A Coverage Optimization Approach for Wireless Sensor Networks Using Swarm Intelligence Optimization
Abstract
1. Introduction
- Propose an MIFSA hybrid algorithm with enhanced global exploration via an elite reverse learning strategy.
- Design a multi-stage adaptive parameter strategy to dynamically balance search accuracy and speed.
- Validate the algorithm’s performance in 23 benchmark functions and wireless sensor network coverage optimization, outperforming 7 comparison algorithms.
2. Mathematical Model for the Coverage of Wireless Sensor Network
3. Flamingo Search Optimization Algorithm
4. Improved Flamingo Search Optimization Algorithm
| Algorithm 1: The MIFSA |
| Start MIFSA. Input: Flamingo population size; Maximum number of iterations, IferMax; The first part is the proportion of migrating flamingos, MPb. Output: The optimal fitness value, fg. The optimal solution, Xbest. 1. Using (12) update the flamingo’s location. 2. Rank the fitness values and find the current best individual, Xbest. 3. t ← 1. 4. while (t ≤ lterMax) do 5. R ← rand [0,1]. 6. MPr ← R × P × (1 − MPb). 7. MP0 ← MPb. 8. MPt ← P-MP0 9. for i <- 1 to MPbdo 10. for j < 1 to n //n is the dimension size 11. Using (13) update the flamingo’s location; 12. end for 13. end for 14. for i ← 1 + MP0 to MP0 + MPr 15. for j ← 1 to n do 16. Using (15) update the flamingo’s location; 17. end for 18. end for 19. for i ← MP0 + MPr + 1 to P 20. for j ← 1 to n 21. Using (16) update the flamingo’s location; 22. end for 23. end for 24. Using (17) update the flamingo’s location; 25. for i ← 1 to P //Boundary detection; 26. for j ← 1 to d 27. if xtij > ub then 28. xtij ← ub 29. end if 30. if xtij < lb then 31. xtij ← lb 32. end if 33. end for 34. end for 35. Rank the fitness values and find the current best individual, Xbest. 36. t ← t + 1 37. end while 38. return fg and Xbest End MIFSA. |
5. Simulation Experimental Analysis
5.1. Experimental and Environmental Settings
5.2. Comparative Analysis Between MIFSA and Other Algorithms
5.3. Further Comparative Experiments of the Algorithms (50D)
5.4. WSNs Coverage Optimization Simulation Experiment and Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Priyadarshi, R. Energy-efficient routing in wireless sensor networks: A meta-heuristic and artificial intelligence-based approach: A comprehensive review. Arch. Comput. Methods Eng. 2024, 31, 2109–2137. [Google Scholar] [CrossRef]
- Oztoprak, A.; Hassanpour, R.; Ozkan, A.; Oztoprak, K. Security challenges, mitigation strategies, and future trends in wireless sensor networks: A review. ACM Comput. Surv. 2024, 57, 1–29. [Google Scholar] [CrossRef]
- Qiu, Y.; Ma, L.; Priyadarshi, R. Deep learning challenges and prospects in wireless sensor network deployment. Arch. Comput. Methods Eng. 2024, 31, 3231–3254. [Google Scholar] [CrossRef]
- Soleymaani, F.; Sandidzadeh, M.A.; Mirabadi, A. Calibrating the train position and speed in signalling systems using balises and wireless sensor networks. Int. J. Sens. Netw. 2024, 46, 100–113. [Google Scholar] [CrossRef]
- Kandris, D.; Anastasiadis, E. Advanced wireless sensor networks: Applications, challenges and research trends. Electronics 2024, 13, 2268. [Google Scholar] [CrossRef]
- Yue, Y.; He, P. A Comprehensive Survey on the Reliability of Mobile Wireless Sensor Networks: Taxonomy, Challenges, and Future Directions. Inf. Fusion 2018, 11, 188–204. [Google Scholar] [CrossRef]
- Hanh, N.T.; Binh, H.T.T.; Van Son, N.; Trang, N.T.; Lan, P.N. Optimizing wireless sensor network lifetime through K-coverage maximization and memetic search. Sustain. Comput. Inform. Syst. 2023, 40, 100905. [Google Scholar] [CrossRef]
- Aggarwal, K.; Reddy, G.; Makala, R.; Srihari, T.; Sharma, N.; Singh, C. Studies on energy efficient techniques for agricultural monitoring by wireless sensor networks. Comput. Electr. Eng. 2024, 113, 109052. [Google Scholar] [CrossRef]
