A Piezoelectric Sensor Based on MWCNT-Enhanced Polyvinyl Chloride Gel for Contact Perception of Grippers
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Preparation of PMPG
2.3. Characterization and Analysis
3. Results and Discussion
3.1. Design Preparation and Characterization Analysis
3.2. Sensing Mechanism Analysis
3.3. Electrical and Electrochemical Characterization
3.4. Mechanical Characterization
3.5. Detections of Robotic Grasping Using Auxetic PMPG Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Liu, D.; Zhang, Y.; Fan, L.; Ren, Q.; Ma, S.; Zhang, M. Stretchable temperature-responsive multimodal neuromorphic electronic skin with spontaneous synaptic plasticity recovery. ACS Nano 2022, 16, 8283–8293. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Guo, W.; Liu, S.; Li, Y.; Qiu, Y.; Fang, H.; Yang, G.; Zhu, K.; Yin, Z.; Li, Z.; et al. Flexible mechanical metamaterials enabled electronic skin for real-time detection of unstable grasping in robotic manipulation. Adv. Funct. Mater. 2022, 32, 2109109. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Z.; Zhang, N.; Li, J.; Zhou, P.; Hu, F.; Rong, Y.; Lu, B.; Gu, G. High-stretchability, ultralow-hysteresis conducting polymer hydrogel strain sensors for soft machines. Adv. Mater. 2022, 34, 2203650. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Li, H.; Gao, S.; Li, Y.; Wei, X.; Chen, Y.; Yue, W.; Zhou, W.; Shen, G. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 2022, 34, 2202622. [Google Scholar] [CrossRef]
- Tao, K.; Chen, Z.; Yu, J.; Zeng, H.; Wu, J.; Wu, Z.; Jia, Q.; Li, P.; Fu, Y.; Chang, H.; et al. Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Adv. Sci. 2022, 9, 2104168. [Google Scholar] [CrossRef]
- Yang, F.; Li, J.; Long, Y.; Zhang, Z.; Wang, L.; Sui, J.; Dong, Y.; Wang, Y.; Ni Da Cai, W.; Wang, P.; et al. Wafer-scale heterostructured piezoelectric bio-organic thin films. Science 2021, 373, 337–342. [Google Scholar] [CrossRef]
- Abramson, A.; Chan, C.T.; Khan, Y.; Mermin-Bunnell, A.; Matsuhisa, N.; Fong, R.; Shad, R.; Hiesinger, W.; Mallick, P.; Gambhir, S.S.; et al. A flexible electronic strain sensor for the real-time monitoring of tumor regression. Sci. Adv. 2022, 8, eabn6550. [Google Scholar] [CrossRef]
- Pan, L.; Chortos, A.; Yu, G.; Wang, Y.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2014, 5, 3002. [Google Scholar] [CrossRef]
- Ma, Z.; Lu, S.; Wu, Y.; Zhang, X.; Wei, Y.; Mawignon, F.J.; Qin, L.; Shan, L. Pressure-activatable liquid metal composites flexible sensor with antifouling and drag reduction functional surface. ACS Appl. Mater. Interfaces 2023, 15, 54952–54965. [Google Scholar] [CrossRef]
- He, X.; Zhang, B.; Liu, Q.; Chen, H.; Cheng, J.; Jian, B.; Yin, H.; Li, H.; Duan, K.; Zhang, J.; et al. Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance. Nat. Commun. 2024, 15, 6431. [Google Scholar] [CrossRef] [PubMed]
- Mirzaee, M.; Askari-sedeh, M.; Zolfagharian, A.; Baghani, M. Hydrogel-based capacitive sensor model for ammonium monitoring in aquaculture. Adv. Eng. Mater. 2024, 2400314. [Google Scholar] [CrossRef]
- Shan, Y.; Wang, E.; Cui, X.; Xi, Y.; Ji, J.; Yuan, J.; Xu, L.; Liu, Z.; Li, Z. A biodegradable piezoelectric sensor for real-time evaluation of the motor function recovery after nerve injury. Adv. Funct. Mater. 2024, 34, 2400295. [Google Scholar] [CrossRef]
