A Review of Bio-Inspired Perching Mechanisms for Flapping-Wing Robots
Abstract
1. Introduction
2. Classification of Perching Mechanisms for Aerial Robots
2.1. System Configuration
2.2. Gripper Material
2.3. Grasp Adaptability
2.4. Closing Actuation
2.5. Grasp Maintenance
2.6. Perching Configuration
2.7. Opening Actuation
3. Perching Mechanisms
3.1. Perching Mechanisms for FWAVs
3.2. Perching Mechanisms for Other Aerial Robots
3.2.1. Tendon-Driven Mechanisms
3.2.2. Other Perching Mechanism Designs
Ref. | Yr | Aerial Platform | System Config. | Material | Adaptive | Closing Actuation | Grasp Maint. | Perching Config. | Opening Actuation |
---|---|---|---|---|---|---|---|---|---|
[15] | 2025 | FWAV | Gripper-Only | Soft-Rigid | Y | Active | Active | Above-Rod | Active |
[26] | 2025 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Active | Passive | Below-Rod | Active |
[50] | 2025 | Quadrotor | Gripper-Only | Rigid | Y | Active | Active | Below-Rod | Active |
[14] | 2024 | FWAV | Gripper-Only | Soft | Y | Active | Passive | Above-Rod | Active |
[25] | 2024 | Quadrotor | Gripper-Only | Soft | Y | Active | Active | Below-Rod | Active |
[53] | 2024 | Quadrotor | Gripper-Only | Rigid | Y | Fully-Passive | Active | Below-Rod | Fully-Passive |
[46] | 2024 | - | Leg-Gripper | Rigid | Y | Fully-Passive | Passive | Above-Rod | Active |
[31] | 2024 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Hybrid | Passive | Above-Rod | Active |
[47] | 2024 | Quadrotor | Gripper-Only | Soft-Rigid | N | Fully-Passive | Active | Below-Rod | Hybrid |
[24] | 2024 | Quadrotor | Leg-Gripper | Soft-Rigid | Y | Fully-Passive | Passive | Above-Rod | Passive |
[29] | 2023 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Fully-Passive | Passive | Above-Rod | Active |
[32] | 2023 | Fixed-Wing UAV | Gripper-Only | Rigid | Y | Fully-Passive | Passive | Below-Rod | Hybrid |
[13] | 2022 | FWAV | Leg-Gripper * | Soft-Rigid | N | Fully-Passive | Passive | Above-Rod | Active |
[56] | 2022 | Quadrotor | Gripper-Only | Soft-Rigid | N | Fully-Passive | Passive | Below-Rod | Fully-Passive |
[57] | 2022 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Active | Passive | Below-Rod | Active |
[33] | 2021 | Quadrotor | Leg-Gripper * | Soft-Rigid | Y | Passive | Passive | Above-Rod | Hybrid |
[34] | 2021 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Active | Active | Below-Rod | Active |
[12] | 2020 | FWAV | Leg-Gripper | Soft-Rigid | Y | Active | Passive | Above-Rod | Active |
[28] | 2019 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Hybrid | Passive | Above-Rod | Active |
[45] | 2019 | Hexa-copter | Leg-Gripper * | Soft-Rigid | Y | Fully-Passive | Passive | Above-Rod | Hybrid |
[55] | 2019 | Quadrotor | Gripper-Only | Soft-Rigid | N | Fully-Passive | Passive | Below-Rod | Hybrid |
[30] | 2019 | Quadrotor | Gripper-Only | Rigid | N | Active | Active | Below-Rod | Active |
[48] | 2018 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Active | Passive | Above-Rod | Active |
