Regenerative Strategies for Vocal Fold Repair Using Injectable Materials
Abstract
1. Introduction
2. Vocal Fold Structure and Pathophysiology
2.1. Normal Structure, Development, and Aging of the Vocal Fold
2.2. Pathophysiology of Vocal Fold Disease
2.2.1. Vocal Fold Scarring
2.2.2. Sulcus Vocalis
2.2.3. Benign Vocal Fold Lesions
2.2.4. Malignant Vocal Fold Lesions and Treatment-Related Status
2.2.5. Vocal Fold Paralysis
2.2.6. Vocal Fold Atrophy
3. Principles of Injectable Materials
3.1. Mechanical and Rheological Design
3.2. Biological and Immunological Compatibility
3.3. Degradation and Long-Term Performance
4. Injectable Materials for Vocal Fold Palsy; Volume Augmentation
4.1. Conventional Materials
4.2. New Synthetic Filler and Approach
5. Injectable Materials for Vocal Fold Scarring; Tissue Regeneration
5.1. Growth Factor/Drug Delivery
5.2. Mesenchymal Stem Cell
5.3. Naturally Derived Injectable Material
5.4. Vocal Fold Mucosa Replacement
6. Preclinical and Clinical Application
6.1. Anti-Fibrotic and ECM-Restorative Therapies
6.2. Cell-Based Regenerative Therapies
6.3. Skeletal Muscle and Nerve Regenerative Therapies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mallur, P.S.; Rosen, C.A. Vocal fold injection: Review of indications, techniques, and materials for augmentation. Clin. Exp. Otorhinolaryngol. 2010, 3, 177–182. [Google Scholar] [CrossRef]
- Kumai, Y. Pathophysiology of Fibrosis in the Vocal Fold: Current Research, Future Treatment Strategies, and Obstacles to Restoring Vocal Fold Pliability. Int. J. Mol. Sci. 2019, 20, 2551. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.K.; Thibeault, S.L. Current understanding and review of the literature: Vocal fold scarring. J. Voice 2006, 20, 110–120. [Google Scholar] [CrossRef]
- Nakayama, M.; Ford, C.N.; Bless, D.M. Teflon vocal fold augmentation: Failures and management in 28 cases. Otolaryngol. Head Neck Surg. 1993, 109, 493–498. [Google Scholar] [CrossRef]
- Lodder, W.L.; Dikkers, F.G. Comparison of voice outcome after vocal fold augmentation with fat or calcium hydroxylapatite. Laryngoscope 2015, 125, 1161–1165. [Google Scholar] [CrossRef]
- Chhetri, D.K.; Jahan-Parwar, B.; Hart, S.D.; Bhuta, S.M.; Berke, G.S. Injection laryngoplasty with calcium hydroxylapatite gel implant in an in vivo canine model. Ann. Otol. Rhinol. Laryngol. 2004, 113, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.Z.; Paoletti, M.F.; Bensoussan, Y.; Bhatt, N.K.; van der Woerd, B.; Shuman, E.A.; Grant, N.; O’Dell, K.; Johns, M.M., III. Prospective >12 Months Outcomes After Vocal Fold Injection Medialization with Silk Microparticle-Hyaluronic Acid Material. Laryngoscope 2024, 134, 3679–3685. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, C.D.; Kridgen, S.; Chiang, S.; Fein, M.; Forrester, C.; Gordon, L.; Roth, D.F.; Shin, J.J.; Winston, J.; Carroll, T.L. Silk-Hyaluronic Acid for Vocal Fold Augmentation: Safety Profile and Long-Term Voice Outcomes. J. Voice, 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Lin, E.; Hanson, D.G. Vocal fold physiology. Otolaryngol. Clin. N. Am. 2000, 33, 699–718. [Google Scholar] [CrossRef]
- Teller, S.S.; Farran, A.J.; Xiao, L.; Jiao, T.; Duncan, R.L.; Clifton, R.J.; Jia, X. High-frequency viscoelastic shear properties of vocal fold tissues: Implications for vocal fold tissue engineering. Tissue Eng. Part A 2012, 18, 2008–2019. [Google Scholar] [CrossRef] [PubMed]
- Haji, T.; Mori, K.; Omori, K.; Isshiki, N. Mechanical properties of the vocal fold. Stress-strain studies. Acta Otolaryngol. 1992, 112, 559–565. [Google Scholar] [CrossRef]
- Gray, S.D.; Pignatari, S.S.; Harding, P. Morphologic ultrastructure of anchoring fibers in normal vocal fold basement membrane zone. J. Voice 1994, 8, 48–52. [Google Scholar] [CrossRef]
- Hirano, M. Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatr. 1974, 26, 89–94. [Google Scholar] [CrossRef]
- Madruga de Melo, E.C.; Lemos, M.; Aragao Ximenes Filho, J.; Sennes, L.U.; Nascimento Saldiva, P.H.; Tsuji, D.H. Distribution of collagen in the lamina propria of the human vocal fold. Laryngoscope 2003, 113, 2187–2191. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, J.E.; Siegmund, T.; Du, M.; Naseri, E.; Chan, R.W. Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria. Biomech. Model. Mechanobiol. 2013, 12, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Alipour, F.; Vigmostad, S. Measurement of vocal folds elastic properties for continuum modeling. J. Voice 2012, 26, 816.e21–816.e29. [Google Scholar] [CrossRef]
- Zhang, Z. Structural constitutive modeling of the anisotropic mechanical properties of human vocal fold lamina propria. J. Acoust. Soc. Am. 2019, 145, EL476. [Google Scholar] [CrossRef]