- Tirandazi, P.; Rahiminasab, A.; Ebadi, M.J. An efficient coverage and connectivity algorithm based on mobile robots for wireless sensor networks. J. Ambient Intell. Humaniz. Comput. 2023, 14, 8291–8313. [Google Scholar] [CrossRef]
- Yao, Y.; Liao, H.; Liu, M.; Yang, X. Coverage optimization strategy for 3-D wireless sensor networks based on improved sparrow search algorithm. IEEE Sens. J. 2023, 23, 23721–23733. [Google Scholar] [CrossRef]
- Singh, Y.; Walingo, T. Smart water quality monitoring with IOT wireless sensor networks. Sensors 2024, 24, 2871. [Google Scholar] [CrossRef]
- Kumari, S.; Mishra, P.K.; Anand, V. Coverage and connectivity aware deployment scheme for autonomous underwater vehicles in underwater wireless sensor networks. Wirel. Pers. Commun. 2023, 132, 909–931. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Rao, S.; Zhou, X.; Hu, J. A novel self-adaptive multi-strategy artificial bee colony algorithm for coverage optimization in wireless sensor networks. Ad Hoc Netw. 2023, 150, 103284. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Wang, Y.; Wen, Q. Improved sand cat swarm optimization algorithm for enhancing coverage of wireless sensor networks. Measurement 2024, 233, 114649. [Google Scholar] [CrossRef]
- Xiao, Z.; Deng, X.; Lu, H.; Xia, Y.; Fan, X.; Yi, L.; Yang, L.T. Tensor and confident information coverage based reliability evaluation for large-scale intelligent transportation wireless sensor networks. IEEE Trans. Veh. Technol. 2023, 72, 13461–13473. [Google Scholar] [CrossRef]
- Dao, T.K.; Nguyen, T.D.; Nguyen, V.T. An improved honey badger algorithm for coverage optimization in wireless sensor network. J. Internet Technol. 2023, 24, 363–377. [Google Scholar]
- Gou, P.; Guo, B.; Guo, M.; Mao, S. VKECE-3D: Energy-efficient coverage enhancement in three-dimensional heterogeneous wireless sensor networks based on 3D-voronoi and K-means algorithm. Sensors 2023, 23, 573. [Google Scholar] [CrossRef]
- Ammari, H.M. A computational geometry-based approach for planar k-coverage in wireless sensor networks. ACM Trans. Sens. Netw. 2023, 19, 1–42. [Google Scholar] [CrossRef]
- Yarinezhad, R.; Hashemi, S.N. A sensor deployment approach for target coverage problem in wireless sensor networks. J. Ambient Intell. Humaniz. Comput. 2023, 14, 5941–5956. [Google Scholar] [CrossRef]
- Satyanarayana, P.; Mahalakshmi, T.; Sivakami, R.; Alahmari, S.A.; Rajeyyagari, S.; Asadi, S. A new algorithm for detection of nodes failures and enhancement of network coverage and energy usage in wireless sensor networks. Mater. Today Proc. 2023, 80, 1717–1722. [Google Scholar] [CrossRef]
- Boualem, A.; De Runz, C.; Ayaida, M.; Akdag, H. A fuzzy/possibility approach for area coverage in wireless sensor networks. Soft Comput. 2023, 27, 9367–9382. [Google Scholar] [CrossRef]
- Sah, D.K.; Srivastava, S.; Kumar, R.; Amgoth, T. An energy efficient coverage aware algorithm in energy harvesting wireless sensor networks. Wirel. Netw. 2023, 29, 1175–1195. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q. Coverage algorithm based on perceived environment around nodes in mobile wireless sensor networks. Wirel. Pers. Commun. 2023, 128, 2725–2740. [Google Scholar] [CrossRef]
- Yang, H. A practical method for connectivity and coverage reliability analysis for linear wireless sensor networks. Ad Hoc Netw. 2023, 146, 103183. [Google Scholar] [CrossRef]
- Banoth, S.P.R.; Donta, P.K.; Amgoth, T. Target-aware distributed coverage and connectivity algorithm for wireless sensor networks. Wirel. Netw. 2023, 29, 1815–1830. [Google Scholar] [CrossRef]
- Ou, Y.; Qin, F.; Zhou, K.Q.; Yin, P.F.; Mo, L.P.; Mohd Zain, A. An improved grey wolf optimizer with multi-strategies coverage in wireless sensor networks. Symmetry 2024, 16, 286. [Google Scholar] [CrossRef]