[16] | 2013 | Quadrotor | Leg-Gripper | Soft-Rigid | Y | Fully-Passive | Passive | Above-Rod | Fully-Passive |
[52] | 2012 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Fully-Passive | Passive | Above-Rod | Active |
Ref. | W [g] | GF [N] * | LC [N] * | F/W | CT [ms] | SR [%] | [g] ** | MR [%] | D [mm] *** |
---|---|---|---|---|---|---|---|---|---|
[26] | - | - | - | - | - | - | 1500 | - | 30–110 |
[50] | 390 | - | 269.8 | 70.5 | - | - | 2500 | 15.6 | 24–28 |
[15] | 50 a | 16 | - | 32.6 | - | 87 a | 152 a | 32.9 a | 40–82 |
100 b | 16 | - | 32.6 | - | 0 b | 550 b | 18.2 b | 40–82 | |
[14] | 39 | - | 6–9.5 | 15.8–25.0 | - | 100 c | 172 | 22.6 | 30–50 |
[24] | 114 | 1–3.5 | - | 1.8–6.3 | - | 75 | 700 | 16.3 | 30–50 |
[47] | 300 | - | 40 | 27.2 | 45 | - | 1800 | 16.7 | 20–55 |
[25] | 55 | 0.8 | - | 1.5 | - | - | 304 | 18.0 | - |
[46] | 89 | - | 39.1–76.1 | 45.0–87.6 | - | 95 | - | - | 10–40 |
[53] | - | 0.9–3 | - | - | - | - | - | - | 85–200 |
[31] | 142 d | - | 22 d | 15.8 d | 67 d | - | 950 d | 15.0 d | 54–103 |
35 e | - | 10.7 e | 31.2 e | 42 e | - | 148 e | 23 e | 54–103 | |
[32] | 170 | - | 28 | 16.8 | 20 | 75 | 1020 | 16.7 | 40–55 |
[29] | - | - | 12–176 f | 119.6 f | 4 | 80 | - | - | 55–11 f |
[13] | 184 | 56.8 | - | 31.5 | 25 | 66 | 708 | 26.0 | 40–110 |
[56] | 28 | - | 36.3 | 132 | - | - | 593 | 4.7 | - |
[33] | 250 | - | 5.3 | 4.3 | 50 | - | 750 | 33.0 | 38–165 |
[34] | 258 | - | 39.2 | 15.5 | - | 90 | 1950 | 13 | - |
[12] | - | - | - | - | - | - | 450 | - | - |
[28] | 551 | - | 56 | 10.4 | 96 | - | - | - | 48 |
[45] | 178 | - | - | - | - | - | - | - | 24–184 |
[55] | 9 | - | - | - | - | - | 36 | 25 | - |
[30] | - | - | - | - | - | - | 1440 | - | 400 |
[48] | 372 | - | - | - | - | - | 2300 | 16.0 | 60 |
[16] | 478 | - | - | - | - | 73 g; 98 h | - | - | 33–49 |
[52] | 98 | - | - | - | - | - | - | - | - |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADFM | Automatic Digital Flexor Mechanism |
APM | Automatic Perching Mechanism |
DC | Direct Current |
DTLM | Digital Tendon-Locking Mechanism |
FiBa | Film-Balloon |
FWAVs | Flapping-Wing Aerial Vehicles |
PLA | Polylactic Acid |
SMA | Shape Memory Alloys |
TPU | Thermoplastic Polyurethane |
UAVs | Unmanned Aerial Vehicles |
VTOL | Vertical Take-Off and Landing |
CCAM | Connected, Cooperative, and Automated Mobility |
References
- Holle, A.A. Plane and the Like for Aeroplanes. U.S. Patent No. 1,225,711, 8 May 1917. [Google Scholar]
- Kudva, J.N.; Sanders, B.P.; Pinkerton-Florance, J.L.; Garcia, E. DARPA/AFRL/NASA Smart Wing Program: Final Overview. In Proceedings of the Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, San Diego, CA, USA, 18–21 March 2002; Rivas McGowan, A.M., Ed.; SPIE: Bellingham, WA, USA, 2002; Volume 4698, pp. 37–43. [Google Scholar] [CrossRef]
- NASA. NASA Tests Revolutionary Shape-Changing Aircraft Flap for the First Time. 2014. Available online: http://www.nasa.gov/press/2014/november/nasa-tests-revolutionary-shape-changing-aircraft-flap-for-the-first-time (accessed on 13 July 2025).