- Dailey, S.H.; Tateya, I.; Montequin, D.; Welham, N.V.; Goodyer, E. Viscoelastic measurements of vocal folds using the linear skin rheometer. J. Voice 2009, 23, 143–150. [Google Scholar] [CrossRef]
- Jiao, T.; Farran, A.; Jia, X.; Clifton, R.J. High Frequency Measurements of Viscoelastic Properties of Hydrogels for Vocal Fold Regeneration. Exp. Mech. 2009, 49, 235–246. [Google Scholar] [CrossRef]
- Chan, R.W. Nonlinear viscoelastic characterization of human vocal fold tissues under large-amplitude oscillatory shear (LAOS). J. Rheol. 2018, 62, 695–712. [Google Scholar] [CrossRef]
- Hartnick, C.J.; Rehbar, R.; Prasad, V. Development and maturation of the pediatric human vocal fold lamina propria. Laryngoscope 2005, 115, 4–15. [Google Scholar] [CrossRef]
- Rousseau, B.; Hirano, S.; Scheidt, T.D.; Welham, N.V.; Thibeault, S.L.; Chan, R.W.; Bless, D.M. Characterization of vocal fold scarring in a canine model. Laryngoscope 2003, 113, 620–627. [Google Scholar] [CrossRef]
- Ma, Y.; Long, J.; Amin, M.R.; Branski, R.C.; Damrose, E.J.; Sung, C.K.; Achlatis, S.; Kearney, A.; Chhetri, D.K. Autologous fibroblasts for vocal scars and age-related atrophy: A randomized clinical trial. Laryngoscope 2020, 130, 2650–2658. [Google Scholar] [CrossRef]
- Honjo, I.; Isshiki, N. Laryngoscopic and voice characteristics of aged persons. Arch. Otolaryngol. 1980, 106, 149–150. [Google Scholar] [CrossRef]
- Gray, S.D.; Titze, I.R.; Alipour, F.; Hammond, T.H. Biomechanical and histologic observations of vocal fold fibrous proteins. Ann. Otol. Rhinol. Laryngol. 2000, 109, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Thibeault, S.L.; Gray, S.D.; Bless, D.M.; Chan, R.W.; Ford, C.N. Histologic and rheologic characterization of vocal fold scarring. J. Voice 2002, 16, 96–104. [Google Scholar] [CrossRef]
- Jette, M.E.; Hayer, S.D.; Thibeault, S.L. Characterization of human vocal fold fibroblasts derived from chronic scar. Laryngoscope 2013, 123, 738–745. [Google Scholar] [CrossRef]
- Sato, K.; Hirano, M. Electron microscopic investigation of sulcus vocalis. Ann. Otol. Rhinol. Laryngol. 1998, 107, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Yoshida, T.; Tanaka, S.; Hibi, S. Sulcus vocalis: Functional aspects. Ann. Otol. Rhinol. Laryngol. 1990, 99, 679–683. [Google Scholar] [CrossRef]
- Lee, A.; Sulica, L.; Aylward, A.; Scognamiglio, T. Sulcus vocalis: A new clinical paradigm based on a re-evaluation of histology. Laryngoscope 2016, 126, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Nunes, R.B.; Behlau, M.; Nunes, M.B.; Paulino, J.G. Clinical diagnosis and histological analysis of vocal nodules and polyps. Braz. J. Otorhinolaryngol. 2013, 79, 434–440. [Google Scholar] [CrossRef]
- AlGhamdi, M.A.; Alghamdi, L.N.; AlQazenli, M.K.; Alrashid, D.S.; Bakhsh, Z. Effectiveness of laryngeal reinnervation compared to medialization thyroplasty in the treatment of unilateral vocal fold paralysis: A systematic review and network meta-analysis. World J. Otorhinolaryngol. Head. Neck Surg. 2025, 11, 449–461. [Google Scholar] [CrossRef]
- Lee, M.; Mau, T.; Sulica, L. Patterns of Recurrence of Phonotraumatic Vocal Fold Lesions Suggest Distinct Mechanisms of Injury. Laryngoscope 2021, 131, 2523–2529. [Google Scholar] [CrossRef]
- Bastian, R.W. Benign Vocal Fold Mucosal Disorders. In Cummings Otolaryngology—Head and Neck Surgery, 4th ed.; Cummings, C.W., Flint, P.W., Haughey, B.H., Richardson, M.A., Robbins, T.K., Schuller, D.E., Thomas, J.R., Eds.; Elsevier Mosby: St. Louis, MO, USA, 2005; Volume 4, pp. 2150–2185. [Google Scholar]
- Swain, S.K. Vocal fold cyst: A narrative review. J. Clin. Sci. Res. 2024, 13, 52–58. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Cao, D.; Li, W.; Jing, Y.; Zhong, H.; Liu, H.; Zhu, X. Optical biopsy of laryngeal lesions using femtosecond multiphoton microscopy. Biomed. Opt. Express 2021, 12, 1308–1319. [Google Scholar] [CrossRef]
- Jimenez-Socha, M.; Dion, G.R.; Mora-Navarro, C.; Wang, Z.; Nolan, M.W.; Freytes, D.O. Radiation-Induced Fibrosis in Head and Neck Cancer: Challenges and Future Therapeutic Strategies for Vocal Fold Treatments. Cancers 2025, 17, 1108. [Google Scholar] [CrossRef]
- Johns, M.M.; Kolachala, V.; Berg, E.; Muller, S.; Creighton, F.X.; Branski, R.C. Radiation fibrosis of the vocal fold: From man to mouse. Laryngoscope 2012, 122 (Suppl. 5), S107–S125. [Google Scholar] [CrossRef]
- Tanigami, Y.; Kawai, Y.; Kaba, S.; Uozumi, R.; Ohnishi, H.; Kita, T.; Omori, K.; Kishimoto, Y. Establishment of a radiation-induced vocal fold fibrosis mouse model. Biochem. Biophys. Res. Commun. 2022, 601, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Ivey, C.M. Vocal Fold Paresis. Otolaryngol. Clin. N. Am. 2019, 52, 637–648. [Google Scholar] [CrossRef]