- Xu, Q.; Tao, Y.; Wang, Z.; Zeng, H.; Yang, J.; Li, Y.; Zhao, S.; Tang, P.; Zhang, J.; Yan, M.; et al. Highly flexible, high-performance, and stretchable piezoelectric sensor based on a hierarchical droplet-shaped ceramics with enhanced damage tolerance. Adv. Mater. 2024, 36, 2311624. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Zhang, H.; Liu, L.; Lin, Y.; Zhao, F.; Chen, P.; Cao, S.; Zhou, K.; Gao, C.; Liu, Z.; et al. A comprehensive review on triboelectric sensors and AI-integrated systems. Mater. Today 2024, 80, 450–480. [Google Scholar] [CrossRef]
- Shin, J.; Noh, S.; Lee, J.; Jhee, S.; Choi, I.; Jeong, C.K.; Kim, S.H.; Kim, J.S. Self-powered flexible piezoelectric motion sensor with spatially aligned InN nanowires. Chem. Eng. J. 2024, 486, 150205. [Google Scholar] [CrossRef]
- Verma, A.; Karumuthil, S.C. Vanadium disulfide-incorporated polymer nanocomposites for flexible piezoelectric energy generators and road safety sensors. J. Mater. Chem. A 2024, 12, 12721–12732. [Google Scholar] [CrossRef]
- Sagar, P.; Sinha, N.; Kumar, B. Hydrothermally grown pure and Er-doped ZnS nanocrystals based flexible piezoelectric nanogenerator for energy harvesting and sensing applications. J. Cryst. Growth 2024, 632, 127646. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Huang, Y.; Pi, X.; Wu, Y.; Shi, Q. Flexible piezoelectric sensor based on Polyacrylonitrile/MWCNT/MXene composites films for human physiological health detection. J. Appl. Polym. Sci. 2024, 141, e55009. [Google Scholar] [CrossRef]
- He, Q.; Zhong, Q.; Sun, Z.; Zhang, H.; Zhao, Z.; Shi, Z.; Liu, X.; Zhao, Z.; Lu, J.; Ye, Y.; et al. Highly stretchable, repeatable, and easy-to-prepare ionogel based on polyvinyl chloride for wearable strain sensors. Nano Energy 2023, 113, 108535. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, S.; Li, Y.; Lin, Q.; Wu, Y.; Shi, Q. Flexible piezoelectric sensor based on PAN/MXene/PDA@ ZnO composite film for human health and motion detection with fast response and highly sensitive. Chem. Eng. J. 2024, 488, 150997. [Google Scholar] [CrossRef]
- Huang, Y.; Rui, G.; Li, Q.; Allahyarov, E.; Li, R.; Fukuto, M.; Zhong, G.; Xu, J.; Li, Z.; Taylor, P.; et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly (vinylidene fluoride) with pure β crystals. Nat. Commun. 2021, 12, 675. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhou, Z.; Zhang, Z.; Yao, L.; Zhang, Q.; Yang, H. Porous, multi-layered piezoelectric composites based on highly oriented PZT/PVDF electrospinning fibers for high-performance piezoelectric nanogenerators. J. Adv. Ceram. 2022, 11, 331–344. [Google Scholar] [CrossRef]
- Yan, D.; Wang, J.; Xiang, J.; Xing, Y.; Shao, L.H. A flexoelectricity-enabled ultrahigh piezoelectric effect of a polymeric composite foam as a strain-gradient electric generator. Sci. Adv. 2023, 9, eadc8845. [Google Scholar] [CrossRef]
- Tian, G.; Deng, W.; Gao, Y.; Xiong, D.; Yan, C.; He, X.; Yang, T.; Jin, L.; Chu, X.; Zhang, H.; et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 2019, 59, 574–581. [Google Scholar] [CrossRef]
