IPO: An Improved Parrot Optimizer for Global Optimization and Multilayer Perceptron Classification Problems
Abstract
1. Introduction
- An improved PO (IPO) is proposed in this paper, which adopts three improvements, namely the aerial search strategy, modified staying behavior, and communicating behavior;
- The proposed IPO is tested using twelve CEC2022 test functions;
- The numerical results, Wilcoxon signed-rank test, Friedman ranking test, convergence curves, and boxplots demonstrate the superiority of IPO compared to PO and the other five methods;
- The effectiveness of IPO-MLP is verified in training the multilayer perceptron for solving the classification problems, including five classification datasets and an oral English teaching quality evaluation problem.
2. Preliminaries
2.1. Multilayer Perceptron
2.2. The Parrot Optimizer
2.2.1. Population Initialization
2.2.2. Foraging Behavior
2.2.3. Staying Behavior
2.2.4. Communicating Behavior
2.2.5. Fear of Strangers’ Behavior
2.3. Aerial Search Strategy
2.4. Fitness–Distance Balance (FDB) Selection
3. Improved Parrot Optimizer
3.1. Motivation
3.2. Proposal for IPO
3.2.1. New Exploration Equations Using Aerial Search Strategy
3.2.2. New Staying Behavior
3.2.3. New Communicating Behavior
3.2.4. Architecture of the Proposed IPO
Algorithm 1: Pseudocode of the Proposed IPO |
1. Initialize the IPO parameters: population size N, maximum iterations T. 2. Initialize the population’s positions randomly and identify the best agent. 3. For t = 1:T 4. Calculate the fitness function. 5. Find the best agent. 6. For i = 1:N 7. St = randi([1, 4]) 8. If St == 1 9. Behavior 1: aerial search strategy 10. Update position by Equations (11) and (12). 11. Elseif St == 2 12. Behavior 2: new staying behavior 13. Update position by Equation (17). 14. Elseif St == 3 15. Behavior 3: new communicating behavior 16. Update position by Equation (18). 17. Elseif St == 4 18. Behavior 4: fear of strangers’ behavior 19. Update position by Equations (8)–(10). 20. End if 21. i = i + 1 22. End for 23. t = t + 1 24. End For 25. Return the best solution |
3.2.5. The Computational Complexity Analysis of IPO
4. Experimental Results
4.1. Case 1: CEC2022 Test Sets
4.1.1. Ablation Test
4.1.2. Comparison and Analysis with Other Methods
4.2. Case 2: Standard Classification Datasets
4.3. Case 3: Oral English Education Evaluation Problem
4.3.1. Indexes of Oral English Teaching Quality Evaluation Model
4.3.2. Analysis of Testing Results
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussien, A.G. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 2022, 242, 108320. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Abualigah, L.; Elaziz, M.A.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime Mould Algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Jia, H.; Peng, X.; Lang, C. Remora optimization algorithm. Expert Syst. Appl. 2021, 185, 115665. [Google Scholar] [CrossRef]
- Bouaouda, A.; Hashim, F.A.; Sayouti, Y.; Hussien, A.G. Pied kingfisher optimizer: A new bio-inspired algorithm for solving numerical optimization and industrial engineering problems. Neural Comput. Appl. 2024, 36, 15455–15513. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, D.; Chen, J.; He, L. Secretary bird optimization algorithm: A new metaheuristic for solving global optimization problems. Artif. Intell. Rev. 2024, 57, 123. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Hui, Y. Evaluation of Blended Oral English Teaching Based on the Mixed Model of SPOC and Deep Learning. Sci. Program. 2021, 2021, 7044779. [Google Scholar] [CrossRef]