- Crumley, R.L. Unilateral recurrent laryngeal nerve paralysis. J. Voice 1994, 8, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Beton, S.; Yucel, L.; Basak, H.; Ciler Buyukatalay, Z. The Elderly Voice: Mechanisms, Disorders and Treatment Methods. Turk. Arch. Otorhinolaryngol. 2022, 60, 220–226. [Google Scholar] [CrossRef]
- Chen, X.; Thibeault, S.L. Characteristics of age-related changes in cultured human vocal fold fibroblasts. Laryngoscope 2008, 118, 1700–1704. [Google Scholar] [CrossRef] [PubMed]
- Wrona, E.A.; Peng, R.; Amin, M.R.; Branski, R.C.; Freytes, D.O. Extracellular Matrix for Vocal Fold Lamina Propria Replacement: A Review. Tissue Eng. Part B Rev. 2016, 22, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.W.; Titze, I.R. Viscoelastic shear properties of human vocal fold mucosa: Measurement methodology and empirical results. J. Acoust. Soc. Am. 1999, 106, 2008–2021. [Google Scholar] [CrossRef]
- Gaston, J.; Thibeault, S.L. Hyaluronic acid hydrogels for vocal fold wound healing. Biomatter 2013, 3, e23799. [Google Scholar] [CrossRef] [PubMed]
- Wan-Chiew, N.; Baki, M.M.; Fauzi, M.B.; Lokanathan, Y.; Azman, M. In Vitro Evaluation of Biomaterials for Vocal Fold Injection: A Systematic Review. Polymers 2021, 13, 2619. [Google Scholar] [CrossRef]
- Kimura, M.; Mau, T.; Chan, R.W. Viscoelastic properties of phonosurgical biomaterials at phonatory frequencies. Laryngoscope 2010, 120, 764–768. [Google Scholar] [CrossRef]
- Rosen, C.A. Phonosurgical vocal fold injection: Procedures and materials. Otolaryngol. Clin. N. Am. 2000, 33, 1087–1096. [Google Scholar] [CrossRef]
- Warren, J.P.; Coe, R.H.; Culbert, M.P.; Dixon, A.R.; Miles, D.E.; Mengoni, M.; Beales, P.A.; Wilcox, R.K. Injectable peptide-glycosaminoglycan hydrogels for soft tissue repair: In vitro assessment for nucleus augmentation. Mater. Adv. 2024, 5, 8665–8672. [Google Scholar] [CrossRef]
- Coburn, P.T.; Li, X.; Li, J.Y.; Kishimoto, Y.; Li-Jessen, N.Y.K. Progress in Vocal Fold Regenerative Biomaterials: An Immunological Perspective. Adv. Nanobiomed Res. 2022, 2, 2100119. [Google Scholar] [CrossRef]
- Nejati, S.; Mongeau, L. In Vitro Investigation of Vocal Fold Cellular Response to Variations in Hydrogel Porosity and Elasticity. ACS Biomater. Sci. Eng. 2024, 10, 3909–3922. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.; Okuyama, H.; Yamashita, M.; Tabrizian, M.; Li-Jessen, N.Y.K. Trends in Injectable Biomaterials for Vocal Fold Regeneration and Long-Term Augmentation. Tissue Eng. Part B Rev. 2025, 31, 299–316. [Google Scholar] [CrossRef]
- Kwon, T.K.; Buckmire, R. Injection laryngoplasty for management of unilateral vocal fold paralysis. Curr. Opin. Otolaryngol. Head Neck Surg. 2004, 12, 538–542. [Google Scholar] [CrossRef]
- Brunings, W. Über eine neue Behandlungsmethode der Rekurrenslahmung. Verhandlungen Der Dtsch. Laryngol. Ges. 1911, 18, 525–530. [Google Scholar]
- Arnold, G.E. Vocal rehabilitation of paralytic dysphonia IX. Technique of intracordal injection. Arch. Otolaryngol. 1962, 76, 358–368. [Google Scholar] [CrossRef]
- Ford, C.N.; Martin, D.W.; Warner, T.F. Injectable collagen in laryngeal rehabilitation. Laryngoscope 1984, 94, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Remacle, M.; Lawson, G. Results with collagen injection into the vocal folds for medialization. Curr. Opin. Otolaryngol. Head Neck Surg. 2007, 15, 148–152. [Google Scholar] [CrossRef]
- Chung, S.M.; Kim, H.S.; Park, H.S. Review of Injection Laryngoplasty as Treatment of Voice Disorders. Ewha Med. J. 2011, 34, 13–18. [Google Scholar] [CrossRef]
- Mikaelian, D.O.; Lowry, L.D.; Sataloff, R.T. Lipoinjection for unilateral vocal cord paralysis. Laryngoscope 1991, 101, 465–468. [Google Scholar] [CrossRef]
- Prstacic, R.; Slipac, J.; Zivkovic Ivanovic, T.; Simic, I.; Babic, E.; Danic Hadzibegovic, A. Autologous Fat Augmentation in the Treatment of Unilateral Vocal Fold Paralysis—A 15-year Experience in a Single Institution. Acta Clin. Croat. 2020, 59, 32–37. [Google Scholar] [CrossRef]
- Rihkanen, H. Vocal fold augmentation by injection of autologous fascia. Laryngoscope 1998, 108, 51–54. [Google Scholar] [CrossRef]
- Schramm, V.L.; May, M.; Lavorato, A.S. Gelfoam paste injection for vocal cord paralysis: Temporary rehabilitation of glottic incompetence. Laryngoscope 1978, 88, 1268–1273. [Google Scholar] [CrossRef]
- Kwon, T.-K. Injection Laryngoplasty. Korean J. Otolaryngol.-Head. Neck Surg. 2006, 49, 768–780. [Google Scholar]
- Homicz, M.R.; Watson, D. Review of injectable materials for soft tissue augmentation. Facial Plast. Surg. 2004, 20, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Rosen, C.A.; Thekdi, A.A. Vocal fold augmentation with injectable calcium hydroxylapatite: Short-term results. J. Voice 2004, 18, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Belafsky, P.C.; Postma, G.N. Vocal fold augmentation with calcium hydroxylapatite. Otolaryngol. Head Neck Surg. 2004, 131, 351–354. [Google Scholar] [CrossRef]