- Han, X.; Liu, Y.; Yin, Y. Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Lett. 2014, 14, 2466–2470. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Cheng, S.; Gao, Q.; Yuan, Y.; Li, A.; Guan, S. PDMS-based conductive elastomeric composite with 3D reduced graphene oxide conductive network for flexible strain sensor. Compos. Part A Appl. Sci. Manuf. 2022, 161, 107113. [Google Scholar] [CrossRef]
- Ma, C.; Xu, D.; Huang, Y.C.; Wang, P.; Huang, J.; Zhou, J.; Liu, W.; Li, S.; Huang, Y.; Duan, X.; et al. Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks. ACS Nano 2020, 14, 12866–12876. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Xu, L.; Zhang, H.; Yang, Y.; Wang, Z.L. Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 2020, 6, eabb9083. [Google Scholar] [CrossRef]
- Huang, X.; Ma, Z.; Xia, W.; Hao, L.; Wu, Y.; Lu, S.; Luo, Y.; Qin, L.; Dong, G. A high-sensitivity flexible piezoelectric tactile sensor utilizing an innovative rigid-in-soft structure. Nano Energy 2024, 129, 110019. [Google Scholar] [CrossRef]
- Mahmud, M.P.; Adhikary, P.; Zolfagharian, A.; Adams, S.; Kaynak, A.; Kouzani, A.Z. Advanced design, fabrication, and applications of 3D-printable piezoelectric nanogenerators. Electron. Mater. Lett. 2022, 18, 129–144. [Google Scholar] [CrossRef]
- Deng, W.; Yang, T.; Jin, L.; Yan, C.; Huang, H.; Chu, X.; Wang, Z.; Xiong, D.; Tian, G.; Gao, Y.; et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 2019, 55, 516–525. [Google Scholar] [CrossRef]
- Kim, M.S.; Ahn, H.R.; Lee, S.; Kim, C.; Kim, Y.J. A dome-shaped piezoelectric tactile sensor arrays fabricated by an air inflation technique. Sens. Actuators A Phys. 2014, 212, 151–158. [Google Scholar] [CrossRef]
- Han, J.; Wang, H.; Yue, Y.; Mei, C.; Chen, J.; Huang, C.; Wu, Q.; Xu, X. A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network. Carbon 2019, 149, 1–18. [Google Scholar] [CrossRef]
- Tang, W.; Yan, T.; Ping, J.; Wu, J.; Ying, Y. Rapid fabrication of flexible and stretchable strain sensor by chitosan-based water ink for plants growth monitoring. Adv. Mater. Technol. 2017, 2, 1700021. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, Y.; He, L.; Wang, Z.; Kurita, H.; Narita, F. Effect of carbon black addition on electromechanical performance of flexible piezoelectric composite films. Compos. Part A Appl. Sci. Manuf. 2024, 180, 108103. [Google Scholar] [CrossRef]
- Özsin, G.; Kılıç, M.; Kurukavak, Ç.; Varol, E. Thermal characteristics, stability, and degradation of PVC composites and nanocomposites. In Poly (Vinyl Chloride) Based Composites and Nanocomposites; Springer: Cham, Switzerland, 2023; pp. 293–318. [Google Scholar]
- Cao, R.; Zhang, M.; Jiao, Y.; Li, Y.; Sun, B.; Xiao, D.; Wang, M.; Ma, D. Co-upcycling of polyvinyl chloride and polyesters. Nat. Sustain. 2023, 6, 1685–1692. [Google Scholar] [CrossRef]
- Ye, H.; Jiang, J.; Yang, Y.; Shi, J.; Sun, H.; Zhang, L.; Ge, S.; Zhang, Y.; Zhou, Y.; Liew, R.; et al. Ultra-strong and environmentally friendly waste polyvinyl chloride/paper biocomposites. Adv. Compos. Hybrid Mater. 2023, 6, 81. [Google Scholar] [CrossRef]
- Li, B.; Liu, Z.; Liu, Y.D.; Liang, Y. Effect of ionic liquids on structure and electromechanical properties of plasticized polyvinyl chloride (PVC) gels. Polymer 2024, 294, 126714. [Google Scholar] [CrossRef]