- Zhang, M.Y. English teaching quality evaluation based on principal component analysis and support vector machine. Mod. Electron. Technol. 2018, 41, 178–182. [Google Scholar]
- Zhou, S.R.; Tan, B. Electrocardiogram soft computing using hybrid deep learning CNN-ELM. Appl. Soft Comput. 2019, 86, 105778. [Google Scholar] [CrossRef]
- Liu, Y.G.; Xiong, G. Research on the evaluation of higher vocational computer course teaching quality based on FAHP. Inf. Technol. 2016, 5, 147–149, 153. [Google Scholar]
- Lu, C.; He, B.; Zhang, R. Evaluation of English interpretation teaching quality based on GA optimized RBF neural network. J. Intell. Fuzzy Syst. 2021, 40, 3185–3192. [Google Scholar] [CrossRef]
- Wei, C.Y.; Tsai, S.B. Evaluation Model of College English Teaching Effect Based on Particle Swarm Algorithm and Support Vector Machine. Math. Probl. Eng. 2022, 2022, 7132900. [Google Scholar] [CrossRef]
- Zhang, B.F. Evaluation and Optimization of College English Teaching Effect Based on Improved Support Vector Machine Algorithm. Sci. Program. 2022, 2022, 3124135.1–3124135.9. [Google Scholar]
- Tan, M.D.; Qu, L.D. Evaluation of oral English teaching quality based on BP neural network optimized by improved crow search algorithm. J. Intell. Fuzzy Syst. 2023, 45, 11909–11924. [Google Scholar] [CrossRef]
- Miao, L.; Zhou, Q. Evaluation Method of Oral English Digital Teaching Quality Based on Decision Tree Algorithm. In Proceedings of the e-Learning, e-Education, and Online Training, Harbin, China, 9–10 July 2022; Fu, W., Sun, G., Eds.; Springer: Cham, Switzerland, 2022; Volume 454, pp. 388–400. [Google Scholar]
- Lian, J.B.; Hui, G.H.; Ma, L.; Zhu, T.; Wu, X.C.; Heidari, A.A.; Chen, Y.; Chen, H.L. Parrot optimizer: Algorithm and applications to medical problems. Comput. Biol. Med. 2024, 172, 108064. [Google Scholar] [CrossRef]
- Meng, X.Q.; Jiang, J.H.; Wang, H. AGWO: Advanced GWO in multi-layer perception optimization. Expert Syst. Appl. 2021, 173, 114676. [Google Scholar] [CrossRef]
- Wang, W.C.; Tian, W.C.; Xu, D.M.; Zang, H.F. Arctic puffin optimization: A bio-inspired metaheuristic algorithm for solving engineering design optimization. Adv. Eng. Softw. 2024, 195, 103694. [Google Scholar] [CrossRef]
- Kahraman, H.T.; Aras, S.; Gedikli, E. Fitness-distance balance (FDB): A new selection method for meta-heuristic search algorithms. Knowl.-Based Syst. 2020, 190, 105169. [Google Scholar] [CrossRef]
- Bakır, H. Dynamic fitness-distance balance-based artificial rabbits optimization algorithm to solve optimal power flow problem. Expert Syst. Appl. 2024, 240, 122460. [Google Scholar] [CrossRef]
- Kumar, A.; Price, K.V.; Mohamed, A.W.; Hadi, A.A.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2022 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization; Technical Report; Indian Institute of Technology: Varanasi, India, 2021. [Google Scholar]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.L. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovský, P. Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems. Front. Mech. Eng. 2023, 8, 1126450. [Google Scholar] [CrossRef]
- Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M. Crested Porcupine Optimizer: A new nature-inspired metaheuristic. Knowl.-Based Syst. 2024, 284, 111257. [Google Scholar] [CrossRef]
- Büşra, I.; Murat, K.; Şaban, G. An improved butterfly optimization algorithm for training the feedforward artificial neural networks. Soft Comput. 2023, 27, 3887–3905. [Google Scholar]
- Bansal, P.; Gupta, S.; Kumar, S.; Sharma, S.; Sharma, S. MLP-LOA: A metaheuristic approach to design an optimal multilayer perceptron. Soft Comput. 2019, 23, 12331–12345. [Google Scholar] [CrossRef]
Author | Year | Algorithm | Model | Remarks |
---|---|---|---|---|
Zhang [13] | 2018 | Principal component analysis | Support vector machine | English teaching quality evaluation |
Lu [16] | 2021 | Genetic algorithm | RBF neural network | Evaluation of English interpretation teaching quality |
Wei [17] | 2022 | Improved quantum particle swarm algorithm | Support vector machine | Classification of college English teaching effects |
Zhang [18] | 2022 | Particle swarm algorithm | Least squares support vector machine | Evaluation of College English Teaching Effect |
Tan [19] | 2023 | Improved crow search algorithm | BP neural network | Evaluation of oral English teaching quality |
Miao [20] | 2023 | Decision tree algorithm | - | Evaluation of the teaching effect of oral English teaching |
Algorithms | Year | Parameters |
---|---|---|
IPO | - | P ∈ [0, 1] |
PO [21] | 2024 | P ∈ [0, 1] |
HHO [27] | 2019 | β = 1.5; E0 ∈ [−1, 1] |
SCA [28] | 2016 | a is linearly decreased from 2 to 0 |
OOA [29] | 2023 | r1 ∈ [0, 1] |
AOA [5] | 2021 | α = 5; µ = 0.499 |
AO [30] | 2021 | α = 0.1; δ = 0.1 |
Function Type | No. | Description | Range | Fmin |
---|---|---|---|---|
Unimodal function | F1 | Shifted and full Rotated Zakharov Function | [−100, 100] | 300 |
Simple multimodal functions | F2 | Shifted and full Rotated Rosenbrock’s Function | [−100, 100] | 400 |
F3 | Shifted and full Rotated Expanded Schaffer’s f6 Function | [−100, 100] | 600 | |
F4 | Shifted and full Rotated Non-Continuous Rastrigin’s Function | [−100, 100] | 800 | |
F5 | Shifted and full Rotated Levy Function | [−100, 100] | 900 | |
Hybrid functions | F6 | Hybrid Function 1 (N = 3) | [−100, 100] | 1800 |
F7 | Hybrid Function 2 (N =6) | [−100, 100] | 2000 | |
F8 | Hybrid Function 3 (N = 5) | [−100, 100] | 2200 | |
Composition functions | F9 | Composition Function 1 (N = 5) | [−100, 100] | 2300 |
F10 | Composition Function 2 (N = 4) | [−100, 100] | 2400 | |
F11 | Composition Function 3 (N = 5) | [−100, 100] | 2600 | |
F12 | Composition Function 4 (N = 6) | [−100, 100] | 2700 |
Algorithms | Aerial Search | New Staying Behavior | New Communicating Behavior |
---|---|---|---|
PO | 0 | 0 | 0 |
IPO1 | 1 | 0 | 0 |
IPO2 | 0 | 1 | 0 |
IPO3 | 0 | 0 | 1 |
IPO4 | 1 | 1 | 0 |
IPO5 | 1 | 0 | 1 |
IPO6 | 0 | 1 | 1 |
IPO7 | 1 | 1 | 1 |
Function | PO | IPO1 | IPO2 | IPO3 | IPO4 | IPO5 | IPO6 | IPO7 |
---|---|---|---|---|---|---|---|---|
F1 | 1.205 × 104 | 7.841 × 103 | 9.183 × 103 | 7.080 × 103 | 3.926 × 103 | 2.296 × 103 | 8.056 × 103 | 1.525 × 103 |
F2 | 5.733 × 102 | 4.935 × 102 | 5.793 × 102 | 5.327 × 102 | 4.616 × 102 | 4.542 × 102 | 4.925 × 102 | 4.151 × 102 |