- Carroll, T.L.; Rosen, C.A. Long-term results of calcium hydroxylapatite for vocal fold augmentation. Laryngoscope 2011, 121, 313–319. [Google Scholar] [CrossRef]
- Kharidia, K.M.; Bensoussan, Y.; Rosen, C.A.; Johns, M.M., 3rd; O’Dell, K. Variations in Practices and Preferences of Vocal Fold Injection Materials: A National Survey. Laryngoscope 2023, 133, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Son, Y.I.; Kim, C.H.; Lee, J.Y.; Kim, S.C.; Koh, Y.W. Voice outcomes of polyacrylamide hydrogel injection laryngoplasty. Laryngoscope 2007, 117, 1871–1875. [Google Scholar] [CrossRef]
- Kang, K.Y.; Lee, S.A.; Lee, S.K.; Seon, S.W.; Jung, J.H.; Park, K.N.; Kwak, J.J.; Lee, S.W. Persistent Vocal Fold Granuloma Following Superficial PAAG Injection Laryngoplasty: A Case Report. J. Voice 2016, 30, 769.e719–769.e721. [Google Scholar] [CrossRef]
- Cohen, S.R.; Berner, C.F.; Busso, M.; Gleason, M.C.; Hamilton, D.; Holmes, R.E.; Romano, J.J.; Rullan, P.P.; Thaler, M.P.; Ubogy, Z.; et al. ArteFill: A long-lasting injectable wrinkle filler material—Summary of the U.S. Food and Drug Administration trials and a progress report on 4- to 5-year outcomes. Plast. Reconstr. Surg. 2006, 118, 64S–76S. [Google Scholar] [CrossRef] [PubMed]
- Min, J.Y.; Hong, S.D.; Kim, K.; Son, Y.I. Long-term results of Artecoll injection laryngoplasty for patients with unilateral vocal fold motion impairment: Safety and clinical efficacy. Arch. Otolaryngol. Head Neck Surg. 2008, 134, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Sittel, C.; Thumfart, W.F.; Pototschnig, C.; Wittekindt, C.; Eckel, H.E. Textured polydimethylsiloxane elastomers in the human larynx: Safety and efficiency of use. J. Biomed. Mater. Res. 2000, 53, 646–650. [Google Scholar] [CrossRef]
- Sittel, C.; Echternach, M.; Federspil, P.A.; Plinkert, P.K. Polydimethylsiloxane particles for permanent injection laryngoplasty. Ann. Otol. Rhinol. Laryngol. 2006, 115, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Bergamini, G.; Alicandri-Ciufelli, M.; Molteni, G.; Villari, D.; Luppi, M.P.; Genovese, E.; Presutti, L. Therapy of unilateral vocal fold paralysis with polydimethylsiloxane injection laryngoplasty: Our experience. J. Voice 2010, 24, 119–125. [Google Scholar] [CrossRef]
- Parenteau-Bareil, R.; Gauvin, R.; Berthod, F. Collagen-Based Biomaterials for Tissue Engineering Applications. Materials 2010, 3, 1863–1887. [Google Scholar] [CrossRef]
- Sall, I.; Férard, G. Comparison of the sensitivity of 11 crosslinked hyaluronic acid gels to bovine testis hyaluronidase. Polym. Degrad. Stab. 2007, 92, 915–919. [Google Scholar] [CrossRef]
- Sanz-Horta, R.; Matesanz, A.; Gallardo, A.; Reinecke, H.; Jorcano, J.L.; Acedo, P.; Velasco, D.; Elvira, C. Technological advances in fibrin for tissue engineering. J. Tissue Eng. 2023, 14, 20417314231190288. [Google Scholar] [CrossRef]
- Kwon, S.; Choi, H.; Park, C.; Choi, S.; Kim, E.; Kim, S.W.; Kim, C.S.; Koo, H. In vivo vocal fold augmentation using an injectable polyethylene glycol hydrogel based on click chemistry. Biomater. Sci. 2021, 9, 108–115. [Google Scholar] [CrossRef]
- Gulka, C.P.; Brown, J.E.; Giordano, J.E.M.; Hickey, J.E.; Montero, M.P.; Hoang, A.; Carroll, T.L. A novel silk-based vocal fold augmentation material: 6-month evaluation in a canine model. Laryngoscope 2019, 129, 1856–1862. [Google Scholar] [CrossRef]
- Mora-Navarro, C.; Badileanu, A.; Gracioso Martins, A.M.; Ozpinar, E.W.; Gaffney, L.; Huntress, I.; Harrell, E.; Enders, J.R.; Peng, X.; Branski, R.C.; et al. Porcine Vocal Fold Lamina Propria-Derived Biomaterials Modulate TGF-beta1-Mediated Fibroblast Activation in Vitro. ACS Biomater. Sci. Eng. 2020, 6, 1690–1703. [Google Scholar] [CrossRef]
- Chung, E.J.; Jun, D.R.; Kim, D.W.; Han, M.J.; Kwon, T.K.; Choi, S.W.; Kwon, S.K. Prevention of polydimethylsiloxane microsphere migration using a mussel-inspired polydopamine coating for potential application in injection therapy. PLoS ONE 2017, 12, e0186877. [Google Scholar] [CrossRef]
- Ravanbakhsh, H.; Bao, G.; Latifi, N.; Mongeau, L.G. Carbon nanotube composite hydrogels for vocal fold tissue engineering: Biocompatibility, rheology, and porosity. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109861. [Google Scholar] [CrossRef] [PubMed]
- Kanemaru, S.; Nakamura, T.; Omori, K.; Kojima, H.; Magrufov, A.; Hiratsuka, Y.; Hirano, S.; Ito, J.; Shimizu, Y. Regeneration of the vocal fold using autologous mesenchymal stem cells. Ann. Otol. Rhinol. Laryngol. 2003, 112, 915–920. [Google Scholar] [CrossRef]
- Ohno, T.; Hirano, S.; Rousseau, B. Gene expression of transforming growth factor-beta1 and hepatocyte growth factor during wound healing of injured rat vocal fold. Laryngoscope 2009, 119, 806–810. [Google Scholar] [CrossRef]
