nanoagents. Bioact. Mater. 2022, 9, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Kim, J.H.; Kim, P.H.; Chu, H.H.; Gwon, D.I.; Ko, H.K. Emerging Trends in the Treatment of Advanced Hepatocellular Carcinoma: A Radiological Perspective. Korean J. Radiol. 2021, 22, 1822–1833. [Google Scholar] [CrossRef]
- Milborne, B.; Arafat, A.; Layfield, R.; Thompson, A.; Ahmed, I. The Use of Biomaterials in Internal Radiation Therapy. Recent Prog. Mater. 2020, 2, 012. [Google Scholar] [CrossRef]
- Mosconi, C.; Cappelli, A.; Pettinato, C.; Golfieri, R. Radioembolization with Yttrium-90 microspheres in hepatocellular carcinoma: Role and perspectives. World J. Hepatol. 2015, 7, 738–752. [Google Scholar] [CrossRef] [PubMed]
- Erbe, E.M.; Day, D.E. Chemical durability of Y2O3-Al2O3-SiO2 glasses for the in vivo delivery of beta radiation. J. Biomed. Mater. Res. 1993, 27, 1301–1308. [Google Scholar] [CrossRef]
- Edeline, J.; Gilabert, M.; Garin, E.; Boucher, E.; Raoul, J.L. Yttrium-90 microsphere radioembolization for hepatocellular carcinoma. Liver Cancer 2015, 4, 16–25. [Google Scholar] [CrossRef]
- Van Der Gucht, A.; Jreige, M.; Denys, A.; Blanc-Durand, P.; Boubaker, A.; Pomoni, A.; Mitsakis, P.; Silva-Monteiro, M.; Gnesin, S.; Lalonde, M.N.; et al. Resin Versus Glass Microspheres for 90Y Transarterial Radioembolization: Comparing Survival in Unresectable Hepatocellular Carcinoma Using Pretreatment Partition Model Dosimetry. J. Nucl. Med. 2017, 58, 1334–1340. [Google Scholar] [CrossRef]
- Ahmed, I.; Lewis, M.; Olsen, I.; Knowles, J.C. Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials 2004, 25, 491–499. [Google Scholar] [CrossRef]
- Sene, F.F.; Martinelli, J.R.; Okuno, E. Synthesis and characterization of phosphate glass microspheres for radiotherapy applications. J. Non-Cryst. Solids 2008, 354, 4887–4893. [Google Scholar] [CrossRef]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Ge, M.H.; Zhu, X.H.; Shao, Y.M.; Wang, C.; Huang, P.; Wang, Y.; Jiang, Y.; Maimaitiyiming, Y.; Chen, E.; Yang, C.; et al. Synthesis and characterization of CD133 targeted aptamer-drug conjugates for precision therapy of anaplastic thyroid cancer. Biomater. Sci. 2021, 9, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Niu, G.; Chen, X. Aptamer-Drug Conjugates. Bioconjugate Chem. 2015, 26, 2186–2197. [Google Scholar] [CrossRef]
- Dang, Y.; Guan, J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater. Med. 2020, 1, 10–19. [Google Scholar] [CrossRef]
- Cheng, W.; Nie, J.; Gao, N.; Liu, G.; Tao, W.; Xiao, X.; Jiang, L.; Liu, Z.; Zeng, X.; Mei, L. A Multifunctional Nanoplatform against Multidrug Resistant Cancer: Merging the Best of Targeted Chemo/Gene/Photothermal Therapy. Adv. Funct. Mater. 2017, 27, 1704135. [Google Scholar] [CrossRef]
- González-Ruíz, A.; Ferro-Flores, G.; Azorín-Vega, E.; Ocampo-García, B.; Ramírez, F.d.M.; Santos-Cuevas, C.; De León-Rodríguez, L.; Isaac-Olivé, K.; Luna-Gutiérrez, M.; Morales-Ávila, E. Synthesis and in vitro evaluation of an antiangiogenic cancer-specific dual-targeting 177Lu-Au-nanoradiopharmaceutical. J. Radioanal. Nucl. Chem. 2017, 314, 1337–1345. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Zhong, Y.; Tian, M.; Zhang, H. Advances in Radionuclide-Labeled Biological Carriers for Tumor Imaging and Treatment. ACS Appl. Mater. Interfaces 2025, 17, 4316–4336. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.-H.; Zeng, X.; Zhang, X.-Z. Bacteria-based bioactive materials for cancer imaging and therapy. Adv. Drug Deliv. Rev. 2023, 193, 114696. [Google Scholar] [CrossRef]
- Yang, Y.; Vedvyas, Y.; Alcaina, Y.; Son, J.Y.; Min, I.M.; Jin, M.M. Low-dose targeted radionuclide therapy synergizes with CAR T cells and enhances tumor response. Front. Immunol. 2024, 15, 1355388. [Google Scholar] [CrossRef]
- Pei, P.; Zhang, Y.; Jiang, Y.; Shen, W.; Chen, H.; Yang, S.; Zhang, Y.; Yi, X.; Yang, K. Pleiotropic Immunomodulatory Functions of Radioactive Inactivated Bacterial Vectors for Enhanced Cancer Radio-immunotherapy. ACS Nano 2022, 16, 11325–11337. [Google Scholar] [CrossRef] [PubMed]
- Quispe-Tintaya, W.; Chandra, D.; Jahangir, A.; Harris, M.; Casadevall, A.; Dadachova, E.; Gravekamp, C. Nontoxic radioactive Listeriaat is a highly effective therapy against metastatic pancreatic cancer. Proc. Natl. Acad. Sci. USA 2013, 110, 8668–8673. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, K.; Eibler, L.; Dacek, M.M.; Carter, L.M.; Veach, D.R.; Lovibond, S.; Reynaud, E.; Qureshy, S.; McDevitt, M.R.; Bourne, C.; et al. Engineering CAR-T cells for radiohapten capture in imaging and radioimmunotherapy applications. Theranostics 2023, 13, 5469–5482. [Google Scholar] [CrossRef] [PubMed]