F3 | 6.366 × 102 | 6.322 × 102 | 6.394 × 102 | 6.378 × 102 | 6.230 × 102 | 6.274 × 102 | 6.365 × 102 | 6.150 × 102 |
F4 | 8.700 × 102 | 8.813 × 102 | 9.006 × 102 | 8.761 × 102 | 8.389 × 102 | 8.703 × 102 | 8.912 × 102 | 8.458 × 102 |
F5 | 2.252 × 103 | 2.060 × 103 | 2.186 × 103 | 1.936 × 103 | 1.832 × 103 | 1.885 × 103 | 1.779 × 103 | 1.671 × 103 |
F6 | 3.097 × 104 | 4.143 × 103 | 1.507 × 105 | 7.059 × 104 | 2.472 × 103 | 2.160 × 103 | 2.245 × 104 | 2.215 × 103 |
F7 | 2.132 × 103 | 2.112 × 103 | 2.087 × 103 | 2.093 × 103 | 2.117 × 103 | 2.067 × 103 | 2.118 × 103 | 2.059 × 103 |
F8 | 2.237 × 103 | 2.228 × 103 | 2.232 × 103 | 2.231 × 103 | 2.230 × 103 | 2.230 × 103 | 2.235 × 103 | 2.227 × 103 |
F9 | 2.514 × 103 | 2.483 × 103 | 2.528 × 103 | 2.498 × 103 | 2.481 × 103 | 2.482 × 103 | 2.496 × 103 | 2.481 × 103 |
F10 | 2.501 × 103 | 2.501 × 103 | 2.501 × 103 | 2.501 × 103 | 2.501 × 103 | 2.501 × 103 | 2.501 × 103 | 2.501 × 103 |
F11 | 4.552 × 103 | 3.763 × 103 | 4.300 × 103 | 4.184 × 103 | 2.850 × 103 | 2.786 × 103 | 4.665 × 103 | 2.625 × 103 |
F12 | 2.968 × 103 | 2.942 × 103 | 2.963 × 103 | 2.954 × 103 | 2.942 × 103 | 2.946 × 103 | 2.973 × 103 | 2.950 × 103 |
Function | Item | IPO | PO | HHO | SCA | OOA | AOA | AO |
---|---|---|---|---|---|---|---|---|
F1 | Mean | 6.184 × 103 | 1.949 × 104 | 2.778 × 104 | 1.886 × 104 | 5.002 × 104 | 3.783 × 104 | 6.688 × 104 |
Best | 1.525 × 103 | 1.205 × 104 | 1.441 × 104 | 7.572 × 103 | 2.513 × 104 | 1.870 × 104 | 2.326 × 104 | |
Worst | 1.249 × 104 | 2.970 × 104 | 4.631 × 104 | 3.451 × 104 | 8.921 × 104 | 6.266 × 104 | 1.030 × 105 | |
Std | 3.255 × 103 | 4.859 × 103 | 8.889 × 103 | 5.317 × 103 | 1.523 × 104 | 1.243 × 104 | 1.920 × 104 | |
F2 | Mean | 4.843 × 102 | 6.911 × 102 | 5.458 × 102 | 8.207 × 102 | 2.946 × 103 | 2.587 × 103 | 5.909 × 102 |
Best | 4.151 × 102 | 5.586 × 102 | 4.758 × 102 | 6.461 × 102 | 1.889 × 103 | 1.312 × 103 | 4.872 × 102 | |
Worst | 6.280 × 102 | 1.020 × 103 | 6.360 × 102 | 1.154 × 103 | 4.530 × 103 | 5.251 × 103 | 7.844 × 102 | |
Std | 4.196 × 101 | 1.206 × 102 | 4.525 × 101 | 1.260 × 102 | 7.930 × 102 | 9.187 × 102 | 6.130 × 101 | |
F3 | Mean | 6.468 × 102 | 6.650 × 102 | 6.654 × 102 | 6.494 × 102 | 6.752 × 102 | 6.669 × 102 | 6.466 × 102 |
Best | 6.150 × 102 | 6.366 × 102 | 6.439 × 102 | 6.392 × 102 | 6.603 × 102 | 6.412 × 102 | 6.318 × 102 | |
Worst | 6.730 × 102 | 6.843 × 102 | 6.794 × 102 | 6.597 × 102 | 6.942 × 102 | 6.863 × 102 | 6.699 × 102 | |
Std | 1.497 × 101 | 1.160 × 101 | 8.112 × 100 | 6.388 × 100 | 8.921 × 100 | 1.025 × 101 | 9.346 × 100 | |
F4 | Mean | 8.849 × 102 | 9.144 × 102 | 8.862 × 102 | 9.590 × 102 | 9.741 × 102 | 9.586 × 102 | 8.747 × 102 |
Best | 8.458 × 102 | 8.700 × 102 | 8.394 × 102 | 9.198 × 102 | 9.435 × 102 | 9.115 × 102 | 8.507 × 102 | |
Worst | 9.134 × 102 | 9.546 × 102 | 9.083 × 102 | 1.003 × 103 | 1.013 × 103 | 9.907 × 102 | 9.006 × 102 | |
Std | 1.538 × 101 | 1.813 × 101 | 1.312 × 101 | 1.818 × 101 | 1.698 × 101 | 1.945 × 101 | 1.273 × 101 | |
F5 | Mean | 2.308 × 103 | 2.856 × 103 | 3.037 × 103 | 3.009 × 103 | 3.057 × 103 | 3.083 × 103 | 2.699 × 103 |
Best | 1.671 × 103 | 2.234 × 103 | 2.460 × 103 | 2.140 × 103 | 2.158 × 103 | 2.477 × 103 | 1.975 × 103 | |
Worst | 2.845 × 103 | 3.577 × 103 | 3.892 × 103 | 4.381 × 103 | 4.163 × 103 | 4.262 × 103 | 3.742 × 103 | |