- Paul, B.C.; Rafii, B.Y.; Gandonu, S.; Bing, R.; Born, H.; Amin, M.R.; Branski, R.C. Smad3: An emerging target for vocal fold fibrosis. Laryngoscope 2014, 124, 2327–2331. [Google Scholar] [CrossRef] [PubMed]
- Hiwatashi, N.; Benedict, P.A.; Dion, G.R.; Bing, R.; Kraja, I.; Amin, M.R.; Branski, R.C. SMAD3 expression and regulation of fibroplasia in vocal fold injury. Laryngoscope 2017, 127, E308–E316. [Google Scholar] [CrossRef]
- Yamada, T.; Kumai, Y.; Kodama, H.; Nishimoto, K.; Miyamaru, S.; Onoue, S.; Orita, Y. Effect of pirfenidone injection on ferret vocal fold scars: A preliminary in vivo study. Laryngoscope 2020, 130, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Kanemaru, S.; Nakamura, T.; Yamashita, M.; Magrufov, A.; Kita, T.; Tamaki, H.; Tamura, Y.; Iguchi, F.; Kim, T.S.; Kishimoto, M.; et al. Destiny of autologous bone marrow-derived stromal cells implanted in the vocal fold. Ann. Otol. Rhinol. Laryngol. 2005, 114, 907–912. [Google Scholar] [CrossRef]
- Kim, C.S.; Choi, H.; Park, K.C.; Kim, S.W.; Sun, D.I. The Ability of Human Nasal Inferior Turbinate-Derived Mesenchymal Stem Cells to Repair Vocal Fold Injuries. Otolaryngol. Head Neck Surg. 2018, 159, 335–342. [Google Scholar] [CrossRef]
- Lee, B.J.; Wang, S.G.; Lee, J.C.; Jung, J.S.; Bae, Y.C.; Jeong, H.J.; Kim, H.W.; Lorenz, R.R. The prevention of vocal fold scarring using autologous adipose tissue-derived stromal cells. Cells Tissues Organs 2006, 184, 198–204. [Google Scholar] [CrossRef]
- Hiwatashi, N.; Hirano, S.; Mizuta, M.; Tateya, I.; Kanemaru, S.; Nakamura, T.; Ito, J. Adipose-derived stem cells versus bone marrow-derived stem cells for vocal fold regeneration. Laryngoscope 2014, 124, E461–E469. [Google Scholar] [CrossRef]
- Mattei, A.; Magalon, J.; Bertrand, B.; Grimaud, F.; Revis, J.; Velier, M.; Veran, J.; Dessi, P.; Sabatier, F.; Giovanni, A. Autologous adipose-derived stromal vascular fraction and scarred vocal folds: First clinical case report. Stem Cell Res. Ther. 2018, 9, 202. [Google Scholar] [CrossRef]
- Sato, K.; Chitose, S.I.; Sato, F.; Sato, K.; Ono, T.; Umeno, H. Vascularity in the macula flava of human vocal fold as a stem cell niche. Auris Nasus Larynx 2023, 50, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Kurita, T.; Sato, K.; Chitose, S.; Fukahori, M.; Sueyoshi, S.; Umeno, H. Origin of Vocal Fold Stellate Cells in the Human Macula Flava. Ann. Otol. Rhinol. Laryngol. 2015, 124, 698–705. [Google Scholar] [CrossRef]
- Amer, M.H.; Rose, F.; Shakesheff, K.M.; White, L.J. A biomaterials approach to influence stem cell fate in injectable cell-based therapies. Stem Cell Res. Ther. 2018, 9, 39. [Google Scholar] [CrossRef]
- Choi, J.W.; Park, J.K.; Chang, J.W.; Kim, D.Y.; Kim, M.S.; Shin, Y.S.; Kim, C.H. Small intestine submucosa and mesenchymal stem cells composite gel for scarless vocal fold regeneration. Biomaterials 2014, 35, 4911–4918. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Oh, S.H.; Choi, J.S.; Lee, S.; Ra, J.C.; Lee, J.H.; Lim, J.Y. Adipose-derived stem cell-containing hyaluronic acid/alginate hydrogel improves vocal fold wound healing. Laryngoscope 2014, 124, E64–E72. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Lee, S.C.; Kim, S.J. A novel cell-free strategy for promoting mouse liver regeneration: Utilization of a conditioned medium from adipose-derived stem cells. Hepatol. Int. 2015, 9, 310–320. [Google Scholar] [CrossRef]
- Baglio, S.R.; Pegtel, D.M.; Baldini, N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front. Physiol. 2012, 3, 359. [Google Scholar] [CrossRef]
- Hansen, J.K.; Thibeault, S.L.; Walsh, J.F.; Shu, X.Z.; Prestwich, G.D. In vivo engineering of the vocal fold extracellular matrix with injectable hyaluronic acid hydrogels: Early effects on tissue repair and biomechanics in a rabbit model. Ann. Otol. Rhinol. Laryngol. 2005, 114, 662–670. [Google Scholar] [CrossRef]
- Thibeault, S.L.; Klemuk, S.A.; Chen, X.; Quinchia Johnson, B.H. In Vivo engineering of the vocal fold ECM with injectable HA hydrogels-late effects on tissue repair and biomechanics in a rabbit model. J. Voice 2011, 25, 249–253. [Google Scholar] [CrossRef][Green Version]
- Tang, S.S.; Mohad, V.; Gowda, M.; Thibeault, S.L. Insights Into the Role of Collagen in Vocal Fold Health and Disease. J. Voice 2017, 31, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Hu, R.; Fan, E.; Han, D. Adipose-derived mesenchymal stem cells in collagen-hyaluronic acid gel composite scaffolds for vocal fold regeneration. Ann. Otol. Rhinol. Laryngol. 2011, 120, 123–130. [Google Scholar] [CrossRef]
- Li, S.; Dan, X.; Chen, H.; Li, T.; Liu, B.; Ju, Y.; Li, Y.; Lei, L.; Fan, X. Developing fibrin-based biomaterials/scaffolds in tissue engineering. Bioact. Mater. 2024, 40, 597–623. [Google Scholar] [CrossRef]