- Hanh, N.T.; Binh, H.T.T.; Truong, V.Q.; Tan, N.P.; Phap, H.C. Node placement optimization under Q-Coverage and Q-Connectivity constraints in wireless sensor networks. J. Netw. Comput. Appl. 2023, 212, 103578. [Google Scholar] [CrossRef]
- Saadati, M.; Mazinani, S.M.; Khazaei, A.A.; Chabok, S.J.S.M. Energy efficient clustering for dense wireless sensor network by applying graph neural networks with coverage metrics. Ad Hoc Netw. 2024, 156, 103432. [Google Scholar] [CrossRef]
- Jiang, S.; Shang, J.; Guo, J.; Zhang, Y. Multi-strategy improved flamingo search algorithm for global optimization. Appl. Sci. 2023, 13, 5612. [Google Scholar] [CrossRef]
- Zhiheng, W.; Jianhua, L. Flamingo search algorithm: A new swarm intelligence optimization algorithm. IEEE Access 2021, 9, 88564–88582. [Google Scholar] [CrossRef]
- Eluri, R.K.; Devarakonda, N. Feature selection with a binary flamingo search algorithm and a genetic algorithm. Multimed. Tools Appl. 2023, 82, 26679–26730. [Google Scholar] [CrossRef]
- Srinivasarao, P.; Satish, A.R. Multi-objective materialized view selection using flamingo search optimization algorithm. Softw. Pract. Exp. 2023, 53, 988–1012. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, M.; Mahapatra, R.P.; Bhattacharya, P.; Le, T.T.H.; Verma, S.; Kavita; Mohiuddin, K. Flamingo-optimization-based deep convolutional neural network for iot-based arrhythmia classification. Sensors 2023, 23, 4353. [Google Scholar] [CrossRef]
- Mahdi, A.Y.; Yuhaniz, S.S. Optimal feature selection using novel flamingo search algorithm for classification of COVID-19 patients from clinical text. Math. Biosci. Eng. 2023, 20, 5268–5297. [Google Scholar] [CrossRef]
- Arivubrakan, P.; Kanagachidambaresan, G.R. Multi-objective cluster head-based energy-aware routing protocol using hybrid woodpecker and flamingo search optimization algorithm for Internet of Things environment. Int. J. Inf. Technol. Decis. Mak. 2024, 23, 763–782. [Google Scholar] [CrossRef]
- Prakash, T.S.; Kumar, A.S.; Durai, C.R.B.; Ashok, S. Enhanced Elman spike Neural network optimized with flamingo search optimization algorithm espoused lung cancer classification from CT images. Biomed. Signal Process. Control 2023, 84, 104948. [Google Scholar] [CrossRef]
- Alajmi, M.; Mengash, H.A.; Alqahtani, H.; Aljameel, S.S.; Hamza, M.A.; Salama, A.S. Automated threat detection using flamingo search algorithm with optimal deep learning on cyber-physical system environment. IEEE Access 2023, 11, 127669–127678. [Google Scholar] [CrossRef]
- Abraham, R.; Vadivel, M. An energy efficient wireless sensor network with flamingo search algorithm based cluster head selection. Wirel. Pers. Commun. 2023, 130, 1503–1525. [Google Scholar] [CrossRef]
- Durgam, R.; Devarakonda, N. Disease classification using neighbourhood centroid opposition based multi-objective flamingo search algorithm based feature selection approach. J. Intell. Fuzzy Syst. 2023, 45, 6911–6922. [Google Scholar] [CrossRef]
- Devi, M.R.; Sreelekha, K.V.; Jayaraj, R. Jarrot butterfly optimized flamingo search algorithm for optimal routing in WSN. Int. J. Data Sci. Artif. Intell. 2024, 2, 48–54. [Google Scholar]
- Subramanian, D.; Subramaniam, S.; Natarajan, K.; Thangavel, K. Flamingo Jelly Fish search optimization-based routing with deep-learning enabled energy prediction in WSN data communication. Netw. Comput. Neural Syst. 2024, 35, 73–100. [Google Scholar] [CrossRef]
- Fernisha, S.R.; Christopher, C.S.; Lyernisha, S.R. Slender Swarm Flamingo optimization-based residual low-light image enhancement network. Imaging Sci. J. 2021, 69, 391–406. [Google Scholar] [CrossRef]
- Suresh, T.; Brijet, Z.; Subha, T.D. Modified local binary patterns based feature extraction and hyper parameters tuned attention segmental recurrent neural network classifier using flamingo search optimization algorithm for disease diagnosis model. Concurr. Comput. Pract. Exp. 2022, 34, e7182. [Google Scholar] [CrossRef]