- Ottolino-Perry, K.; Mealiea, D.; Sellers, C.; Acuna, S.A.; Angarita, F.A.; Okamoto, L.; Scollard, D.; Ginj, M.; Reilly, R.; McCart, J.A. Vaccinia virus and peptide-receptor radiotherapy synergize to improve treatment of peritoneal carcinomatosis. Mol. Ther. Oncolytics 2023, 29, 44–58. [Google Scholar] [CrossRef]
- Wang, C.; Li, N.; Li, Y.; Hou, S.; Zhang, W.; Meng, Z.; Wang, S.; Jia, Q.; Tan, J.; Wang, R.; et al. Engineering a HEK-293T exosome-based delivery platform for efficient tumor-targeting chemotherapy/internal irradiation combination therapy. J. Nanobiotechnology 2022, 20, 247. [Google Scholar] [CrossRef]
- Donanzam, B.A.; Campos, T.P.; Dalmázio, I.; Valente, E.S. Synthesis and characterization of calcium phosphate loaded with Ho-166 and Sm-153: A novel biomaterial for treatment of spine metastases. J. Mater. Sci. Mater. Med. 2013, 24, 2873–2880. [Google Scholar] [CrossRef]
- Kaneko, T.S.; Sehgal, V.; Skinner, H.B.; Al-Ghazi, M.S.; Ramsinghani, N.S.; Marquez Miranda, M.; Keyak, J.H. Radioactive bone cement for the treatment of spinal metastases: A dosimetric analysis of simulated clinical scenarios. Phys. Med. Biol. 2012, 57, 4387–4401. [Google Scholar] [CrossRef]
- Li, Y.; Qing, Y.; Zhang, Z.; Li, M.; Xie, J.; Wang, G.; Wang, D. Clinical efficacy of percutaneous vertebroplasty combined with intensity-modulated radiotherapy for spinal metastases in patients with NSCLC. Onco Targets Ther. 2015, 8, 2139–2145. [Google Scholar] [CrossRef]
- Yang, H.L.; Sun, Z.Y.; Wu, G.Z.; Chen, K.W.; Gu, Y.; Qian, Z.L. Do vertebroplasty and kyphoplasty have an antitumoral effect? Med. Hypotheses 2011, 76, 145–146. [Google Scholar] [CrossRef]
- Eliaz, N.; Metoki, N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials 2017, 10, 334. [Google Scholar] [CrossRef]
- Cardoso, E.R.; Ashamalla, H.; Weng, L.; Mokhtar, B.; Ali, S.; Macedon, M.; Guirguis, A. Percutaneous tumor curettage and interstitial delivery of samarium-153 coupled with kyphoplasty for treatment of vertebral metastases. J. Neurosurg. Spine 2009, 10, 336–342. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, Q.; Sun, Z.Y.; Gu, Q.L.; Ni, L.; Yang, H.L. The importance of percutaneous vertebroplasty and radiation therapy for pathological vertebral compression fractures secondary to multiple myeloma. Arch. Orthop. Trauma Surg. 2012, 132, 1669–1670. [Google Scholar] [CrossRef] [PubMed]
- Montaño, C.J.; de Campos, T.P.R. RADIOACTIVE CEMENT OF PMMA AND HAP-Sm-153, Ho-166, OR RE-188 FOR BONE METASTASIS TREATMENT. Acta Ortop. Bras. 2019, 27, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Langbein, T.; Weber, W.A.; Eiber, M. Future of Theranostics: An Outlook on Precision Oncology in Nuclear Medicine. J. Nucl. Med. 2019, 60, 13S–19S. [Google Scholar] [CrossRef] [PubMed]
- Wild, D.; Fani, M.; Fischer, R.; Del Pozzo, L.; Kaul, F.; Krebs, S.; Fischer, R.; Rivier, J.E.; Reubi, J.C.; Maecke, H.R.; et al. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: A pilot study. J. Nucl. Med. 2014, 55, 1248–1252. [Google Scholar] [CrossRef]
- Krebs, S.; O’Donoghue, J.A.; Biegel, E.; Beattie, B.J.; Reidy, D.; Lyashchenko, S.K.; Lewis, J.S.; Bodei, L.; Weber, W.A.; Pandit-Taskar, N. Comparison of 68Ga-DOTA-JR11 PET/CT with dosimetric 177Lu-satoreotide tetraxetan (177Lu-DOTA-JR11) SPECT/CT in patients with metastatic neuroendocrine tumors undergoing peptide receptor radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 3047–3057. [Google Scholar] [CrossRef]
- Cardinale, J.; Giesel, F.L.; Wensky, C.; Rathke, H.G.; Haberkorn, U.; Kratochwil, C. PSMA-GCK01: A Generator-Based 99mTc/188Re Theranostic Ligand for the Prostate-Specific Membrane Antigen. J. Nucl. Med. 2023, 64, 1069–1075. [Google Scholar] [CrossRef]
- Yu, N.; Zhao, L.; Cheng, D.; Ding, M.; Lyu, Y.; Zhao, J.; Li, J. Radioactive organic semiconducting polymer nanoparticles for multimodal cancer theranostics. J. Colloid Interface Sci. 2022, 619, 219–228. [Google Scholar] [CrossRef]
- Nelson, B.J.B.; Ferguson, S.; Wuest, M.; Wilson, J.; Duke, M.J.M.; Richter, S.; Soenke-Jans, H.; Andersson, J.D.; Juengling, F.; Wuest, F. First In Vivo and Phantom Imaging of Cyclotron-Produced 133La as a Theranostic Radionuclide for 225Ac and 135La. J. Nucl. Med. 2022, 63, 584–590. [Google Scholar] [CrossRef]