- Brown, M.; Okuyama, H.; Li, L.; Yang, Z.; Li, J.; Tabrizian, M.; Li-Jessen, N.Y.K. Clicktetrazine dECM-alginate hydrogels for injectable, mechanically mimetic, and biologically active vocal fold biomaterials. Biomaterials 2026, 325, 123590. [Google Scholar] [CrossRef]
- Mora-Navarro, C.; Smith, E.; Wang, Z.; Ramos-Alamo, M.D.C.; Collins, L.; Awad, N.; Cruz, D.R.D.; Tollison, T.S.; Huntress, I.; Gartling, G.; et al. Injection of vocal fold lamina propria-derived hydrogels modulates fibrosis in injured vocal folds. Biomater. Adv. 2026, 178, 214424. [Google Scholar] [CrossRef]
- Wang, G.; Li, Q.; Liu, S.; Li, M.; Liu, B.; Zhao, T.; Liu, B.; Chen, Z. An injectable decellularized extracellular matrix hydrogel with cortical neuron-derived exosomes enhances tissue repair following traumatic spinal cord injury. Mater. Today Bio 2024, 28, 101250. [Google Scholar] [CrossRef]
- Liguori, T.T.A.; Liguori, G.R.; Sinkunas, V.; Correia, C.J.; Dos Santos Coutinho, E.S.R.; Zanoni, F.L.; Aiello, V.D.; Harmsen, M.C.; Moreira, L.F.P. Intrapericardial injection of hydrogels with ASC and their secretome to treat dilated cardiomyopathies. Sci. Rep. 2025, 15, 3529. [Google Scholar] [CrossRef]
- Shen, Z.; Shan, Y.; Lu, Y.; Zhu, J.; Yuan, L.; Chen, W.; Sun, F.; Wang, Q.; Wang, Y.; Zhang, Y.; et al. Decellularized extracellular matrix-loaded exosome hydrogel for cell-free tracheal scaffold in tracheal defect reconstruction and repair. J. Nanobiotechnol. 2025, 23, 289. [Google Scholar] [CrossRef]
- Chhetri, D.K.; Head, C.; Revazova, E.; Hart, S.; Bhuta, S.; Berke, G.S. Lamina propria replacement therapy with cultured autologous fibroblasts for vocal fold scars. Otolaryngol. Head Neck Surg. 2004, 131, 864–870. [Google Scholar] [CrossRef]
- Ling, C.; Li, Q.; Brown, M.E.; Kishimoto, Y.; Toya, Y.; Devine, E.E.; Choi, K.O.; Nishimoto, K.; Norman, I.G.; Tsegyal, T.; et al. Bioengineered vocal fold mucosa for voice restoration. Sci. Transl. Med. 2015, 7, 314ra187. [Google Scholar] [CrossRef]
- Fukahori, M.; Chitose, S.; Sato, K.; Sueyoshi, S.; Kurita, T.; Umeno, H.; Monden, Y.; Yamakawa, R. Regeneration of Vocal Fold Mucosa Using Tissue-Engineered Structures with Oral Mucosal Cells. PLoS ONE 2016, 11, e0146151. [Google Scholar] [CrossRef]
- Lungova, V.; Chen, X.; Wang, Z.; Kendziorski, C.; Thibeault, S.L. Human induced pluripotent stem cell-derived vocal fold mucosa mimics development and responses to smoke exposure. Nat. Commun. 2019, 10, 4161. [Google Scholar] [CrossRef]
- Grossmann, T.; Kirsch, A.; Grill, M.; Steffan, B.; Karbiener, M.; Brcic, L.; Darnhofer, B.; Birner-Gruenberger, R.; Gugatschka, M. Introducing a new type of alternative laryngeal mucosa model. PLoS ONE 2023, 18, e0287634. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, N.J.I.; Tait, A.; Weil, B.; Daniels, J. The Use of a Dehydrated Cellularized Collagen Matrix to Replace Fibrotic Vocal Fold Mucosa. Laryngoscope 2024, 134, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Groen, S.A.T.; Nejati, S.; AlHumaid, S.; Huynh, L.A.; Kost, K.; Sedal, A.; Mongeau, L. A continuum robotic bioprinter for in situ vocal fold repair. Device 2025, 3, 100973. [Google Scholar] [CrossRef]
- Ban, M.J.; Lee, S.C.; Park, J.H.; Park, K.N.; Kim, H.K.; Lee, S.W. Regenerative efficacy of fibroblast growth factor for the treatment of aged vocal fold: From animal model to clinical application. Clin. Otolaryngol. 2021, 46, 131–137. [Google Scholar] [CrossRef]
- Hirano, S.; Sugiyama, Y.; Kaneko, M.; Mukudai, S.; Fuse, S.; Hashimoto, K. Intracordal Injection of Basic Fibroblast Growth Factor in 100 Cases of Vocal Fold Atrophy and Scar. Laryngoscope 2021, 131, 2059–2064. [Google Scholar] [CrossRef] [PubMed]
- Hirano, S.; Mizuta, M.; Kaneko, M.; Tateya, I.; Kanemaru, S.; Ito, J. Regenerative phonosurgical treatments for vocal fold scar and sulcus with basic fibroblast growth factor. Laryngoscope 2013, 123, 2749–2755. [Google Scholar] [CrossRef]
- Sueyoshi, S.; Umeno, H.; Kurita, T.; Fukahori, M.; Chitose, S.I. Long-term outcomes of basic fibroblast growth factor treatments in patients with vocal fold scarring, aged vocal fold, and sulcus vocalis. Auris Nasus Larynx 2021, 48, 949–955. [Google Scholar] [CrossRef]
- Kanazawa, T.; Komazawa, D.; Indo, K.; Akagi, Y.; Lee, Y.; Nakamura, K.; Matsushima, K.; Kunieda, C.; Misawa, K.; Nishino, H.; et al. Single injection of basic fibroblast growth factor to treat severe vocal fold lesions and vocal fold paralysis. Laryngoscope 2015, 125, E338–E344. [Google Scholar] [CrossRef]
- Hamilton, N.J.I.; Saccente-Kennedy, B.; Ambler, G. The use of basic fibroblast growth factor to improve vocal function: A systematic review and meta-analysis. Clin. Otolaryngol. 2023, 48, 725–733. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujita, R.; Komazawa, D.; Konomi, U.; Hirosaki, M.; Watanabe, Y. Evaluation of Safety After Intracordal Basic Fibroblast Growth Factor Injection. J. Voice 2025, 39, 1419.e1429–1419.e1437. [Google Scholar] [CrossRef]