- Flanagan, J.S.; Strutzenberg, R.C.; Myers, R.B.; Rodrian, J.E. Development and Flight Testing of a Morphing Aircraft, the NextGen MFX-1. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 23–26 April 2007. [Google Scholar] [CrossRef]
- Schenato, L.; Deng, X.; Sastry, S. Flight Control System for a Micromechanical Flying Insect: Architecture and Implementation. In Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA), Seoul, Republic of Korea, 21–26 May 2001; Volume 2, pp. 1641–1646. [Google Scholar] [CrossRef]
- de Croon, G.C.H.E.; de Clercq, K.M.E.; Ruijsink, R.; Remes, B.; de Wagter, C. Design, Aerodynamics, and Vision-Based Control of the DelFly. Int. J. Micro Air Veh. 2009, 1, 71–97. [Google Scholar] [CrossRef]
- da Vinci, L. Codice sul volo degli uccelli; Biblioteca Reale: Turin, Italy, 1505. [Google Scholar]
- OrniHobby. Ornihobby—CarbonSail Ornithipter. Available online: https://www.ornihobby.com/ (accessed on 13 July 2025).
- BionicBird. X-Fly. Available online: https://www.bionicbird.com/world/shop/x-fly/ (accessed on 13 July 2025).
- Drones, F. Flapper Nimble+—Bioinspired Development Platform. 2025. Available online: https://flapper-drones.eu/nimbleplus/ (accessed on 13 July 2025).
- Meng, J.; Buzzatto, J.; Liu, Y.; Liarokapis, M. On Aerial Robots with Grasping and Perching Capabilities: A Comprehensive Review. Front. Robot. AI 2022, 8, 739173. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Tamm, A.E.; Pérez-Sánchez, V.; Arrue, B.C.; Ollero, A. SMA Actuated Low-Weight Bio-Inspired Claws for Grasping and Perching Using Flapping Wing Aerial Systems. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 8807–8814. [Google Scholar] [CrossRef]
- Zufferey, R.; Tormo-Barbero, J.; Feliu-Talegón, D.; Nekoo, S.R.; Acosta, J.A.; Ollero, A. How ornithopters can perch autonomously on a branch. Nat. Commun. 2022, 13, 7713. [Google Scholar] [CrossRef] [PubMed]
- Broers, K.C.V.; Armanini, S.F. Repeatable Energy-Efficient Perching for Flapping-Wing Robots Using Soft Grippers. arXiv 2024, arXiv:2409.11921. [Google Scholar]
- Hammad, A.; Süer, M.; Armanini, S.F. A Lightweight Bioinspired SMA-Based Grasping Mechanism for Flapping Wing MAVs. Biomimetics 2025, 10, 364. [Google Scholar] [CrossRef]
- Doyle, C.E.; Bird, J.J.; Isom, T.A.; Kallman, J.C.; Bareiss, D.F.; Dunlop, D.J.; King, R.J.; Abbott, J.J.; Minor, M.A. An Avian-Inspired Passive Mechanism for Quadrotor Perching. IEEE/ASME Trans. Mechatronics 2013, 18, 506–517. [Google Scholar] [CrossRef]
- Rafee Nekoo, S.; Rashad, R.; De Wagter, C.; Fuller, S.B.; de Croon, G.; Stramigioli, S.; Ollero, A. A review on flapping-wing robots: Recent progress and challenges. Int. J. Robot. Res. 2025. Online First. [Google Scholar] [CrossRef]
- Hammad, A.; Armanini, S.F. Landing and take-off capabilities of bioinspired aerial vehicles: A review. Bioinspiration Biomimetics 2024, 19, 031001. [Google Scholar] [CrossRef]
- Song, F.; Yan, Y.; Sun, J. Review of insect-inspired wing micro air vehicle. Arthropod Struct. Dev. 2023, 72, 101225. [Google Scholar] [CrossRef]