- Constanzo, J.; Galluzzi, L.; Pouget, J.P. Immunostimulatory effects of radioimmunotherapy. J. Immunother. Cancer 2022, 10, e004403. [Google Scholar] [CrossRef]
- Carlino, M.S.; Larkin, J.; Long, G.V. Immune checkpoint inhibitors in melanoma. Lancet 2021, 398, 1002–1014. [Google Scholar] [CrossRef] [PubMed]
- Muslimov, A.R.; Antuganov, D.O.; Tarakanchikova, Y.V.; Zhukov, M.V.; Nadporojskii, M.A.; Zyuzin, M.V.; Timin, A.S. Calcium Carbonate Core–Shell Particles for Incorporation of 225Ac and Their Application in Local α-Radionuclide Therapy. ACS Appl. Mater. Interfaces 2021, 13, 25599–25610. [Google Scholar] [CrossRef] [PubMed]
- de Aguiar Ferreira, C.; Heidari, P.; Ataeinia, B.; Sinevici, N.; Granito, A.; Kumar, H.M.; Wehrenberg-Klee, E.; Mahmood, U. Immune Checkpoint Inhibitor-Mediated Cancer Theranostics with Radiolabeled Anti-Granzyme B Peptide. Pharmaceutics 2022, 14, 1460. [Google Scholar] [CrossRef] [PubMed]
- Śmiłowicz, D.; Schlyer, D.; Boros, E.; Meimetis, L. Evaluation of a Radio-IMmunoStimulant (RIMS) in a Syngeneic Model of Murine Prostate Cancer and ImmunoPET Analysis of T-cell Distribution. Mol. Pharm. 2022, 19, 3217–3227. [Google Scholar] [CrossRef] [PubMed]
- Damiana, T.S.T.; Dalm, S.U. Combination Therapy, a Promising Approach to Enhance the Efficacy of Radionuclide and Targeted Radionuclide Therapy of Prostate and Breast Cancer. Pharmaceutics 2021, 13, 674. [Google Scholar] [CrossRef]
- Huang, S.; Wu, Y.; Li, C.; Xu, L.; Huang, J.; Huang, Y.; Cheng, W.; Xue, B.; Zhang, L.; Liang, S.; et al. Tailoring morphologies of mesoporous polydopamine nanoparticles to deliver high-loading radioiodine for anaplastic thyroid carcinoma imaging and therapy. Nanoscale 2021, 13, 15021–15030. [Google Scholar] [CrossRef]
- Zhao, H.; Chao, Y.; Liu, J.; Huang, J.; Pan, J.; Guo, W.; Wu, J.; Sheng, M.; Yang, K.; Wang, J.; et al. Polydopamine Coated Single-Walled Carbon Nanotubes as a Versatile Platform with Radionuclide Labeling for Multimodal Tumor Imaging and Therapy. Theranostics 2016, 6, 1833–1843. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Pinto, J.T.; Suffoletto, B.P.; Berzin, T.M.; Qiao, C.H.; Lin, S.; Tong, W.P.; May, F.; Mukherjee, B.; Heston, W.D. Prostate-specific membrane antigen: A novel folate hydrolase in human prostatic carcinoma cells. Clin. Cancer Res. 1996, 2, 1445–1451. [Google Scholar]
- Garnuszek, P.; Karczmarczyk, U.; Maurin, M.; Sikora, A.; Zaborniak, J.; Pijarowska-Kruszyna, J.; Jaroń, A.; Wyczółkowska, M.; Wojdowska, W.; Pawlak, D.; et al. PSMA-D4 Radioligand for Targeted Therapy of Prostate Cancer: Synthesis, Characteristics and Preliminary Assessment of Biological Properties. Int. J. Mol. Sci. 2021, 22, 2731. [Google Scholar] [CrossRef]
- Ruigrok, E.A.M.; van Vliet, N.; Dalm, S.U.; de Blois, E.; van Gent, D.C.; Haeck, J.; de Ridder, C.; Stuurman, D.; Konijnenberg, M.W.; van Weerden, W.M.; et al. Extensive preclinical evaluation of lutetium-177-labeled PSMA-specific tracers for prostate cancer radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1339–1350. [Google Scholar] [CrossRef]
- Heck, M.M.; Retz, M.; D’Alessandria, C.; Rauscher, I.; Scheidhauer, K.; Maurer, T.; Storz, E.; Janssen, F.; Schottelius, M.; Wester, H.J.; et al. Systemic Radioligand Therapy with 177Lu Labeled Prostate Specific Membrane Antigen Ligand for Imaging and Therapy in Patients with Metastatic Castration Resistant Prostate Cancer. J. Urol. 2016, 196, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Rosar, F.; Maus, S.; Schaefer-Schuler, A.; Burgard, C.; Khreish, F.; Ezziddin, S. New Horizons in Radioligand Therapy: 161Tb-PSMA-617 in Advanced mCRPC. Clin. Nucl. Med. 2023, 48, 433–434. [Google Scholar] [CrossRef] [PubMed]
- Gadot, M.; Davidson, T.; Aharon, M.; Atenafu, E.G.; Malki, A.; Levartovsky, M.; Saad, A.; Domachevsky, L.; Berger, R.; Leibowitz, R. Clinical Variables Associated with PSA Response to Lutetium-177-PSMA ([177Lu]-PSMA-617) Radionuclide Treatment in Men with Metastatic Castration-Resistant Prostate Cancer. Cancers 2020, 12, 1078. [Google Scholar] [CrossRef]
- Emmett, L.; Willowson, K.; Violet, J.; Shin, J.; Blanksby, A.; Lee, J. Lutetium 177 PSMA radionuclide therapy for men with prostate cancer: A review of the current literature and discussion of practical aspects of therapy. J. Med. Radiat. Sci. 2017, 64, 52–60. [Google Scholar] [CrossRef]