Std | 3.376 × 102 | 3.425 × 102 | 3.727 × 102 | 5.836 × 102 | 5.307 × 102 | 3.962 × 102 | 4.439 × 102 | |
F6 | Mean | 6.301 × 103 | 1.573 × 107 | 2.003 × 105 | 1.565 × 108 | 2.642 × 109 | 1.622 × 109 | 6.389 × 105 |
Best | 2.116 × 103 | 2.660 × 104 | 7.384 × 104 | 4.061 × 107 | 2.125 × 108 | 2.472 × 107 | 5.628 × 104 | |
Worst | 1.997 × 104 | 1.467 × 108 | 6.035 × 105 | 3.427 × 108 | 6.325 × 109 | 4.011 × 109 | 4.598 × 106 | |
Std | 4.489 × 103 | 2.812 × 107 | 1.056 × 105 | 9.833 × 107 | 1.415 × 109 | 1.106 × 109 | 8.337 × 105 | |
F7 | Mean | 2.160 × 103 | 2.194 × 103 | 2.188 × 103 | 2.163 × 103 | 2.198 × 103 | 2.237 × 103 | 2.133 × 103 |
Best | 2.059 × 103 | 2.132 × 103 | 2.089 × 103 | 2.109 × 103 | 2.110 × 103 | 2.123 × 103 | 2.075 × 103 | |
Worst | 2.434 × 103 | 2.522 × 103 | 2.379 × 103 | 2.215 × 103 | 2.317 × 103 | 2.439 × 103 | 2.203 × 103 | |
Std | 7.438 × 101 | 6.810 × 101 | 7.016 × 101 | 2.834 × 101 | 4.934 × 101 | 9.596 × 101 | 2.950 × 101 | |
F8 | Mean | 2.278 × 103 | 2.273 × 103 | 2.319 × 103 | 2.283 × 103 | 2.396 × 103 | 2.924 × 103 | 2.256 × 103 |
Best | 2.226 × 103 | 2.236 × 103 | 2.235 × 103 | 2.248 × 103 | 2.241 × 103 | 2.255 × 103 | 2.232 × 103 | |
Worst | 2.403 × 103 | 2.368 × 103 | 2.601 × 103 | 2.354 × 103 | 2.820 × 103 | 5.963 × 103 | 2.359 × 103 | |
Std | 5.843 × 101 | 4.383 × 101 | 1.157 × 102 | 2.381 × 101 | 1.622 × 102 | 1.017 × 103 | 3.545 × 101 | |
F9 | Mean | 2.485 × 103 | 2.608 × 103 | 2.558 × 103 | 2.609 × 103 | 3.541 × 103 | 3.242 × 103 | 2.616 × 103 |
Best | 2.481 × 103 | 2.510 × 103 | 2.496 × 103 | 2.546 × 103 | 2.902 × 103 | 2.799 × 103 | 2.532 × 103 | |
Worst | 2.493 × 103 | 2.698 × 103 | 2.715 × 103 | 2.645 × 103 | 4.923 × 103 | 3.789 × 103 | 2.725 × 103 | |
Std | 3.557 × 100 | 5.436 × 101 | 5.194 × 101 | 2.606 × 101 | 5.358 × 102 | 2.493 × 102 | 5.203 × 101 | |
F10 | Mean | 3.680 × 103 | 2.700 × 103 | 4.171 × 103 | 4.028 × 103 | 5.627 × 103 | 5.670 × 103 | 4.180 × 103 |
Best | 2.501 × 103 | 2.501 × 103 | 2.501 × 103 | 2.519 × 103 | 2.579 × 103 | 2.780 × 103 | 2.501 × 103 | |
Worst | 5.181 × 103 | 5.457 × 103 | 5.767 × 103 | 6.969 × 103 | 7.359 × 103 | 7.175 × 103 | 6.202 × 103 | |
Std | 8.421 × 102 | 6.670 × 102 | 9.453 × 102 | 1.953 × 103 | 1.460 × 103 | 1.218 × 103 | 1.283 × 103 | |
F11 | Mean | 3.001 × 103 | 5.945 × 103 | 3.684 × 103 | 7.217 × 103 | 8.982 × 103 | 9.271 × 103 | 4.261 × 103 |
Best | 2.624 × 103 | 4.552 × 103 | 3.057 × 103 | 5.914 × 103 | 6.490 × 103 | 6.698 × 103 | 3.336 × 103 | |
Worst | 3.481 × 103 | 7.952 × 103 | 5.192 × 103 | 9.309 × 103 | 9.882 × 103 | 2.082 × 104 | 5.502 × 103 | |
Std | 2.001 × 102 | 8.775 × 102 | 6.229 × 102 | 8.595 × 102 | 7.743 × 102 | 2.739 × 103 | 6.180 × 102 | |
F12 | Mean | 2.999 × 103 | 3.036 × 103 | 3.229 × 103 | 3.085 × 103 | 3.936 × 103 | 3.886 × 103 | 3.061 × 103 |
Best | 2.950 × 103 | 2.968 × 103 | 3.011 × 103 | 3.014 × 103 | 3.526 × 103 | 3.392 × 103 | 2.989 × 103 | |
Worst | 3.400 × 103 | 3.195 × 103 | 3.592 × 103 | 3.172 × 103 | 4.416 × 103 | 4.429 × 103 | 3.126 × 103 | |
Std | 8.243 × 101 | 4.866 × 101 | 1.475 × 102 | 4.117 × 101 | 2.725 × 102 | 2.795 × 102 | 3.982 × 101 |
Function | IPO | PO | HHO | SCA | OOA | AOA | AO |
---|---|---|---|---|---|---|---|
F1 | 1 | 3 | 4 | 2 | 6 | 5 | 7 |
F2 | 1 | 4 | 2 | 5 | 7 | 6 | 3 |
F3 | 2 | 4 | 5 | 3 | 7 | 6 | 1 |