- Draoui, A.; Saidi, A.; Allaoua, B.; Bourezg, A. A novel global maximum power point tracking based on flamingo search algorithm for photovoltaic systems. Int. J. Electr. Comput. Eng. 2025, 15, 1015. [Google Scholar] [CrossRef]
- Chen, L.; Ma, L.; Li, L. Enhancing sine cosine algorithm based on social learning and elite opposition-based learning. Computing 2024, 106, 1475–1517. [Google Scholar] [CrossRef]
- Elgamal, Z.M.; Yasin, N.M.; Sabri, A.Q.M.; Sihwail, R.; Tubishat, M.; Jarrah, H. Improved equilibrium optimization algorithm using elite opposition-based learning and new local search strategy for feature selection in medical datasets. Computation 2021, 9, 68. [Google Scholar] [CrossRef]
- Tao, S.; Wang, K.; Jin, T.; Wu, Z.; Lei, Z.; Gao, S. Spherical search algorithm with memory-guided population stage-wise control for bound-constrained global optimization problems. Appl. Soft Comput. 2024, 161, 111677. [Google Scholar] [CrossRef]
- Liu, P.; Cui, G.; Xiao, Y.; Chen, J. A new heuristic algorithm with the step size adjustment strategy for heat exchanger network synthesis. Energy 2018, 143, 12–24. [Google Scholar] [CrossRef]
- Hassan, B.A. CSCF: A chaotic sine cosine firefly algorithm for practical application problems. Neural Comput. Appl. 2021, 33, 7011–7030. [Google Scholar] [CrossRef]
- Naik, R.B.; Singh, U. A review on applications of chaotic maps in pseudo-random number generators and encryption. Ann. Data Sci. 2024, 11, 25–50. [Google Scholar] [CrossRef] [PubMed]
- Jiao, C.; Zhou, Q.; Zhang, W.; Zhang, C. The Modified Sparrow Search Algorithm with Brown Motion and Levy Flight Strategy for the Class Integration Test Order Generation Problem. Biomimetics 2025, 10, 195. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Guo, Y.; Sheng, G. Salp Swarm Incorporated Adaptive Dwarf Mongoose Optimizer with Lévy Flight and Gbest-Guided Strategy. J. Bionic Eng. 2024, 21, 2110–2144. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. Subtraction-average-based optimizer: A new swarm-inspired metaheuristic algorithm for solving optimization problems. Biomimetics 2023, 8, 149. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Li, G.; Meng, Z. Beluga whale optimization: A novel nature-inspired metaheuristic algorithm. Knowl.-Based Syst. 2022, 251, 109215. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Azeem, S.A.A.; Jameel, M.; Abouhawwash, M. Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler’s laws of planetary motion. Knowl.-Based Syst. 2023, 268, 110454. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Jameel, M.; Abouhawwash, M. Spider wasp optimizer: A novel meta-heuristic optimization algorithm. Artif. Intell. Rev. 2023, 56, 11675–11738. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Zamani, H.; Asghari Varzaneh, Z.; Mirjalili, S. A systematic review of the whale optimization algorithm: Theoretical foundation, improvements, and hybridizations. Arch. Comput. Methods Eng. 2023, 30, 4113–4159. [Google Scholar] [CrossRef]
















| Function | Equation | Dimension | Bounds | Optimum |
|---|---|---|---|---|
| F1 | 30 | [−100,100] | 0 | |
| F2 | 30 | [−10,100] | 0 | |
| F3 | 30 | [−100,100] | 0 | |
| F4 | 30 | [−100,100] | 0 | |
| F5 | 30 | [−10,100] | 0 | |
| F6 | 30 | [−100,100] | 0 | |
| F7 | 30 | [−1.28,1.28] | 0 | |
| F8 | 30 | [−10,100] | 0 | |
| F9 | 30 | [−100,100] | 0 | |
| F10 | 30 | [−5.12,5.12] | 0 | |
| F11 | 30 | [−32,32] | 0 | |
| F12 | 30 | [−600,600] | 0 | |
| F13 | 30 | [−50,50] | 0 | |
| F14 | 2 | [−65,65] | 0 | |
| F15 | 4 | [−5,5] | 0.0003 | |
| F16 | 2 | [−5,5] | −1.0316 | |
| F17 | 2 | [−5,10] | 0.3978 | |
| F18 | 2 | [−2,2] | 3 | |
| F19 | 3 | [1,3] | −3.86 | |
| F20 | 6 | [0,1] | −3.32 | |
| F21 | 4 | [0,10] | −10.1532 | |
| F22 | 4 | [0,10] | −10.4028 | |