- Chatalic, K.L.; Heskamp, S.; Konijnenberg, M.; Molkenboer-Kuenen, J.D.; Franssen, G.M.; Clahsen-van Groningen, M.C.; Schottelius, M.; Wester, H.J.; van Weerden, W.M.; Boerman, O.C.; et al. Towards Personalized Treatment of Prostate Cancer: PSMA I&T, a Promising Prostate-Specific Membrane Antigen-Targeted Theranostic Agent. Theranostics 2016, 6, 849–861. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, K.; Ahmadzadehfar, H.; Kratochwil, C.; Haberkorn, U.; Schäfers, M.; Essler, M.; Baum, R.P.; Kulkarni, H.R.; Schmidt, M.; Drzezga, A.; et al. German Multicenter Study Investigating 177Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients. J. Nucl. Med. 2017, 58, 85–90. [Google Scholar] [CrossRef]
- Boinapally, S.; Alati, S.; Jiang, Z.; Yan, Y.; Lisok, A.; Singh, R.; Lofland, G.; Minn, I.; Hobbs, R.F.; Pomper, M.G.; et al. Preclinical Evaluation of a New Series of Albumin-Binding 177Lu-Labeled PSMA-Based Low-Molecular-Weight Radiotherapeutics. Molecules 2023, 28, 6158. [Google Scholar] [CrossRef]
- Kuo, H.T.; Lin, K.S.; Zhang, Z.; Uribe, C.F.; Merkens, H.; Zhang, C.; Bénard, F. 177Lu-Labeled Albumin-Binder-Conjugated PSMA-Targeting Agents with Extremely High Tumor Uptake and Enhanced Tumor-to-Kidney Absorbed Dose Ratio. J. Nucl. Med. 2021, 62, 521–527. [Google Scholar] [CrossRef]
- Kuo, H.-T.; Lin, K.-S.; Zhang, Z.; Zhang, C.; Merkens, H.; Tan, R.; Roxin, A.; Uribe, C.F.; Bénard, F. What a difference a methylene makes: Replacing Glu with Asp or Aad in the Lys-urea-Glu pharmacophore of PSMA-targeting radioligands to reduce kidney and salivary gland uptake. Theranostics 2022, 12, 6179–6188. [Google Scholar] [CrossRef]
- D’Onofrio, A.; Silva, F.; Gano, L.; Karczmarczyk, U.; Mikołajczak, R.; Garnuszek, P.; Paulo, A. Clickable Radiocomplexes With Trivalent Radiometals for Cancer Theranostics: In vitro and in vivo Studies. Front. Med. 2021, 8, 647379. [Google Scholar] [CrossRef] [PubMed]
- Huangfu, Z.; Yang, J.; Sun, J.; Xu, B.; Tao, L.; Wu, J.; Wang, F.; Wang, G.; Meng, F.; Zhong, Z. PSMA and Sigma-1 receptor dual-targeted peptide mediates superior radionuclide imaging and therapy of prostate cancer. J. Control. Release 2024, 375, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Bratanovic, I.J.; Zhang, C.; Zhang, Z.; Kuo, H.T.; Colpo, N.; Zeisler, J.; Merkens, H.; Uribe, C.; Lin, K.S.; Bénard, F. A Radiotracer for Molecular Imaging and Therapy of Gastrin-Releasing Peptide Receptor–Positive Prostate Cancer. J. Nucl. Med. 2022, 63, 424–430. [Google Scholar] [CrossRef]
- Kratochwil, C.; Haberkorn, U.; Giesel, F.L. 225Ac-PSMA-617 for Therapy of Prostate Cancer. Semin. Nucl. Med. 2020, 50, 133–140. [Google Scholar] [CrossRef]
- De Vincentis, G.; Gerritsen, W.; Gschwend, J.E.; Hacker, M.; Lewington, V.; O’Sullivan, J.M.; Oya, M.; Pacilio, M.; Parker, C.; Shore, N.; et al. Advances in targeted alpha therapy for prostate cancer. Ann. Oncol. 2019, 30, 1728–1739. [Google Scholar] [CrossRef] [PubMed]
- Czerwińska, M.; Bilewicz, A.; Kruszewski, M.; Wegierek-Ciuk, A.; Lankoff, A. Targeted Radionuclide Therapy of Prostate Cancer—From Basic Research to Clinical Perspectives. Molecules 2020, 25, 1743. [Google Scholar] [CrossRef]
- Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 2013, 369, 213–223. [Google Scholar] [CrossRef]
- Poeppel, T.D.; Handkiewicz-Junak, D.; Andreeff, M.; Becherer, A.; Bockisch, A.; Fricke, E.; Geworski, L.; Heinzel, A.; Krause, B.J.; Krause, T.; et al. EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 824–845. [Google Scholar] [CrossRef]
- Juzeniene, A.; Stenberg, V.Y.; Bruland, Ø.S.; Larsen, R.H. Preclinical and Clinical Status of PSMA-Targeted Alpha Therapy for Metastatic Castration-Resistant Prostate Cancer. Cancers 2021, 13, 779. [Google Scholar] [CrossRef]
- Nonnekens, J.; Chatalic, K.L.; Molkenboer-Kuenen, J.D.; Beerens, C.E.; Bruchertseifer, F.; Morgenstern, A.; Veldhoven-Zweistra, J.; Schottelius, M.; Wester, H.J.; van Gent, D.C.; et al. 213Bi-Labeled Prostate-Specific Membrane Antigen-Targeting Agents Induce DNA Double-Strand Breaks in Prostate Cancer Xenografts. Cancer Biother. Radiopharm. 2017, 32, 67–73. [Google Scholar] [CrossRef]
- Kratochwil, C.; Schmidt, K.; Afshar-Oromieh, A.; Bruchertseifer, F.; Rathke, H.; Morgenstern, A.; Haberkorn, U.; Giesel, F.L. Targeted alpha therapy of mCRPC: Dosimetry estimate of 213Bismuth-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Kiess, A.P.; Minn, I.; Vaidyanathan, G.; Hobbs, R.F.; Josefsson, A.; Shen, C.; Brummet, M.; Chen, Y.; Choi, J.; Koumarianou, E.; et al. (2S)-2-(3-(1-Carboxy-5-(4-211At-Astatobenzamido)Pentyl)Ureido)-Pentanedioic Acid for PSMA-Targeted α-Particle Radiopharmaceutical Therapy. J. Nucl. Med. 2016, 57, 1569–1575. [Google Scholar] [CrossRef]
- Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016, 57, 1941–1944. [Google Scholar] [CrossRef] [PubMed]
- Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Bronzel, M.; Apostolidis, C.; Weichert, W.; Haberkorn, U.; Giesel, F.L.; Morgenstern, A. Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with 225Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding. J. Nucl. Med. 2017, 58, 1624–1631. [Google Scholar] [CrossRef] [PubMed]
- Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Hohenfellner, M.; Giesel, F.L.; Haberkorn, U.; Morgenstern, A. Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with 225Ac-PSMA-617: Swimmer-Plot Analysis Suggests Efficacy Regarding Duration of Tumor Control. J. Nucl. Med. 2018, 59, 795–802. [Google Scholar] [CrossRef]
- Ilhan, H.; Gosewisch, A.; Böning, G.; Völter, F.; Zacherl, M.; Unterrainer, M.; Bartenstein, P.; Todica, A.; Gildehaus, F.J. Response to 225Ac-PSMA-I&T after failure of long-term 177Lu-PSMA RLT in mCRPC. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1262–1263. [Google Scholar] [CrossRef]
- Zacherl, M.J.; Gildehaus, F.J.; Mittlmeier, L.; Böning, G.; Gosewisch, A.; Wenter, V.; Unterrainer, M.; Schmidt-Hegemann, N.; Belka, C.; Kretschmer, A.; et al. First Clinical Results for PSMA-Targeted α-Therapy Using 225Ac-PSMA-I&T in Advanced-mCRPC Patients. J. Nucl. Med. 2021, 62, 669–674. [Google Scholar] [CrossRef]
- Bandekar, A.; Zhu, C.; Jindal, R.; Bruchertseifer, F.; Morgenstern, A.; Sofou, S. Anti-prostate-specific membrane antigen liposomes loaded with 225Ac for potential targeted antivascular α-particle therapy of cancer. J. Nucl. Med. 2014, 55, 107–114. [Google Scholar] [CrossRef]
- Tagawa, S.T.; Vallabhajosula, S.; Jhanwar, Y.; Ballman, K.V.; Hackett, A.; Emmerich, L.; Babich, J.; Sartor, A.O.; Harshman, L.C.; Beltran, H.; et al. Phase I dose-escalation study of 225Ac-J591 for progressive metastatic castration resistant prostate cancer (mCRPC). J. Clin. Oncol. 2018, 36, TPS399. [Google Scholar] [CrossRef]
- Khreish, F.; Ebert, N.; Ries, M.; Maus, S.; Rosar, F.; Bohnenberger, H.; Stemler, T.; Saar, M.; Bartholomä, M.; Ezziddin, S. 225Ac-PSMA-617/177Lu-PSMA-617 tandem therapy of metastatic castration-resistant prostate cancer: Pilot experience. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 721–728. [Google Scholar] [CrossRef]
- Hammer, S.; Hagemann, U.B.; Zitzmann-Kolbe, S.; Larsen, A.; Ellingsen, C.; Geraudie, S.; Grant, D.; Indrevoll, B.; Smeets, R.; von Ahsen, O.; et al. Preclinical Efficacy of a PSMA-Targeted Thorium-227 Conjugate (PSMA-TTC), a Targeted Alpha Therapy for Prostate Cancer. Clin. Cancer Res. 2020, 26, 1985–1996. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Vermeulen, C.; Köster, U.; Johnston, K.; Türler, A.; Schibli, R.; van der Meulen, N.P. Alpha-PET with terbium-149: Evidence and perspectives for radiotheragnostics. EJNMMI Radiopharm. Chem. 2017, 1, 5. [Google Scholar] [CrossRef] [PubMed]
- Umbricht, C.A.; Köster, U.; Bernhardt, P.; Gracheva, N.; Johnston, K.; Schibli, R.; van der Meulen, N.P.; Müller, C. Alpha-PET for Prostate Cancer: Preclinical investigation using 149Tb-PSMA-617. Sci. Rep. 2019, 9, 17800. [Google Scholar] [CrossRef]
- Stenberg, V.Y.; Juzeniene, A.; Bruland, Ø.S.; Larsen, R.H. In situ Generated 212Pb-PSMA Ligand in a 224Ra-Solution for Dual Targeting of Prostate Cancer Sclerotic Stroma and PSMA-positive Cells. Curr. Radiopharm. 2020, 13, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Kratochwil, C.; Giesel, F.L.; Heussel, C.P.; Kazdal, D.; Endris, V.; Nientiedt, C.; Bruchertseifer, F.; Kippenberger, M.; Rathke, H.; Leichsenring, J.; et al. Patients Resistant Against PSMA-Targeting α-Radiation Therapy Often Harbor Mutations in DNA Damage-Repair-Associated Genes. J. Nucl. Med. 2020, 61, 683–688. [Google Scholar] [CrossRef]
- Kulkarni, H.; Zhang, J.; Langbein, T.; Schuchardt, C.; Singh, A.; Mueller, D.; Baum, R. Radioligand therapy using combination of Ac-225 and Lu-177 labelled PSMA ligands for progressive end-stage metastatic prostate cancer: Effective trade-off between response and toxicity. J. Nucl. Med. 2019, 60, 464. [Google Scholar]
- Czernin, J.; Current, K.; Mona, C.E.; Nyiranshuti, L.; Hikmat, F.; Radu, C.G.; Lückerath, K. Immune-Checkpoint Blockade Enhances 225Ac-PSMA617 Efficacy in a Mouse Model of Prostate Cancer. J. Nucl. Med. 2021, 62, 228–231. [Google Scholar] [CrossRef]