- Hirano, S.; Kawamoto, A.; Tateya, I.; Mizuta, M.; Kishimoto, Y.; Hiwatashi, N.; Kawai, Y.; Tsuji, T.; Suzuki, R.; Kaneko, M.; et al. A phase I/II exploratory clinical trial for intracordal injection of recombinant hepatocyte growth factor for vocal fold scar and sulcus. J. Tissue Eng. Regen. Med. 2018, 12, 1031–1038. [Google Scholar] [CrossRef]
- Choi, J.S.; Lee, S.; Kim, D.Y.; Kim, Y.M.; Kim, M.S.; Lim, J.Y. Functional remodeling after vocal fold injury by small intestinal submucosa gel containing hepatocyte growth factor. Biomaterials 2015, 40, 98–106. [Google Scholar] [CrossRef]
- Choi, J.W.; Kim, Y.S.; Park, J.K.; Song, E.H.; Park, J.H.; Kim, M.S.; Shin, Y.S.; Kim, C.H. Controlled Release of Hepatocyte Growth Factor from MPEG-b-(PCL-ran-PLLA) Diblock Copolymer for Improved Vocal Fold Regeneration. Macromol. Biosci. 2017, 17, 1600163. [Google Scholar] [CrossRef]
- Woo, P. Platelet-rich plasma in treatment of scar, atrophy, and sulcus: Short- and long-term results. Laryngoscope Investig. Otolaryngol. 2023, 8, 1304–1311. [Google Scholar] [CrossRef]
- Kang, H.T.; Park, K.N.; Lee, S.W. Regenerative Effect of a 532-nm Diode Laser on Vocal Fold Scar in a Rabbit Model. J. Voice, 2023; in press. [Google Scholar] [CrossRef]
- Mortensen, M.M.; Woo, P.; Ivey, C.; Thompson, C.; Carroll, L.; Altman, K. The use of the pulse dye laser in the treatment of vocal fold scar: A preliminary study. Laryngoscope 2008, 118, 1884–1888. [Google Scholar] [CrossRef]
- Elibol, E.; Yilmaz, Y.F.; Unal, A.; Ozcan, M.; Kum, N.Y.; Kum, R.O.; Kulacoglu, S. Effects of hyaluronic acid-collagen nanofibers on early wound healing in vocal cord trauma. Eur. Arch. Otorhinolaryngol. 2021, 278, 1537–1544. [Google Scholar] [CrossRef]
- Brown, J.E.; Gulka, C.P.; Giordano, J.E.M.; Montero, M.P.; Hoang, A.; Carroll, T.L. Injectable Silk Protein Microparticle-based Fillers: A Novel Material for Potential Use in Glottic Insufficiency. J. Voice 2019, 33, 773–780. [Google Scholar] [CrossRef]
- Chhetri, D.K.; Berke, G.S. Injection of cultured autologous fibroblasts for human vocal fold scars. Laryngoscope 2011, 121, 785–792. [Google Scholar] [CrossRef]
- Svistushkin, M.V.; Kotova, S.L.; Shekhter, A.B.; Svistushkin, V.M.; Akovantseva, A.A.; Frolova, A.A.; Fayzullin, A.L.; Starostina, S.V.; Bezrukov, E.A.; Sukhanov, R.B.; et al. Collagen fibrillar structures in vocal fold scarring and repair using stem cell therapy: A detailed histological, immunohistochemical and atomic force microscopy study. J. Microsc. 2019, 274, 55–68. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Park, K.N.; Lee, S.W. A Novel Intervention That Prevents Vocal Fold Scarring. J. Voice, 2023; in press. [Google Scholar] [CrossRef]
- Mattei, A.; Bertrand, B.; Jouve, E.; Blaise, T.; Philandrianos, C.; Grimaud, F.; Giraudo, L.; Aboudou, H.; Dumoulin, C.; Arnaud, L.; et al. Feasibility of First Injection of Autologous Adipose Tissue-Derived Stromal Vascular Fraction in Human Scarred Vocal Folds: A Nonrandomized Controlled Trial. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 355–363. [Google Scholar] [CrossRef]
- Svistushkin, M.; Shpichka, A.; Bikmulina, P.; Fayzullin, A.; Zolotova, A.; Kosheleva, N.; Selezneva, L.; Shavkuta, B.; Lobacheva, V.; Nikiforova, A.; et al. Vocal fold restoration after scarring: Biocompatibility and efficacy of an MSC-based bioequivalent. Stem Cell Res. Ther. 2023, 14, 303. [Google Scholar] [CrossRef]
- Bartlett, R.S.; Guille, J.T.; Chen, X.; Christensen, M.B.; Wang, S.F.; Thibeault, S.L. Mesenchymal stromal cell injection promotes vocal fold scar repair without long-term engraftment. Cytotherapy 2016, 18, 1284–1296. [Google Scholar] [CrossRef]
- Hertegard, S.; Nagubothu, S.R.; Malmstrom, E.; LeBlanc, K. Treatment of vocal fold scarring with autologous bone marrow-derived human mesenchymal stromal cells-first phase I/II human clinical study. Stem Cell Res. Ther. 2020, 11, 128. [Google Scholar] [CrossRef]
- Goto, T.; Ueha, R.; Sato, T.; Yamasoba, T. Effects of early local administration of high-dose bFGF on a recurrent laryngeal nerve injury model. J. Otolaryngol. Head Neck Surg. 2023, 52, 47. [Google Scholar] [CrossRef]
- Kaneko, M.; Tsuji, T.; Kishimoto, Y.; Sugiyama, Y.; Nakamura, T.; Hirano, S. Regenerative Effects of Basic Fibroblast Growth Factor on Restoration of Thyroarytenoid Muscle Atrophy Caused by Recurrent Laryngeal Nerve Transection. J. Voice 2018, 32, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Ueha, R.; Sato, T.; Fujimaki, Y.; Nito, T.; Yamasoba, T. Single, high-dose local injection of bFGF improves thyroarytenoid muscle atrophy after paralysis. Laryngoscope 2020, 130, 159–165. [Google Scholar] [CrossRef]