F4 | 2 | 4 | 3 | 6 | 7 | 5 | 1 |
F5 | 1 | 3 | 5 | 4 | 6 | 7 | 2 |
F6 | 1 | 4 | 2 | 5 | 7 | 6 | 3 |
F7 | 2 | 5 | 4 | 3 | 6 | 7 | 1 |
F8 | 3 | 2 | 5 | 4 | 6 | 7 | 1 |
F9 | 1 | 3 | 2 | 4 | 7 | 6 | 5 |
F10 | 2 | 1 | 4 | 3 | 6 | 7 | 5 |
F11 | 1 | 4 | 2 | 5 | 6 | 7 | 3 |
F12 | 1 | 2 | 5 | 4 | 7 | 6 | 3 |
Mean Rank | 1.50 | 3.25 | 3.58 | 4.00 | 6.50 | 6.25 | 2.92 |
Final Rank | 1 | 3 | 4 | 5 | 7 | 6 | 2 |
Function | vs. PO | vs. HHO | vs. SCA | vs. OOA | vs. AOA | vs. AO |
---|---|---|---|---|---|---|
F1 | 4.143 × 10−6 | 3.392 × 10−6 | 6.152 × 10−6 | 3.392 × 10−6 | 3.392 × 10−6 | 3.392 × 10−6 |
F2 | 9.073 × 10−6 | 1.140 × 10−2 | 3.392 × 10−6 | 3.392 × 10−6 | 3.392 × 10−6 | 1.146 × 10−4 |
F3 | 4.937 × 10−4 | 1.050 × 10−3 | 4.553 × 10−1 | 1.330 × 10−5 | 1.866 × 10−3 | 2.455 × 10−1 |
F4 | 4.020 × 10−5 | 8.357 × 10−1 | 3.392 × 10−6 | 3.392 × 10−6 | 3.392 × 10−6 | 1.057 × 10−1 |
F5 | 1.866 × 10−3 | 4.020 × 10−5 | 3.691 × 10−3 | 2.229 × 10−4 | 1.146 × 10−4 | 2.463 × 10−3 |
F6 | 3.392 × 10−6 | 3.392 × 10−6 | 3.392 × 10−6 | 3.392 × 10−6 | 3.392 × 10−6 | 3.392 × 10−6 |
F7 | 6.783 × 10−1 | 1.844 × 10−1 | 3.195 × 10−1 | 6.187 × 10−1 | 2.998 × 10−1 | 3.440 × 10−2 |
F8 | 6.783 × 10−1 | 9.669 × 10−1 | 6.783 × 10−1 | 5.452 × 10−3 | 4.937 × 10−4 | 7.089 × 10−1 |
F9 | 3.392 × 10−6 | 3.392 × 10−6 | 3.392 × 10−6 | 3.392 × 10−6 | 3.392 × 10−6 | 3.392 × 10−6 |
F10 | 1.440 × 10−2 | 3.837 × 10−1 | 9.339 × 10−1 | 6.709 × 10−4 | 1.892 × 10−4 | 1.440 × 10−2 |
F11 | 3.392 × 10−6 | 2.798 × 10−5 | 3.392 × 10−6 | 3.392 × 10−6 | 3.392 × 10−6 | 3.392 × 10−6 |
F12 | 1.807 × 10−2 | 1.330 × 10−5 | 4.020 × 10−5 | 3.392 × 10−6 | 3.392 × 10−6 | 9.059 × 10−4 |
+/=/– | 9/2/1 | 8/4/0 | 8/4/0 | 8/4/0 | 8/4/0 | 8/3/1 |
Function | IPO | PO | HHO | SCA | OOA | AOA | AO |
---|---|---|---|---|---|---|---|
F1 | 1.589 × 10−1 | 1.311 × 10−1 | 1.848 × 10−1 | 1.219 × 10−1 | 1.359 × 10−1 | 1.165 × 10−1 | 2.057 × 10−1 |
F2 | 1.562 × 10−1 | 1.346 × 10−1 | 1.786 × 10−1 | 1.280 × 10−1 | 1.404 × 10−1 | 1.191 × 10−1 | 2.017 × 10−1 |
F3 | 2.174 × 10−1 | 1.930 × 10−1 | 3.393 × 10−1 | 1.834 × 10−1 | 2.550 × 10−1 | 1.691 × 10−1 | 3.094 × 10−1 |
F4 | 1.687 × 10−1 | 1.532 × 10−1 | 2.316 × 10−1 | 1.425 × 10−1 | 1.649 × 10−1 | 1.261 × 10−1 | 2.305 × 10−1 |
F5 | 1.700 × 10−1 | 1.464 × 10−1 | 2.399 × 10−1 | 1.414 × 10−1 | 1.706 × 10−1 | 1.297 × 10−1 | 2.329 × 10−1 |
F6 | 1.560 × 10−1 | 1.373 × 10−1 | 2.034 × 10−1 | 1.316 × 10−1 | 1.457 × 10−1 | 1.193 × 10−1 | 2.043 × 10−1 |
F7 | 2.315 × 10−1 | 2.135 × 10−1 | 4.130 × 10−1 | 2.111 × 10−1 | 2.955 × 10−1 | 1.902 × 10−1 | 3.616 × 10−1 |
F8 | 2.459 × 10−1 | 2.293 × 10−1 | 4.406 × 10−1 | 2.347 × 10−1 | 3.348 × 10−1 | 2.095 × 10−1 | 4.006 × 10−1 |
F9 | 1.856 × 10−1 | 1.728 × 10−1 | 3.057 × 10−1 | 1.685 × 10−1 | 2.407 × 10−1 | 1.569 × 10−1 | 2.968 × 10−1 |
F10 | 1.638 × 10−1 | 1.548 × 10−1 | 2.709 × 10−1 | 1.565 × 10−1 | 2.081 × 10−1 | 1.381 × 10−1 | 2.549 × 10−1 |
F11 | 1.927 × 10−1 | 1.804 × 10−1 | 3.216 × 10−1 | 1.840 × 10−1 | 2.652 × 10−1 | 1.733 × 10−1 | 3.218 × 10−1 |
F12 | 2.139 × 10−1 | 1.980 × 10−1 | 3.667 × 10−1 | 2.016 × 10−1 | 3.029 × 10−1 | 1.857 × 10−1 | 3.558 × 10−1 |
Datasets | Number of Features | Number of Training Samples | Number of Test Samples | Number of Classes | MLP Structure | Dimension | Search Range |
---|---|---|---|---|---|---|---|
XOR | 3 | 8 | 8 | 2 | 3-7-1 | 36 | [−10, 10] |