- Da Silva, I.; Johnson, T.R.; Mixdorf, J.C.; Aluicio-Sarduy, E.; Barnhart, T.E.; Nickles, R.J.; Engle, J.W.; Ellison, P.A. A High Separation Factor for 165Er from Ho for Targeted Radionuclide Therapy. Molecules 2021, 26, 7513. [Google Scholar] [CrossRef]
- Saini, K.S.; Azim, H.A., Jr.; Metzger-Filho, O.; Loi, S.; Sotiriou, C.; de Azambuja, E.; Piccart, M. Beyond trastuzumab: New treatment options for HER2-positive breast cancer. Breast 2011, 20 (Suppl. S3), S20–S27. [Google Scholar] [CrossRef]
- Clynes, R.A.; Towers, T.L.; Presta, L.G.; Ravetch, J.V. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med. 2000, 6, 443–446. [Google Scholar] [CrossRef]
- Okarvi, S.M.; Al-Jammaz, I. Synthesis, Radiolabeling, and Preclinical Evaluation of 68Ga/177Lu-Labeled Leuprolide Peptide Analog for the Detection of Breast Cancer. Cancer Biother. Radiopharm. 2022, 37, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, Y.; Liang, M.; Shi, X.; Jun, Y.; Fan, L.; Yang, K.; Wang, F.; Li, W.; Zhu, R. Near-infrared upconversion multimodal nanoparticles for targeted radionuclide therapy of breast cancer lymphatic metastases. Front. Immunol. 2022, 13, 1063678. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, J.; Kulkarni, H.R.; Baum, R.P. 177Lu-DOTATOC Peptide Receptor Radionuclide Therapy in a Patient With Neuroendocrine Breast Carcinoma and Breast Invasive Ductal Carcinoma. Clin. Nucl. Med. 2020, 45, e232–e235. [Google Scholar] [CrossRef]
- Krenning, E.P.; Kooij, P.P.; Bakker, W.H.; Breeman, W.A.; Postema, P.T.; Kwekkeboom, D.J.; Oei, H.Y.; de Jong, M.; Visser, T.J.; Reijs, A.E.; et al. Radiotherapy with a radiolabeled somatostatin analogue, [111In-DTPA-D-Phe1]-octreotide. A case history. Ann. N. Y. Acad. Sci. 1994, 733, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Otte, A.; Herrmann, R.; Heppeler, A.; Behe, M.; Jermann, E.; Powell, P.; Maecke, H.R.; Muller, J. Yttrium-90 DOTATOC: First clinical results. Eur. J. Nucl. Med. 1999, 26, 1439–1447. [Google Scholar] [CrossRef]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef]
- Hennrich, U.; Kopka, K. Lutathera®: The First FDA- and EMA-Approved Radiopharmaceutical for Peptide Receptor Radionuclide Therapy. Pharmaceuticals 2019, 12, 114. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, Y.; Zang, J.; Sui, H.; Wang, H.; Jacobson, O.; Zhu, Z.; Chen, X. Dose escalation of an Evans blue–modified radiolabeled somatostatin analog 177Lu-DOTA-EB-TATE in the treatment of metastatic neuroendocrine tumors. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 947–957. [Google Scholar] [CrossRef]
- Hofland, J.; Brabander, T.; Verburg, F.A.; Feelders, R.A.; de Herder, W.W. Peptide Receptor Radionuclide Therapy. J. Clin. Endocrinol. Metab. 2022, 107, 3199–3208. [Google Scholar] [CrossRef]
- Baum, R.P.; Zhang, J.; Schuchardt, C.; Müller, D.; Mäcke, H. First-in-Humans Study of the SSTR Antagonist 177Lu-DOTA-LM3 for Peptide Receptor Radionuclide Therapy in Patients with Metastatic Neuroendocrine Neoplasms: Dosimetry, Safety, and Efficacy. J. Nucl. Med. 2021, 62, 1571–1581. [Google Scholar] [CrossRef]
- Lopez Quiñones, A.J.; Vieira, L.S.; Wang, J. Clinical Applications and the Roles of Transporters in Disposition, Tumor Targeting, and Tissue Toxicity of meta-Iodobenzylguanidine (mIBG). Drug Metab. Dispos. 2022, 50, 1218–1227. [Google Scholar] [CrossRef] [PubMed]
- Jungels, C.; Karfis, I. 131I-metaiodobenzylguanidine and peptide receptor radionuclide therapy in pheochromocytoma and paraganglioma. Curr. Opin. Oncol. 2021, 33, 33–39. [Google Scholar] [CrossRef]
- Xu, S.; Tang, L.; Li, X.; Fan, F.; Liu, Z. Immunotherapy for glioma: Current management and future application. Cancer Lett. 2020, 476, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sobral, D.V.; Fuscaldi, L.L.; Durante, A.C.R.; Rangel, M.G.; Oliveira, L.R.; Mendonça, F.F.; Miranda, A.C.C.; Cabeza, J.M.; Montor, W.R.; Cabral, F.R.; et al. Radiochemical and biological properties of peptides designed to interact with EGF receptor: Relevance for glioblastoma. Nucl. Med. Biol. 2020, 88–89, 14–23. [Google Scholar] [CrossRef]
- Sobral, D.V.; Fuscaldi, L.L.; Durante, A.C.R.; Mendonça, F.F.; de Oliveira, L.R.; Miranda, A.C.C.; Mejia, J.; Montor, W.R.; de Barboza, M.F.; Malavolta, L. Comparative Evaluation of Radiochemical and Biological Properties of 131I- and [99mTc]Tc(CO)3-Labeled RGD Analogues Planned to Interact with the αvβ3 Integrin Expressed in Glioblastoma. Pharmaceuticals 2022, 15, 116. [Google Scholar] [CrossRef]