| F23 | 4 | [0,10] | −10.5363 |
| Function | MIFSA | FSA | WOA | BOA | SWO | KOA | BWO | SABO | |
|---|---|---|---|---|---|---|---|---|---|
| F1 | min | 0 | 0 | 3.96 × 10−85 | 1.12 × 10−11 | 1.82 × 10−2 | 4.05 × 104 | 6.23 × 10−273 | 3.87 × 10−202 |
| F1 | std | 0 | 2.59 | 2.54 × 10−75 | 9.31 × 10−13 | 8.4 × 102 | 6.73 × 103 | 0 | 0 |
| F1 | avg | 0 | 5.11 × 10−1 | 1.36 × 10−75 | 1.31 × 10−11 | 3.83 × 102 | 5.46 × 104 | 4.14 × 10−259 | 1.03 × 10−196 |
| F2 | min | 0 | 0 | 7.89 × 10−59 | 2.1 × 10−9 | 1.69 × 10−2 | 2.54 × 105 | 3.91 × 10−138 | 2.00 × 10−113 |
| F2 | std | 0 | 3.77 × 10−2 | 1.13 × 10−51 | 1.31 × 10−9 | 4.08 | 4.64 × 1010 | 2.21 × 10−130 | 8.59 × 10−111 |
| F2 | avg | 0 | 1.05 × 10−2 | 4.35 × 10−52 | 4.53 × 10−9 | 2.47 | 2.00 × 1010 | 4.53 × 10−131 | 4.30 × 10−111 |
| F3 | min | 0 | 0 | 1.35 × 104 | 1.12 × 10−11 | 2.54 × 10−1 | 5.82 × 104 | 1.13 × 10−257 | 3.90 × 10−95 |
| F3 | std | 0 | 1.22 × 10−2 | 1.65 × 104 | 8.98 × 10−13 | 6.83 × 103 | 1.50 × 104 | 0 | 1.02 × 10−26 |
| F3 | avg | 0 | 2.65 × 10−3 | 4.46 × 104 | 1.29 × 10−11 | 2.79 × 103 | 8.52 × 104 | 5.08 × 10−239 | 1.87 × 10−27 |
| F4 | min | 0 | 0 | 7.77 × 10−1 | 5.54 × 10−9 | 4.17 × 10−2 | 7.31 × 101 | 9.52 × 10−133 | 1.31 × 10−78 |
| F4 | std | 0 | 1.20 × 10−2 | 2.51 × 101 | 2.93 × 10−10 | 6.53 | 3.1 | 5.45 × 10−126 | 5.81 × 10−77 |
| F4 | avg | 0 | 2.50 × 10−3 | 4.44 × 101 | 6.08 × 10−9 | 4.85 | 8.17 × 101 | 1.09 × 10−126 | 3.57 × 10−77 |
| F5 | min | 9.15 × 10−6 | 2.88 × 101 | 2.73 × 101 | 2.89 × 101 | 2.9 × 101 | 1.25 × 108 | 7.51 × 10−9 | 2.79 × 101 |
| F5 | std | 3.82 | 9.73 | 4.86 × 10−1 | 2.61 × 10−2 | 4.29 × 105 | 2.66 × 107 | 1.14 × 10−5 | 3.04 × 10−1 |
| F5 | avg | 2.75 | 3.16 × 101 | 2.82 × 101 | 2.89 × 101 | 8.4 × 104 | 1.87 × 108 | 3.96 × 10−6 | 2.85 × 101 |
| F6 | min | 1.48 × 10−3 | 1.39 | 7.44 × 10−2 | 4.92 | 6.21 | 4.54 × 104 | 2.28 × 10−16 | 1.78 |
| F6 | std | 4.28 × 10−1 | 2.39 | 2.31 × 10−1 | 6.06 × 10−1 | 1.93 × 102 | 5.47 × 103 | 3.74 × 10−14 | 4.84 × 10−1 |
| F6 | avg | 3.02 × 10−1 | 6.69 | 3.99 × 10−1 | 5.95 | 9.5 × 101 | 5.64 × 104 | 2.35 × 10−14 | 2.64 |
| F7 | min | 1.07 × 10−4 | 4.13 × 10−3 | 1.13 × 10−4 | 2.46 × 10−4 | 6.89 × 10−3 | 7.02 × 101 | 1.55 × 10−6 | 1.23 × 10−5 |
| F7 | std | 5.08 × 10−3 | 1.03 × 10−1 | 3.78 × 10−3 | 5.38 × 10−4 | 7.05 × 10−2 | 1.13 × 101 | 8.13 × 10−5 | 1.06 × 10−4 |
| F7 | avg | 4.53 × 10−3 | 9.18 × 10−2 | 3.32 × 10−3 | 1.27 × 10−3 | 7.05 × 10−2 | 8.93 × 101 | 1.09 × 10−4 | 1.41 × 10−4 |
| F8 | min | −1.26 × 104 | −1.08 × 104 | −1.26 × 104 | −3.07 × 103 | −4.95 × 103 | −5.42 × 103 | −1.26 × 104 | −4.03 × 103 |
| F8 | std | 6.64 × 102 | 9.91 × 102 | 1.99 × 103 | 4.42 × 102 | 4.06 × 102 | 1.85 × 10−12 | 1.16 × 10−8 | 3.25 × 102 |
| F8 | avg | −1.22 × 104 | −6.98 × 103 | −1.01 × 104 | −3.81 × 103 | −4.25 × 103 | −5.42 × 103 | −1.26 × 104 | −3.21 × 103 |
| F9 | min | 0 | 0 | 0 | 0 | 5.07 × 10−3 | 3.57 × 102 | 0 | 0 |
| F9 | std | 0 | 1.03 × 10−2 | 1.04 × 10−14 | 7.55 × 101 | 5.25 × 101 | 2.05 × 101 | 0 | 0 |
| F9 | avg | 0 | 2.88 × 10−3 | 1.89 × 10−15 | 3.32 × 101 | 3.9 × 101 | 3.98 × 102 | 0 | 0 |
| F10 | min | 4.44 × 10−16 | 4.44 × 10−16 | 4.44 × 10−16 | 5.28 × 10−9 | 6.9 × 10−3 | 1.98 × 101 | 4.44 × 10−16 | 4.00 × 10−15 |
| F10 | Std | 0 | 4.46 × 10−2 | 2.42 × 10−15 | 5.14 × 10−10 | 3.24 | 3.70 × 10−2 | 0 | 0 |
| F10 | avg | 4.44 × 10−16 | 1.11 × 10−2 | 4.47 × 10−15 | 6.15 × 10−9 | 2.36 | 2 × 101 | 4.44 × 10−16 | 4.00 × 10−15 |
| F11 | min | 0 | 0 | 0 | 1.44 × 10−12 | 2.06 × 10−4 | 4.37 × 102 | 0 | 0 |
| F11 | std | 0 | 1.72 × 10−2 | 3.38 × 10−2 | 2.00 × 10−12 | 1.37 | 4.57 × 101 | 0 | 0 |
| F11 | avg | 0 | 4.18 × 10−3 | 6.17 × 10−3 | 4.31 × 10−12 | 1.6 | 5.26 × 102 | 0 | 0 |
| F12 | min | 1.88 × 10−5 | 1.91 × 10−1 | 6.43 × 10−3 | 2.7 × 10−1 | 5.96 × 10−1 | 2.15 × 108 | 2.19 × 10−16 | 8.18 × 10−2 |