- Li, Y.; Sun, B.; Feng, X.; Guo, M.; Li, Y.; Hashimoto, M. A novel electroactive plasticized polymer actuator based on chlorinated polyvinyl chloride gel. RSC Adv. 2021, 11, 36439–36449. [Google Scholar] [CrossRef]
- El-Naggar, A.M.; Heiba, Z.K.; Kamal, A.M.; Mohamed, M.B. Optical and dielectric behaviors of polyvinyl chloride incorporated with MgFe2O4/MWCNTs. Diam. Relat. Mater. 2023, 138, 110243. [Google Scholar] [CrossRef]
- Tariq, H.; Awan, S.U.; Hussain, D.; Rizwan, S.; Shah, S.A.; Zainab, S.; Riaz, M.B. Enhancing supercapacitor performance through design optimization of laser-induced graphene and MWCNT coatings for flexible and portable energy storage. Sci. Rep. 2023, 13, 21116. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.M.; Gull, N.; Khan, R.U.; Butt, M.T.Z. Polyvinylchloride (PVC): Structure and properties relationship. In Polyvinylchloride-Based Blends: Preparation, Characterization and Applicationsi; Spinger: Berlin/Heidelberg, Germany, 2022; pp. 19–47. [Google Scholar]
- Park, H.; Oh, S.J.; Kim, M.; Lee, C.; Joo, H.; Bae, J.W.; Lee, J.H. Plasticizer structural effect for sustainable and high-performance PVC gel-based triboelectric nanogenerators. Nano Energy 2023, 114, 108615. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.; Yang, Y.; Wu, Y.; Shi, Q. Flexible piezoelectric sensor based on polyvinylidene fluoride/polyacrylonitrile/carboxy-terminated multi-walled carbon nanotube composite films for human motion monitoring. Nanotechnology 2024, 35, 235501. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Yu, L.; Skov, A.L.; Daugaard, A.E. Highly stretchable conductive MWCNT-PDMS composite with self-enhanced conductivity. J. Mater. Chem. C 2020, 8, 13389–13395. [Google Scholar] [CrossRef]
- Huang, J.; Tang, X.; Wang, F.; Wang, Z.; Niu, Y.; Wang, H. Multi-Hierarchical Microstructures Boosted Linearity of Flexible Capacitive Pressure Sensor. Adv. Eng. Mater. 2022, 24, 2101767. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Li, C.; Chen, X.; Gou, X.; Zhou, Y.; Yang, J.; Xie, L. From materials to structures: A holistic examination of achieving linearity in flexible pressure sensors. Nanotechnology 2024, 36, 042002. [Google Scholar] [CrossRef]
- Kanoun, O.; Bouhamed, A.; Ramalingame, R.; Bautista-Quijano, J.R.; Rajendran, D.; Al-Hamry, A. Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors. Sensors 2021, 21, 341. [Google Scholar] [CrossRef]
- Kang, S.; Lee, J.; Lee, S.; Kim, S.; Kim, J.K.; Algadi, H.; Al-Sayari, S.; Kim, D.; Lee, T. Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensing. Adv. Electron. Mater. 2016, 2, 1600356. [Google Scholar] [CrossRef]
- Nag, A.; Alahi, M.E.E.; Mukhopadhyay, S.C.; Liu, Z. Multi-walled carbon nanotubes-based sensors for strain sensing applications. Sensors 2021, 21, 1261. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Y.; Jiang, P.; Chen, X.; Yu, H. Low-hysteresis, pressure-insensitive, and transparent capacitive strain sensor for human activity monitoring. Microsyst. Nanoeng. 2022, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Liu, Y.; Sun, B.; Zhang, W.; Liu, X.; Yu, H.; Zhang, D.; Kuckling, D.; Adler, H.J.P. A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation. Macromol. Rapid Commun. 2006, 27, 1023–1028. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, J.; Gao, Q.; Zhang, J.; Zhang, J.; Omisore, O.M.; Wang, L.; Li, H. Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications. Appl. Sci. 2018, 8, 345. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Lv, X.; Sun, S. A highly sensitive strain sensor based on a silica@ polyaniline core-shell particle reinforced hydrogel with excellent flexibility, stretchability, toughness and conductivity. Soft Matter 2021, 17, 2142–2150. [Google Scholar] [CrossRef]
- Gu, Z.; Xu, Y.; Chen, L.; Fang, R.; Rong, Q.; Jin, X.; Jiang, L.; Liu, M. Macroporous conductive hydrogels with fatigue resistance as strain sensor for human motion monitoring. Macromol. Mater. Eng. 2018, 303, 1800339. [Google Scholar] [CrossRef]
- Sun, X.; Qin, Z.; Ye, L.; Zhang, H.; Yu, Q.; Wu, X.; Li, J.; Yao, F. Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chem. Eng. J. 2020, 382, 122832. [Google Scholar] [CrossRef]
- Khalili, N.; Naguib, H.E.; Kwon, R.H. A constriction resistance model of conjugated polymer based piezoresistive sensors for electronic skin applications. Soft Matter 2016, 12, 4180–4189. [Google Scholar] [CrossRef]
- Jing, X.; Wang, X.Y.; Mi, H.Y.; Turng, L.S. Stretchable gelatin/silver nanowires composite hydrogels for detecting human motion. Mater. Lett. 2019, 237, 53–56. [Google Scholar]
Sample | Pyrolysis Zone/°C | TG Peak Temperature/°C | DSC Peak Temperature/°C | Residual Rate/% |
---|---|---|---|---|
PVC | 229~407 & 407~563 | 314 | 303 | 10.85 |
DBA | 90~281 | 261 | 262 | 5.51 |
MWCNTs | / | / | / | / |
PMPGs (1:5 1 wt%) | 161~383 | 261 | 260 | 7.95 |
Materials | Durability | Response Time | Conductivity | Compressive Stress/Tensile Stress | Ref. |
---|---|---|---|---|---|
PMPG | 2500 cycles | 189 ms | 2.5 × 10−5 S·cm−1 | 273 kPa/− | This work |
P (AM/LMA) | 2400 cycles | / | / | / | [55] |
PDMS (silica@polyaniline core–shell particle) | 300 cycles | 300 ms | 1.84 S·cm−1 | 1398 kPa/− | [56] |
PAM-oxCNTs | 1200 cycles | / | / | 21 kPa/− | [57] |
PHEMA/PPy gel | 300 cycles | 300 ms | 67 S·cm−1 | −/710 kPa | [58] |
PB-Ag/TA@CNC | / | ~70 ms | 3.5 × 10−5 S·cm−1 | / | [59] |
PDA (GEL/AgNWs) | / | / | 6 × 10−6 S·cm−1 | / | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Q.; He, Q.; Liu, D.; Lu, X.; Liu, S.; Ye, Y.; Wang, Y. A Piezoelectric Sensor Based on MWCNT-Enhanced Polyvinyl Chloride Gel for Contact Perception of Grippers. Biomimetics 2025, 10, 363. https://doi.org/10.3390/biomimetics10060363
Zhong Q, He Q, Liu D, Lu X, Liu S, Ye Y, Wang Y. A Piezoelectric Sensor Based on MWCNT-Enhanced Polyvinyl Chloride Gel for Contact Perception of Grippers. Biomimetics. 2025; 10(6):363. https://doi.org/10.3390/biomimetics10060363
Chicago/Turabian StyleZhong, Qiyun, Qingsong He, Diyi Liu, Xinyu Lu, Siyuan Liu, Yuze Ye, and Yefu Wang. 2025. "A Piezoelectric Sensor Based on MWCNT-Enhanced Polyvinyl Chloride Gel for Contact Perception of Grippers" Biomimetics 10, no. 6: 363. https://doi.org/10.3390/biomimetics10060363
APA StyleZhong, Q., He, Q., Liu, D., Lu, X., Liu, S., Ye, Y., & Wang, Y. (2025). A Piezoelectric Sensor Based on MWCNT-Enhanced Polyvinyl Chloride Gel for Contact Perception of Grippers. Biomimetics, 10(6), 363. https://doi.org/10.3390/biomimetics10060363