- Królicki, L.; Kunikowska, J.; Bruchertseifer, F.; Koziara, H.; Królicki, B.; Jakuciński, M.; Pawlak, D.; Rola, R.; Morgenstern, A.; Rosiak, E.; et al. 225Ac- and 213Bi-Substance P Analogues for Glioma Therapy. Semin. Nucl. Med. 2020, 50, 141–151. [Google Scholar] [CrossRef]
- Silva, F.; D’Onofrio, A.; Mendes, C.; Pinto, C.; Marques, A.; Campello, M.P.C.; Oliveira, M.C.; Raposinho, P.; Belchior, A.; Di Maria, S.; et al. Radiolabeled Gold Nanoseeds Decorated with Substance P Peptides: Synthesis, Characterization and In Vitro Evaluation in Glioblastoma Cellular Models. Int. J. Mol. Sci. 2022, 23, 617. [Google Scholar] [CrossRef] [PubMed]
- Norain, A.; Dadachova, E. Targeted Radionuclide Therapy of Melanoma. Semin. Nucl. Med. 2016, 46, 250–259. [Google Scholar] [CrossRef]
- Eberle, A.N.; Rout, B.; Qi, M.B.; Bigliardi, P.L. Synthetic Peptide Drugs for Targeting Skin Cancer: Malignant Melanoma and Melanotic Lesions. Curr. Med. Chem. 2017, 24, 1797–1826. [Google Scholar] [CrossRef]
- Mier, W.; Kratochwil, C.; Hassel, J.C.; Giesel, F.L.; Beijer, B.; Babich, J.W.; Friebe, M.; Eisenhut, M.; Enk, A.; Haberkorn, U. Radiopharmaceutical therapy of patients with metastasized melanoma with the melanin-binding benzamide 131I-BA52. J. Nucl. Med. 2014, 55, 9–14. [Google Scholar] [CrossRef]
- Robertson, A.K.H. Nuclide Production and Imaging Applications of 225Ac for Targeted Alpha Therapy. Ph.D. Thesis, The University of British Columbia, Vancouver, BC, Canada, 2020. [Google Scholar]
- Mdanda, S.; Ngema, L.M.; Mdlophane, A.; Sathekge, M.M.; Zeevaart, J.R. Recent Innovations and Nano-Delivery of Actinium-225: A Narrative Review. Pharmaceutics 2023, 15, 1719. [Google Scholar] [CrossRef] [PubMed]
- Ajdary, M.; Moosavi, M.A.; Rahmati, M.; Falahati, M.; Mahboubi, M.; Mandegary, A.; Jangjoo, S.; Mohammadinejad, R.; Varma, R.S. Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity. Nanomaterials 2018, 8, 634. [Google Scholar] [CrossRef]
- Wei, X.; Shao, B.; He, Z.; Ye, T.; Luo, M.; Sang, Y.; Liang, X.; Wang, W.; Luo, S.; Yang, S.; et al. Cationic nanocarriers induce cell necrosis through impairment of Na+/K+-ATPase and cause subsequent inflammatory response. Cell Res. 2015, 25, 237–253. [Google Scholar] [CrossRef]
- Handali, S.; Rezaei, M. General justification in terms of effectiveness and toxicities for the use of nanocarriers. J. Nanoparticle Res. 2023, 25, 181. [Google Scholar] [CrossRef]
- Alkassis, S.; Ali, M.; Awadelkarim, A.M.; Saad, E.; Halboni, A.; Alhusain, R.; Kamatham, S.; Idris, I. Lutetium-177 Dotatate-Induced Hemolytic Anemia and Myelodysplastic Syndrome. Cureus 2022, 14, e22392. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, J.R.; Caplin, M.E.; Kunz, P.L.; Ruszniewski, P.B.; Bodei, L.; Hendifar, A.; Mittra, E.; Wolin, E.M.; Yao, J.C.; Pavel, M.E.; et al. 177Lu-Dotatate plus long-acting octreotide versus high-dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): Final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021, 22, 1752–1763. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.; Cornejo, M.A.; Hoang, T.T.; Lewis, J.S.; Zeglis, B.M. Click Chemistry and Radiochemistry: An Update. Bioconjugate Chem. 2023, 34, 1925–1950. [Google Scholar] [CrossRef]
- Reissig, F.; Bauer, D.; Zarschler, K.; Novy, Z.; Bendova, K.; Ludik, M.C.; Kopka, K.; Pietzsch, H.J.; Petrik, M.; Mamat, C. Towards Targeted Alpha Therapy with Actinium-225: Chelators for Mild Condition Radiolabeling and Targeting PSMA—A Proof of Concept Study. Cancers 2021, 13, 1974. [Google Scholar] [CrossRef]
- Chao, Y.; Xu, L.; Liang, C.; Feng, L.; Xu, J.; Dong, Z.; Tian, L.; Yi, X.; Yang, K.; Liu, Z. Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat. Biomed. Eng. 2018, 2, 611–621. [Google Scholar] [CrossRef]
- Jing, L.; Shi, J.; Fan, D.; Li, Y.; Liu, R.; Dai, Z.; Wang, F.; Tian, J. 177Lu-Labeled Cerasomes Encapsulating Indocyanine Green for Cancer Theranostics. ACS Appl. Mater. Interfaces 2015, 7, 22095–22105. [Google Scholar] [CrossRef]
- Mansouri, Z.; Salimi, Y.; Akhavanallaf, A.; Shiri, I.; Teixeira, E.P.A.; Hou, X.; Beauregard, J.M.; Rahmim, A.; Zaidi, H. Deep transformer-based personalized dosimetry from SPECT/CT images: A hybrid approach for [177Lu]Lu-DOTATATE radiopharmaceutical therapy. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1516–1529. [Google Scholar] [CrossRef] [PubMed]