Balloon | 4 | 20 | 20 | 2 | 4-9-1 | 55 | [−10, 10] |
Iris | 4 | 150 | 150 | 3 | 4-9-3 | 75 | [−10, 10] |
Breast cancer | 9 | 599 | 100 | 2 | 9-19-1 | 210 | [−10, 10] |
Heart | 22 | 80 | 187 | 2 | 22-45-1 | 1081 | [−10, 10] |
Datasets | Index | IPO-MLP | PO-MLP | HHO-MLP | SCA-MLP | OOA-MLP | AOA-MLP | AO-MLP |
---|---|---|---|---|---|---|---|---|
XOR | Mean | 1.186 × 10−2 | 1.508 × 10−1 | 3.865 × 10−2 | 4.753 × 10−2 | 1.942 × 10−1 | 2.098 × 10−1 | 4.933 × 10−2 |
Best | 2.274 × 10−9 | 4.259 × 10−8 | 5.663 × 10−8 | 3.263 × 10−3 | 1.216 × 10−1 | 1.367 × 10−1 | 9.035 × 10−9 | |
Worst | 2.500 × 10−1 | 2.500 × 10−1 | 2.143 × 10−1 | 1.093 × 10−1 | 2.500 × 10−1 | 2.500 × 10−1 | 2.500 × 10−1 | |
Std | 4.887 × 10−2 | 1.029 × 10−1 | 6.754 × 10−2 | 3.419 × 10−2 | 3.971 × 10−2 | 3.530 × 10−2 | 7.784 × 10−2 | |
Rank | 1 | 5 | 2 | 3 | 6 | 7 | 4 | |
Balloon | Mean | 3.939 × 10−11 | 3.739 × 10−6 | 3.058 × 10−6 | 1.095 × 10−5 | 5.539 × 10−2 | 5.416 × 10−3 | 8.642 × 10−7 |
Best | 2.280 × 10−22 | 1.397 × 10−15 | 1.568 × 10−19 | 6.161 × 10−9 | 3.989 × 10−4 | 5.130 × 10−9 | 1.634 × 10−18 | |
Worst | 1.181 × 10−9 | 4.288 × 10−5 | 6.335 × 10−5 | 1.219 × 10−4 | 1.524 × 10−1 | 5.789 × 10−2 | 1.385 × 10−5 | |
Std | 2.157 × 10−1 | 9.062 × 10−6 | 1.250 × 10−5 | 2.341 × 10−5 | 3.975 × 10−2 | 1.217 × 10−2 | 3.286 × 10−6 | |
Rank | 1 | 4 | 3 | 5 | 7 | 6 | 2 | |
Iris | Mean | 3.541 × 10−2 | 1.013 × 10−1 | 7.539 × 10−2 | 1.965 × 10−1 | 4.756 × 10−1 | 3.509 × 10−1 | 5.743 × 10−2 |
Best | 1.549 × 10−2 | 4.374 × 10−2 | 3.090 × 10−2 | 7.834 × 10−2 | 1.853 × 10−1 | 2.276 × 10−1 | 2.375 × 10−2 | |
Worst | 1.060 × 10−1 | 2.896 × 10−1 | 3.745 × 10−1 | 3.427 × 10−1 | 6.657 × 10−1 | 4.835 × 10−1 | 3.511 × 10−1 | |
Std | 1.871 × 10−2 | 5.048 × 10−2 | 8.281 × 10−2 | 6.464 × 10−2 | 1.099 × 10−1 | 7.280 × 10−2 | 8.078 × 10−2 | |
Rank | 1 | 4 | 3 | 5 | 7 | 6 | 2 | |
Breast cancer | Mean | 1.499 × 10−3 | 1.729 × 10−3 | 1.887 × 10−3 | 1.388 × 10−2 | 2.078 × 10−3 | 4.708 × 10−3 | 1.985 × 10−3 |
Best | 1.329 × 10−3 | 1.486 × 10−3 | 1.618 × 10−3 | 4.188 × 10−3 | 1.698 × 10−3 | 2.256 × 10−3 | 1.639 × 10−3 | |
Worst | 1.711 × 10−3 | 2.270 × 10−3 | 2.131 × 10−3 | 3.623 × 10−2 | 2.941 × 10−3 | 1.247 × 10−2 | 2.628 × 10−3 | |
Std | 8.498 × 10−5 | 1.775 × 10−4 | 1.520 × 10−4 | 7.986 × 10−3 | 2.530 × 10−4 | 2.191 × 10−3 | 2.365 × 10−4 | |
Rank | 1 | 2 | 3 | 7 | 5 | 6 | 4 | |
Heart | Mean | 8.432 × 10−2 | 1.134 × 10−1 | 1.226 × 10−1 | 1.810 × 10−1 | 1.689 × 10−1 | 1.533 × 10−1 | 1.008 × 10−1 |
Best | 6.383 × 10−2 | 8.461 × 10−2 | 8.822 × 10−2 | 1.454 × 10−1 | 1.493 × 10−1 | 1.215 × 10−1 | 6.721 × 10−2 | |
Worst | 1.192 × 10−1 | 1.450 × 10−1 | 1.699 × 10−1 | 2.113 × 10−1 | 1.937 × 10−1 | 1.798 × 10−1 | 1.410 × 10−1 | |
Std | 1.233 × 10−2 | 1.592 × 10−2 | 2.094 × 10−2 | 1.678 × 10−2 | 1.051 × 10−2 | 1.436 × 10−2 | 2.134 × 10−2 | |
Rank | 1 | 3 | 4 | 7 | 6 | 5 | 2 | |
Mean Rank | 1 | 3.6 | 3 | 5.4 | 6.2 | 6 | 2.8 | |
Final Rank | 1 | 4 | 3 | 5 | 7 | 6 | 2 |
Datasets | Index | IPO-MLP | PO-MLP | HHO-MLP | SCA-MLP | OOA-MLP | AOA-MLP | AO-MLP |
---|---|---|---|---|---|---|---|---|
XOR | Mean | 94.17 | 29.58 | 66.67 | 46.67 | 7.08 | 9.58 | 71.67 |
Best | 100.00 | 100.00 | 100.00 | 75.00 | 37.50 | 50.00 | 100.00 | |
Worst | 0.00 | 0.00 | 0.00 | 12.50 | 0.00 | 0.00 | 0.00 | |
Std | 22.44 | 40.13 | 36.31 | 17.66 | 10.73 | 13.80 | 33.95 | |