| F12 | std | 2.51 × 10−2 | 6.39 × 10−1 | 1.35 × 10−2 | 1.59 × 10−1 | 4.8 × 102 | 8.63 × 107 | 5.32 × 10−14 | 2.30 × 10−1 |
| F12 | avg | 1.59 × 10−2 | 1.19 | 2.54 × 10−2 | 5.95 × 10−1 | 9.02 × 101 | 3.7 × 108 | 2.64 × 10−14 | 2.74 × 10−1 |
| F13 | min | 1.79 × 10−4 | 6.04 × 10−1 | 1.97 × 10−1 | 2.41 | 3 | 3.96 × 108 | 1.67 × 10−15 | 1.66 |
| F13 | std | 1.79 × 10−1 | 9.3 × 10−1 | 2.77 × 10−1 | 1.9 × 10−1 | 3.83 × 106 | 1.47 × 108 | 7.14 × 10−13 | 4.45 × 10−1 |
| F13 | avg | 1.13 × 10−1 | 2.05 | 5.38 × 10−1 | 2.88 | 7.00 × 105 | 7.99 × 108 | 3.58 × 10−13 | 2.76 |
| F14 | min | 9.98 × 10−1 | 1.01 | 9.98 × 10−1 | 9.98 × 10−1 | 9.98 × 10−1 | 2.12 | 9.98 × 10−1 | 9.98 × 10−1 |
| F14 | std | 1.46 | 3.32 | 3.26 | 4.79 × 10−1 | 3.32 | 5.48 | 1.81 × 10−1 | 2.38 |
| F14 | avg | 2.55 | 4.62 | 3.26 | 1.23 | 4.48 | 9.89 | 1.03 | 3.05 |
| F15 | min | 4.25 × 10−4 | 2.25 × 10−3 | 3.11 × 10−4 | 3.27 × 10−4 | 7.05 × 10−4 | 2.73 × 10−3 | 3.08 × 10−4 | 3.21 × 10−4 |
| F15 | std | 8.03 × 10−3 | 9.02 × 10−3 | 5.92 × 10−4 | 3.22 × 10−4 | 9.21 × 10−3 | 2.02 × 10−2 | 1.23 × 10−4 | 4.24 × 10−3 |
| F15 | avg | 4.91 × 10−3 | 1.08 × 10−2 | 8.42 × 10−4 | 5.11 × 10−4 | 8.19 × 10−3 | 3.12 × 10−2 | 4.13 × 10−4 | 1.36 × 10−3 |
| F17 | min | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 4.05 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 |
| F17 | std | 1.03 × 10−6 | 1.08 × 10−1 | 7 × 10−6 | 1.99 × 10−3 | 4 × 10−2 | 1.46 × 10−1 | 4.9 × 10−3 | 8.34 × 10−2 |
| F17 | avg | 3.98 × 10−1 | 4.67 × 10−1 | 3.98 × 10−1 | 4.00 × 10−1 | 4.35 × 10−1 | 5.61 × 10−1 | 4.01 × 10−1 | 4.43 × 10−1 |
| F18 | min | 3 | 3.01 | 3 | 3 | 3 | 3.24 | 3 | 3 |
| F18 | std | 2.10 × 10−6 | 1.67 | 1.20 × 10−4 | 1.66 × 10−1 | 9.09 × 10−1 | 5.69 | 7.49 × 10−1 | 7.22 |
| F18 | avg | 3 | 4.26 | 3 | 3.12 | 3.4 | 9.27 | 3.64 | 7.33 |
| F19 | min | −3.86 | −3.86 | −3.86 | −3.82 | −3.86 | −3.85 | −3.86 | −3.86 |
| F19 | std | 5.45 × 10−2 | 1.38 × 10−1 | 8.12 × 10−3 | 1.56 × 10−1 | 6.96 × 10−3 | 1.03 × 10−1 | 2.88 × 10−3 | 2.51 × 10−1 |
| F19 | avg | −3.84 | −3.77 | −3.86 | −3.96 | −3.86 | −3.72 | −3.86 | −3.55 |
| F20 | min | −3.32 | −3.05 | −3.32 | −2.58 | −3.30 | −3.08 | −3.32 | −3.32 |
| F20 | std | 1.06 × 10−1 | 3.94 × 10−1 | 2.08 × 10−1 | 5.15 × 101 | 1.27 × 10−1 | 3.01 × 10−1 | 3.75 × 10−2 | 1.32 × 10−1 |
| F20 | avg | −3.17 | −2.54 | −3.19 | −1.59 × 101 | −3.07 | −2.38 | −3.28 | −3.24 |
| F21 | min | −1.02 × 101 | −8.62 | −1.02 × 101 | −4.87 | −9.13 | −1.94 | −1.02 × 101 | −7 |
| F21 | std | 4.22 × 10−1 | 1.43 | 2.81 | 2.07 × 10−1 | 2.17 | 4.28 × 10−1 | 4.07 × 10−3 | 5.92 × 10−1 |
| F21 | avg | −9.87 | −3.47 | −7.60 | −4.54 | −4.15 | −9.8 × 10−1 | −1.02 × 101 | −4.95 |
| F22 | min | −1.04 × 101 | −8.68 | −1.04 × 101 | −6.98 | −8.39 | −2.87 | −1.04 × 101 | −9.92 |
| F22 | std | 4.39 × 10−1 | 1.56 | 3.08 | 6.69 × 10−1 | 1.77 | 4.24 × 10−1 | 7.72 × 10−3 | 1.29 |
| F22 | avg | −1 × 101 | −3.61 | −7.40 | −4.23 | −4 | −1.32 | −1.04 × 101 | −4.97 |
| F23 | min | −1.05 × 101 | −6.99 | −1.05 × 101 | −5.26 | −9.29 | −3.45 | −1.05 × 101 | −1.05 × 101 |
| F23 | std | 1.38 | 1.18 | 3.39 | 5.87 × 10−1 | 2.50 | 6.19 × 10−1 | 6.29 × 10−3 | 1.73 |
| F23 | avg | −1 × 101 | −2.99 | −6.32 | −3.99 | −4.16 | −1.55 | −1.05 × 101 | −5.40 |
| MIFSA | FSA | WOA | BOA | SWO | KOA | BWO | SABO | ||
|---|---|---|---|---|---|---|---|---|---|
| F1 | min | 0 | 0 | 1.03 × 10−84 | 1.10 × 10−11 | 1.37 × 10−2 | 4.72 × 104 | 1.5 × 10−270 | 1.13 × 10−200 |
| F1 | std | 0 | 1.53 | 8.99 × 10−77 | 8.51 × 10−13 | 5.94 × 103 | 4.28 × 103 | 0 | 0 |
| F1 | avg | 0 | 2.86 × 10−1 | 4.49 × 10−77 | 1.31 × 10−11 | 1.23 × 103 | 5.66 × 104 | 8.91 × 10−258 | 2.28 × 10−196 |
| F2 | min | 0 | 0 | 1.12 × 10−59 | 1.87 × 10−9 | 1.5 × 10−2 | 1.39 × 107 | 7.36 × 10−138 | 3.14 × 10−113 |
| F2 | std | 0 | 3.24 × 10−1 | 5.38 × 10−49 | 1.36 × 10−9 | 8.78 | 4.24 × 1010 | 1.97 × 10−131 | 6.79 × 10−111 |
| F2 | avg | 0 | 8.60 × 10−2 | 9.9 × 10−50 | 4.50 × 10−9 | 3.67 | 1.98 × 1010 | 6.71 × 10−132 | 4.07 × 10−111 |