- Leube, J.; Gustafsson, J.; Lassmann, M.; Salas-Ramirez, M.; Tran-Gia, J. A Deep-Learning-Based Partial-Volume Correction Method for Quantitative 177Lu SPECT/CT Imaging. J. Nucl. Med. 2024, 65, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Bae, S.; Cavinato, L.; Seifert, R.; Ryhiner, M.; Rominger, A.; Erlandsson, K.; Wilks, M.; Normandin, M.; El-Fakhri, G.; et al. Deciphering the effects of radiopharmaceutical therapy in the tumor microenvironment of prostate cancer: An in-silico exploration with spatial transcriptomics. Theranostics 2024, 14, 7122–7139. [Google Scholar] [CrossRef] [PubMed]
Radionuclide | Type | t1/2 | Production | Labeling | Application | Ref. |
---|---|---|---|---|---|---|
225Ac | α | 9.9 d | Accelerator, Reactor | chelating agent | Prostate cancer, neuroendocrine tumors, melanoma | [78,79,80,81,88] |
211At | α | 7.21 h | Accelerator | substitution | Gliomas, prostate cancer | [49,53,54,55] |
213Bi | α | 45.6 m | 225Ac decay chain | chelating agent | Neuroendocrine tumors, glioblastoma | [55,58,61] |
223Ra | α | 11.4 d | 227Ac decay chain, uranium extraction | macrocyclic ligand | Bone metastatic prostate cancer | [45,46,47,48] |
177Lu | β− | 6.64 d | Reactor | chelating agent | Neuroendocrine tumors, prostate cancer, breast cancer | [23,24,25,26,27] |
90Y | β− | 64 h | Reactor | chelating agent | Non-Hodgkin’s lymphoma, liver cancer (microsphere therapy) | [29,30,31,32,33,34,35,36] |
131I | β− | 8.02 d | Neutron irradiation 130Te, uranium fission | substitution | Thyroid cancer, neuroblastoma | [37,38,41,42] |
161Tb | β−, AE | 6.9 d | Accelerator, Reactor | HEDP, liposomes, antibody coupling | Tumor therapy targeting DNA | [73,75,76,77] |
125I | AE | 59.4 d | Neutron capture by Xe | substitution | Prostate cancer, eye cancer | [41,65,66,67,68,69,70,71,72] |
Classification of Tumors | Therapeutic Radiation Type | Radiopharmaceuticals | Ref. |
---|---|---|---|
Prostate Cancer | Beta | 177Lu-PSMA-617, 177Lu-PSMA I&T, 177Lu-PSMA-D4, 177Lu-PSMA-R2, 64/67Cu-RPS-085, 161Tb-PSMA-617, 177Lu-Alb-L4, 177Lu-Alb-L6, 177Lu-HTK03121, 177Lu-HTK03123, 177Lu-HTK03149, 90Y-DOTA-Tz, 68Ga/177Lu-S1R/PSMA-P, 131I-A11Mb, 68Ga/177Lu-ProBOMB2, 177Lu-DTPA-SC16 | [4,5,140,141,142,143,144,145,146,147,148,149,150,151,152,153] |
Alpha | 223Ra (Xofigo®), 213Bi-PSMA-I&T, 213Bi-PSMA-JVZ-008, 211At-PSMA 6, 225Ac-PSMA-617, 225Ac-PSMA-I&T, 225Ac-J591, 227Th-PSMA-TTC, 149Tb-PSMA-617, 212Pb-NG001 | [155,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177]. | |
Auger Electrons | 165Er-PSMA-617 | [178] | |
Breast Cancer | Beta | 177Lu-CHX-A″-DTPA-Trastuzumab, 177Lu-CHX-A″-DTPA-F(ab’)2-Trastuzumab, 177Lu-DOTA-PEG4-A9, 68Ga/177Lu-Leuprolide, 177Lu-DOTA-Pertuzumab, 68Ga/177Lu-NP-Trastuzumab (NaGdF4:Yb, Tm@NaLuF4), 177Lu-NM600, 177Lu-FA-PDA@mSiO2 (Co-loaded with Doxorubicin), 68Ga/177Lu-DOTATOC | [3,6,7,13,17,89,181,182,183] |
Alpha | 225Ac-Nimotuzumab-SpyTag-∆N-SpyCatcher | [8] | |
Alpha and Beta | 111In/225Ac/131I-2Rs15d (sdAb) | [2] | |
Neuroendocrine Tumor | Beta | 90Y-DOTATOC, 177Lu-DOTATATE, 177Lu-DOTA-EB-TATE, 68Ga/177Lu-DOTA-JR11, 68Ga-NODAGA/177Lu-DOTA-JR11, 68Ga/177Lu-DOTA/NODAGA-LM3, 131I-mIBG | [28,125,126,185,186,187,188,190,191,192] |
Auger Electrons | 111In-Pentetreotide | [184] | |
Glioma | Beta | 131I-EEEEYFELV, 131I-DEDEYFELV, 131I-GRGDYV/99mTc-GRGDHV, 67Ga/177Lu-AuNP-SP/SPTyr8 | [194,195,197] |
Alpha | iRGD-C6-lys(211At-ATE)-C6-DA7R, 213Bi-DOTA-SP, 225Ac-DOTAGA-SP | [10,196] | |
Melanoma | Beta | 177Lu-DOTA-αMSH-PEG-Cy5-C′ Dots | [15] |
Alpha | 89Zr/225Ac-SPs | [132] | |
Alpha, Beta, Auger Electrons | 111In, 67/68Ga, 64Cu, 90Y, 212Pb, 99mTc, 188Re-αMSH Peptides | [199] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhang, A.; Qi, X.; Han, Z.; Song, L.; Zhou, J.; Wang, G.; Zhu, R.; Li, J. Radionuclide-Labeled Biomaterials: A Novel Strategy for Tumor-Targeted Therapy. Biomimetics 2025, 10, 394. https://doi.org/10.3390/biomimetics10060394
Zhang S, Zhang A, Qi X, Han Z, Song L, Zhou J, Wang G, Zhu R, Li J. Radionuclide-Labeled Biomaterials: A Novel Strategy for Tumor-Targeted Therapy. Biomimetics. 2025; 10(6):394. https://doi.org/10.3390/biomimetics10060394
Chicago/Turabian StyleZhang, Shu, Aiyue Zhang, Xunhao Qi, Zongtai Han, Luqi Song, Jiayu Zhou, Guanglin Wang, Ran Zhu, and Jianguo Li. 2025. "Radionuclide-Labeled Biomaterials: A Novel Strategy for Tumor-Targeted Therapy" Biomimetics 10, no. 6: 394. https://doi.org/10.3390/biomimetics10060394
APA StyleZhang, S., Zhang, A., Qi, X., Han, Z., Song, L., Zhou, J., Wang, G., Zhu, R., & Li, J. (2025). Radionuclide-Labeled Biomaterials: A Novel Strategy for Tumor-Targeted Therapy. Biomimetics, 10(6), 394. https://doi.org/10.3390/biomimetics10060394