- Choi, H.; Yu, S.S.; Choi, J.; Kim, C.S. The Regenerative Effects of c-Met Agonistic Antibodies in Vocal Fold Atrophy. Int. J. Mol. Sci. 2022, 23, 7818. [Google Scholar] [CrossRef]
- Rooks, D.S.; Laurent, D.; Praestgaard, J.; Rasmussen, S.; Bartlett, M.; Tanko, L.B. Effect of bimagrumab on thigh muscle volume and composition in men with casting-induced atrophy. J. Cachexia Sarcopenia Muscle 2017, 8, 727–734. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, J.M.; Choi, M.E.; Jeon, E.J.; Park, J.M.; Kim, Y.M.; Choi, S.H.; Eom, T.; Shim, B.S.; Choi, J.S. Platelet-rich plasma loaded nerve guidance conduit as implantable biocompatible materials for recurrent laryngeal nerve regeneration. npj Regen. Med. 2022, 7, 49. [Google Scholar] [CrossRef]
- Neishabouri, A.; Soltani Khaboushan, A.; Daghigh, F.; Kajbafzadeh, A.M.; Majidi Zolbin, M. Decellularization in Tissue Engineering and Regenerative Medicine: Evaluation, Modification, and Application Methods. Front. Bioeng. Biotechnol. 2022, 10, 805299. [Google Scholar] [CrossRef]
- Gilbert, T.W.; Freund, J.M.; Badylak, S.F. Quantification of DNA in biologic scaffold materials. J. Surg. Res. 2009, 152, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Mesina, M.; Mindrila, I.; Mesina-Botoran, M.I.; Mindrila, L.A.; Farhangee, A.; Pirici, I. Optimization Techniques of Single-Detergent Based Protocols for Heart Tissue Decellularization. Curr. Health Sci. J. 2023, 49, 156–162. [Google Scholar] [CrossRef] [PubMed]


| Clinical Status | Category | Material/Commercial Example | Duration of Effect | Advantages/Strengths | Limitations/Complications |
|---|---|---|---|---|---|
| Historical use | Early synthetic (xenograft) | Paraffin, Teflon™ (PTFE paste), Silicone (PDMS) | Permanent | Strong initial augmentation effect | Severe foreign-body reaction, fibrosis, granuloma, difficult removal |
| Temporary gel (collagen-derived) | Gelatin (Gelfoam®) | 4–6 wk | Safe, inexpensive, easy handling | Very short duration, low viscoelasticity | |
| Declining use | Biologic (xenograft) | Bovine collagen (Zyplast®) | 3–6 mo | ECM component, low immunogenicity | Hypersensitivity, viral risk, rapid resorption |
| Biologic (homograft) | Cadaveric dermis (Cymetra®) | 1–6 mo | Reduced foreign-body response, human-derived | Short duration, inconsistent results | |
| Off-label clinical use | Biologic (autologous) | Fat injection/Autologous fascia | 6–18 mo (variable) | Excellent biocompatibility, similar viscoelasticity to native tissue | Unpredictable resorption (fat), donor-site morbidity (fascia) |
| Natural polymer (ECM-derived) | Hyaluronic acid (Hylaform®, Restylane®, Reviderm®) | 4–12 mo | Excellent biocompatibility, rheological similarity to SLP | Rapid degradation in native form, repeat injection required | |
| Limited use | Synthetic polymer (hydrophilic) | Polyacrylamide hydrogel (PAAG) | >24 mo | Stable augmentation, minimal resorption | Rare granuloma, foreign-body risk |
| Synthetic polymer (microsphere) | Polymethylmethacrylate (PMMA; Artecoll®) | Permanent | Durable volume maintenance | Difficult revision if malpositioned | |
| Synthetic elastomer | Polydimethylsiloxane (PDMS) | Multi-year | Long-lasting stability | Extrusion, foreign-body reaction | |
| FDA approved | Mineral filler (bioceramic) | Calcium hydroxyapatite (CaHA; Radiesse®, Prolaryn Plus®) | 18–24 mo | Only FDA-approved long-term filler, high biocompatibility | Potential VF stiffness if over-injected |
| Hybrid bio-synthetic composite | Silk–HA composite (Silk Voice®) | ≤18 mo | Combines HA viscoelasticity and silk mechanical support | Occasional reinjection needed | |
| Preclinical | Advanced synthetic hydrogels | Click-chemistry PEG hydrogel | 6–12 mo (experimental) | Tunable viscoelasticity, low inflammation | Preclinical stage |
| Polydopamine-coated PDMS | — | Enhanced tissue adhesion | Cytotoxicity risk at high dose | ||
| Experimental | Advanced synthetic hydrogels | Carbon-nanotube-reinforced hydrogel | — | Improved mechanical strength and viscoelastic recovery | Uncertain biodegradability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeou, S.H.; Shin, Y.S. Regenerative Strategies for Vocal Fold Repair Using Injectable Materials. Biomimetics 2025, 10, 748. https://doi.org/10.3390/biomimetics10110748
Yeou SH, Shin YS. Regenerative Strategies for Vocal Fold Repair Using Injectable Materials. Biomimetics. 2025; 10(11):748. https://doi.org/10.3390/biomimetics10110748
Chicago/Turabian StyleYeou, Se Hyun, and Yoo Seob Shin. 2025. "Regenerative Strategies for Vocal Fold Repair Using Injectable Materials" Biomimetics 10, no. 11: 748. https://doi.org/10.3390/biomimetics10110748
APA StyleYeou, S. H., & Shin, Y. S. (2025). Regenerative Strategies for Vocal Fold Repair Using Injectable Materials. Biomimetics, 10(11), 748. https://doi.org/10.3390/biomimetics10110748