| F3 | min | 0 | 0 | 2.75 × 104 | 1.17 × 10−11 | 1.08 | 4.79 × 104 | 1.49 × 10−255 | 4.3 × 10−81 |
| F3 | std | 0 | 9.13 × 101 | 9.36 × 103 | 8.03 × 10−13 | 1.26 × 104 | 2.01 × 104 | 0 | 3.55 × 10−43 |
| F3 | avg | 0 | 1.88 × 101 | 4.24 × 104 | 1.31 × 10−11 | 5.51 × 103 | 8.62 × 104 | 2.29 × 10−243 | 6.51 × 10−44 |
| F4 | min | 0 | 0 | 2.63 | 5.27 × 10−9 | 7.39 × 10−2 | 7.35 × 101 | 1.03 × 10−132 | 7.96 × 10−79 |
| F4 | std | 0 | 4.23 × 10−1 | 2.54 × 101 | 4.02 × 10−10 | 7.37 | 3.47 | 1.31 × 10−126 | 5.6 × 10−77 |
| F4 | avg | 0 | 8.32 × 10−2 | 5.08 × 101 | 6.16 × 10−9 | 5.66 | 8.19 × 101 | 3.77 × 10−127 | 3.36 × 10−77 |
| F5 | min | 2.73 × 10−4 | 2.88 × 101 | 2.75 × 101 | 2.89 × 101 | 2.9 × 101 | 1.17 × 108 | 3.70 × 10−9 | 2.73 × 101 |
| F5 | std | 3.19 | 7.97 × 10−2 | 3.3 × 10−1 | 2.42 × 10−2 | 3.23 × 105 | 3.27 × 107 | 1.77 × 10−4 | 3.98 × 10−1 |
| F5 | avg | 1.98 | 2.9 × 101 | 2.8 × 101 | 2.89 × 101 | 6.42 × 104 | 1.83 × 108 | 4.03 × 10−5 | 2.83 × 101 |
| F6 | min | 8.27 × 10−3 | 3.94 | 9.31 × 10−2 | 4.45 | 6.64 | 4.62 × 104 | 1.03 × 10−16 | 1.44 |
| F6 | std | 3.31 × 10−1 | 1.01 | 2.59 × 10−1 | 6.56 × 10−1 | 9.39 × 102 | 4.64 × 103 | 4.06 × 10−14 | 6 × 10−1 |
| F6 | avg | 3.57 × 10−1 | 7.39 | 3.84 × 10−1 | 5.91 | 3.22 × 102 | 5.69 × 104 | 2.13 × 10−14 | 2.64 |
| F7 | min | 3.12 × 10−5 | 8.52 × 10−3 | 1.84 × 10−4 | 8.33 × 10−4 | 1.35 × 10−2 | 4.72 × 101 | 6.15 × 10−6 | 4.25 × 10−6 |
| F7 | std | 3.06 × 10−3 | 9.51 × 10−2 | 4.98 × 10−3 | 4.87 × 10−4 | 4.17 × 10−1 | 1.38 × 101 | 1.22 × 10−4 | 8.65 × 10−5 |
| F7 | avg | 2.83 × 10−3 | 1.16 × 10−1 | 3.67 × 10−3 | 1.65 × 10−3 | 1.98 × 10−1 | 8.16 × 101 | 1.38 × 10−4 | 1.17 × 10−4 |
| F8 | min | −1.26 × 104 | −9.71 × 103 | −1.26 × 104 | −3.18 × 103 | −5.27 × 103 | −5.42 × 103 | −1.26 × 104 | −3.65 × 103 |
| F8 | std | 7.54 × 102 | 1.01 × 103 | 1.73 × 103 | 3.52 × 102 | 5.02 × 102 | 1.85 × 10−12 | 2.36 × 10−9 | 2.93 × 102 |
| F8 | avg | −1.22 × 104 | −7.20 × 103 | −1.07 × 104 | −3.85 × 103 | −4.19 × 103 | −5.42 × 103 | −1.26 × 104 | −2.97 × 103 |
| F9 | min | 0 | 0 | 0 | 0 | 3.91 × 10−4 | 3.56 × 102 | 0 | 0 |
| F9 | std | 0 | 9.04 × 10−1 | 1.04 × 10−14 | 6.83 × 101 | 6.17 × 101 | 2.18 × 101 | 0 | 0 |
| F9 | avg | 0 | 2.43 × 10−1 | 1.89 × 10−15 | 2.63 × 101 | 3.67 × 101 | 4.03 × 102 | 0 | 0 |
| F10 | min | 4.44 × 10−16 | 4.44 × 10−16 | 4.44 × 10−16 | 4.85 × 10−9 | 1.12 × 10−2 | 2 × 101 | 4.44 × 10−16 | 4 × 10−15 |
| F10 | std | 0 | 6.23 × 10−2 | 2.76 × 10−15 | 4.89 × 10−10 | 2.56 | 7.23 × 10−15 | 0 | 0 |
| F10 | avg | 4.44 × 10−16 | 2.13 × 10−2 | 4.47 × 10−15 | 5.94 × 10−9 | 3.1 | 2 × 101 | 4.44 × 10−16 | 4 × 10−15 |
| F11 | min | 0 | 0 | 0 | 1.66 × 10−12 | 2.73 × 10−3 | 4.10 × 102 | 0 | 0 |
| F11 | std | 0 | 6.60 × 10−1 | 3.49 × 10−2 | 1.78 × 10−12 | 1.73 | 4.27 × 101 | 0 | 0 |
| F11 | avg | 0 | 2.01 × 10−1 | 6.37 × 10−3 | 4.23 × 10−12 | 1.43 | 5.16 × 102 | 0 | 0 |
| F12 | min | 1.23 × 10−7 | 1.56 × 10−1 | 4.51 × 10−3 | 2.05 × 10−1 | 4.09 × 10−1 | 2.03 × 108 | 1.86 × 10−15 | 6.37 × 10−2 |
| F12 | std | 1.41 × 10−2 | 4.56 × 10−1 | 9.74 × 10−1 | 1.79 × 10−1 | 1.74 × 104 | 8.28 × 107 | 4.05 × 10−14 | 8.27 × 10−2 |
| F12 | avg | 1.19 × 10−2 | 1.35 | 2.07 × 10−1 | 6.61 × 10−1 | 3.28 × 103 | 3.59 × 108 | 3.43 × 10−14 | 2.19 × 10−1 |
| F13 | min | 6.82 × 10−7 | 9.59 × 10−1 | 1.55 × 10−1 | 2.05 | 3.00 | 4.04 × 108 | 1.47 × 10−15 | 1.61 |
| F13 | std | 1.19 × 10−1 | 1.49 | 2.69 × 10−1 | 2.52 × 10−1 | 3.81 × 104 | 1.72 × 108 | 3.06 × 10−13 | 3.22 × 10−1 |
| F13 | avg | 1.18 × 10−1 | 2.50 | 5.25 × 10−1 | 2.83 | 6.97 × 103 | 7.72 × 108 | 1.85 × 10−13 | 2.89 |
| F14 | min | 9.98 × 10−1 | 9.98 × 10−1 | 9.98 × 10−1 | 9.98 × 10−1 | 9.99 × 10−1 | 2.01 | 9.98 × 10−1 | 1.00 |
| F14 | std | 2.19 | 3.44 | 3.83 | 6.27 × 10−1 | 4.12 | 4.54 | 2.54 × 10−6 | 3.04 |
| F14 | avg | 2.7 | 5.49 | 3.84 | 1.41 | 5.26 | 9.00 | 9.98 × 10−1 | 3.79 |