Rank | 1 | 5 | 3 | 4 | 7 | 6 | 2 | |
Balloon | Mean | 100.00 | 100.00 | 100.00 | 100.00 | 30.67 | 75.00 | 100.00 |
Best | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
Worst | 100.00 | 100.00 | 100.00 | 100.00 | 0.00 | 0.00 | 100.00 | |
Std | 0.00 | 0.00 | 0.00 | 0.00 | 27.94 | 34.22 | 0.00 | |
Rank | 1 | 1 | 1 | 1 | 7 | 6 | 1 | |
Iris | Mean | 75.42 | 38.58 | 48.24 | 36.18 | 1.80 | 2.04 | 74.93 |
Best | 92.00 | 79.33 | 86.67 | 64.67 | 33.33 | 24.67 | 89.33 | |
Worst | 14.67 | 0.00 | 0.00 | 9.33 | 0.00 | 0.00 | 41.33 | |
Std | 16.24 | 24.02 | 22.44 | 15.63 | 6.32 | 6.21 | 11.88 | |
Rank | 1 | 4 | 3 | 5 | 7 | 6 | 2 | |
Breast cancer | Mean | 98.57 | 98.53 | 98.83 | 58.17 | 99.13 | 90.00 | 97.97 |
Best | 100.00 | 100.00 | 100.00 | 95.00 | 100.00 | 99.00 | 100.00 | |
Worst | 98.00 | 94.00 | 98.00 | 5.00 | 96.00 | 0.00 | 96.00 | |
Std | 0.63 | 1.25 | 0.70 | 33.13 | 0.78 | 18.23 | 0.89 | |
Rank | 4 | 5 | 3 | 7 | 1 | 6 | 2 | |
Heart | Mean | 66.96 | 48.25 | 40.88 | 73.46 | 24.96 | 38.58 | 62.63 |
Best | 87.50 | 76.25 | 71.25 | 80.00 | 35.00 | 76.25 | 90.00 | |
Worst | 38.75 | 3.75 | 5.00 | 65.00 | 0.00 | 5.00 | 32.50 | |
Std | 12.05 | 21.49 | 16.17 | 3.39 | 8.97 | 19.66 | 14.28 | |
Rank | 2 | 4 | 5 | 1 | 7 | 6 | 3 | |
Mean Rank | 1.8 | 3.8 | 3 | 3.6 | 5.8 | 6 | 2 | |
Final Rank | 1 | 5 | 3 | 4 | 6 | 7 | 2 |
Index | IPO-MLP | PO-MLP | HHO-MLP | SCA-MLP | OOA-MLP | AOA-MLP | AO-MLP |
---|---|---|---|---|---|---|---|
Best | 1.543 × 10−2 | 5.685 × 10−2 | 2.703 × 10−2 | 7.628 × 10−2 | 1.634 × 10−1 | 2.037 × 10−1 | 2.381 × 10−2 |
Mean | 4.111 × 10−2 | 1.069 × 10−1 | 6.166 × 10−2 | 1.919 × 10−1 | 4.586 × 10−1 | 3.488 × 10−1 | 5.172 × 10−2 |
Worst | 3.580 × 10−1 | 2.471 × 10−1 | 3.486 × 10−1 | 3.945 × 10−1 | 6.099 × 10−1 | 5.521 × 10−1 | 3.560 × 10−1 |
Std | 6.044 × 10−2 | 5.048 × 10−2 | 6.139 × 10−2 | 7.363 × 10−2 | 1.069 × 10−1 | 9.440 × 10−2 | 5.954 × 10−2 |
Rank | 1 | 4 | 3 | 5 | 7 | 6 | 2 |
Index | IPO-MLP | PO-MLP | HHO-MLP | SCA-MLP | OOA-MLP | AOA-MLP | AO-MLP |
---|---|---|---|---|---|---|---|
Best | 88.33 | 66.67 | 83.33 | 71.67 | 18.33 | 8.33 | 85.00 |
Mean | 70.22 | 28.44 | 44.56 | 27.67 | 1.28 | 0.39 | 67.39 |
Worst | 6.67 | 0.00 | 0.00 | 3.33 | 0.00 | 0.00 | 10.00 |
Std | 18.32 | 23.04 | 24.85 | 20.49 | 3.83 | 1.56 | 18.81 |
Rank | 1 | 4 | 3 | 5 | 6 | 7 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Dai, C.; Hussien, A.G.; Zheng, R. IPO: An Improved Parrot Optimizer for Global Optimization and Multilayer Perceptron Classification Problems. Biomimetics 2025, 10, 358. https://doi.org/10.3390/biomimetics10060358
Li F, Dai C, Hussien AG, Zheng R. IPO: An Improved Parrot Optimizer for Global Optimization and Multilayer Perceptron Classification Problems. Biomimetics. 2025; 10(6):358. https://doi.org/10.3390/biomimetics10060358
Chicago/Turabian StyleLi, Fang, Congteng Dai, Abdelazim G. Hussien, and Rong Zheng. 2025. "IPO: An Improved Parrot Optimizer for Global Optimization and Multilayer Perceptron Classification Problems" Biomimetics 10, no. 6: 358. https://doi.org/10.3390/biomimetics10060358
APA StyleLi, F., Dai, C., Hussien, A. G., & Zheng, R. (2025). IPO: An Improved Parrot Optimizer for Global Optimization and Multilayer Perceptron Classification Problems. Biomimetics, 10(6), 358. https://doi.org/10.3390/biomimetics10060358