| F15 | min | 3.50 × 10−4 | 1.50 × 10−3 | 3.08 × 10−4 | 3.10 × 10−4 | 6.21 × 10−4 | 5.68 × 10−3 | 3.10 × 10−4 | 3.17 × 10−4 |
| F15 | std | 4.01 × 10−3 | 1.04 × 10−2 | 5.23 × 10−4 | 6.61 × 10−5 | 7.92 × 10−3 | 1.50 × 10−2 | 5.17 × 10−5 | 1.18 × 10−3 |
| F15 | avg | 3.57 × 10−3 | 1.14 × 10−2 | 7.83 × 10−4 | 3.96 × 10−4 | 7.14 × 10−3 | 3.08 × 10−2 | 3.64 × 10−4 | 8.93 × 10−4 |
| F17 | min | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 |
| F17 | std | 3.62 × 10−6 | 2.28 × 10−2 | 1.11 × 10−5 | 5.46 × 10−3 | 3.29 × 10−2 | 1.29 × 10−1 | 1.51 × 10−3 | 1.91 × 10−1 |
| F17 | avg | 3.98 × 10−1 | 4.20 × 10−1 | 3.98 × 10−1 | 4.01 × 10−1 | 4.28 × 10−1 | 5.49 × 10−1 | 4.00 × 10−1 | 4.91 × 10−1 |
| F18 | min | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.27 | 3.02 | 3.00 |
| F18 | std | 1.30 × 10−6 | 3.14 | 1.29 × 10−4 | 1.84 × 10−1 | 2.08 × 10−1 | 1.11 × 101 | 6.25 × 10−1 | 1.75 |
| F18 | avg | 3.00 | 4.70 | 3.00 | 3.19 | 3.14 | 1.25 × 101 | 3.74 | 3.80 |
| F19 | min | −3.86 | −3.86 | −3.86 | −3.84 | −3.86 | −3.86 | −3.86 | −3.86 |
| F19 | std | 2.93 × 10−2 | 7.57 × 10−2 | 7.54 × 10−3 | 2.04 × 10−1 | 1.37 × 10−2 | 9.64 × 10−2 | 3.03 × 10−3 | 1.96 × 10−1 |
| F19 | avg | −3.85 | −3.79 | −3.86 | −3.96 | −3.85 × | −3.70 | −3.86 | −3.66 |
| F20 | min | −3.32 | −3.06 | −3.32 | −2.17 | −3.31 | −2.90 | −3.31 | −3.32 |
| F20 | std | 1.05 × 10−1 | 3.46 × 10−1 | 9.19 × 10−2 | 5.97 | 1.55 × 10−1 | 3.78 × 10−1 | 3.13 × 10−2 | 2.04 × 10−1 |
| F20 | avg | −3.19 | −2.70 | −3.24 | −4.00 | −3.09 | −2.40 | −3.29 | −3.18 |
| F21 | min | −1.02 × 101 | −8.22 | −1.02 × 101 | −6.56 | −9.32 | −3.27 | −1.02 × 101 | −8.26 |
| F21 | std | 2.09 × 10−1 | 1.57 | 2.58 | 5.05 × 10−1 | 2.20 | 6.19 × 10−1 | 8.43 × 10−3 | 8.54 × 10−1 |
| F21 | avg | −9.98 | −3.82 | −8.34 | −4.47 | −3.65 | −1.14 | −1.01 × 101 | −4.91 |
| F22 | min | −1.04 × 101 | −5.53 | −1.04 × 101 | −5.03 | −8.12 | −3.32 | −1.04 × 101 | −6.41 |
| F22 | std | 2.30 × 10−1 | 1.25 | 3.00 | 5.09 × 10−1 | 1.47 | 6.68 × 10−1 | 2.35 × 10−2 | 5.06 × 10−1 |
| F22 | avg | −1.02 × 101 | −3.30 | −7.47 | −4.24 | −3.30 | −1.38 | −1.04 × 101 | −4.83 |
| F23 | min | −1.05 × 101 | −8.68 | −1.05 × 101 | −5.59 | −7.43 | −4.23 | −1.05 × 101 | −9.40 |
| F23 | std | 5.68 × 10−1 | 1.54 | 3.31 | 7.85 × 10−1 | 1.54 | 6.80 × 10−1 | 1.32 × 10−2 | 1.66 |
| F23 | avg | −1.02 × 101 | −3.44 | −7.89 | −4.20 | −4.07 | −1.60 | −1.05 × 101 | −5.30 |
| Iteration | MIFSA | FSA | SABO | WOA | BOA | SWO | KOA | BWO |
|---|---|---|---|---|---|---|---|---|
| 50 | 85.64% | 80.72% | 79.56% | 79.88% | 79.4% | 77.96% | 79% | 79.12% |
| 100 | 88.12% | 80.64% | 79.32% | 80.08% | 81.36% | 80.04% | 79.64% | 84.60% |
| 150 | 87.36% | 81% | 77.16% | 77.36% | 82.4% | 81.52% | 77.4% | 86.56% |
| 200 | 88.64% | 82.96% | 79.64% | 81% | 80.76% | 80.64% | 81.92% | 85.68% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhang, Q.; Zheng, Y.; Yue, Y.; Cao, L.; Xiong, M. A Coverage Optimization Approach for Wireless Sensor Networks Using Swarm Intelligence Optimization. Biomimetics 2025, 10, 750. https://doi.org/10.3390/biomimetics10110750
Wang S, Zhang Q, Zheng Y, Yue Y, Cao L, Xiong M. A Coverage Optimization Approach for Wireless Sensor Networks Using Swarm Intelligence Optimization. Biomimetics. 2025; 10(11):750. https://doi.org/10.3390/biomimetics10110750
Chicago/Turabian StyleWang, Shuxin, Qingchen Zhang, Yejun Zheng, Yinggao Yue, Li Cao, and Mengji Xiong. 2025. "A Coverage Optimization Approach for Wireless Sensor Networks Using Swarm Intelligence Optimization" Biomimetics 10, no. 11: 750. https://doi.org/10.3390/biomimetics10110750
APA StyleWang, S., Zhang, Q., Zheng, Y., Yue, Y., Cao, L., & Xiong, M. (2025). A Coverage Optimization Approach for Wireless Sensor Networks Using Swarm Intelligence Optimization. Biomimetics, 10(11), 750. https://doi.org/10.3390/biomimetics10110750