- Ma, D.; Song, B.; Gao, S.; Xue, D.; Xuan, J. Designing efficient bird-like flapping-wing aerial vehicles: Insights from aviation perspective. Bioinspiration Biomimetics 2024, 19, 061001. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, N.; Qu, F. Bio-inspired flapping wing robots with foldable or deformable wings: A review. Bioinspiration Biomimetics 2022, 18, 011002. [Google Scholar] [CrossRef]
- Han, J.H.; Han, Y.J.; Yang, H.H.; Lee, S.G.; Lee, E.H. A Review of Flapping Mechanisms for Avian-Inspired Flapping-Wing Air Vehicles. Aerospace 2023, 10, 554. [Google Scholar] [CrossRef]
- Fang, X.; Wen, Y.; Gao, Z.; Gao, K.; Luo, Q.; Peng, H.; Du, R. Review of the Flight Control Method of a Bird-Like Flapping-Wing Air Vehicle. Micromachines 2023, 14, 1547. [Google Scholar] [CrossRef]
- Askari, M.; Shin, W.D.; Lenherr, D.; Stewart, W.; Floreano, D. Avian-Inspired Claws Enable Robot Perching or Walking. IEEE/ASME Trans. Mechatronics 2024, 29, 1856–1866. [Google Scholar] [CrossRef]
- Ching, T.; Lee, J.Z.W.; Win, S.K.H.; Win, L.S.T.; Sufiyan, D.; Lim, C.P.X.; Nagaraju, N.; Toh, Y.C.; Foong, S.; Hashimoto, M. Crawling, climbing, perching, and flying by FiBa soft robots. Sci. Robot. 2024, 9, eadk4533. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Z.; Wu, Z.; Potdar, P.; Tran, L.; Karasahin, A.T.; Windsor, S.; Burrow, S.G.; Kocer, B.B. Tendon-driven Grasper Design for Aerial Robot Perching on Tree Branches. arXiv 2025, arXiv:2503.00214. [Google Scholar] [CrossRef]
- Long, Z.; Jiang, Q.; Shuai, T.; Wen, F.; Liang, C. A Systematic Review and Meta-analysis of Robotic Gripper. IOP Conf. Ser. Mater. Sci. Eng. 2020, 782, 042055. [Google Scholar] [CrossRef]
- McLaren, A.; Fitzgerald, Z.; Gao, G.; Liarokapis, M. A Passive Closing, Tendon Driven, Adaptive Robot Hand for Ultra-Fast, Aerial Grasping and Perching. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 5602–5607. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Patnaik, K.; Mishra, S.; Polygerinos, P.; Zhang, W. A Soft-Bodied Aerial Robot for Collision Resilience and Contact-Reactive Perching. Soft Robot. 2023, 10, 838–851. [Google Scholar] [CrossRef] [PubMed]
- Hang, K.; Lyu, X.; Song, H.; Stork, J.A.; Dollar, A.M.; Kragic, D.; Zhang, F. Perching and resting—A paradigm for UAV maneuvering with modularized landing gears. Sci. Robot. 2019, 4, eaau6637. [Google Scholar] [CrossRef]
- Zheng, L.; Hamaza, S. ALBERO: Agile Landing on Branches for Environmental Robotics Operations. IEEE Robot. Autom. Lett. 2024, 9, 2845–2852. [Google Scholar] [CrossRef]
- Stewart, W.; Guarino, L.; Piskarev, Y.; Floreano, D. Passive Perching with Energy Storage for Winged Aerial Robots. Adv. Intell. Syst. 2023, 5, 2100150. [Google Scholar] [CrossRef]
- Roderick, W.R.T.; Cutkosky, M.R.; Lentink, D. Bird-inspired dynamic grasping and perching in arboreal environments. Sci. Robot. 2021, 6, eabj7562. [Google Scholar] [CrossRef]
- Bai, L.; Wang, H.; Chen, X.; Zheng, J.; Xin, L.; Deng, Y.; Sun, Y. Design and Experiment of a Deformable Bird-Inspired UAV Perching Mechanism. J. Bionic Eng. 2021, 18, 1304–1316. [Google Scholar] [CrossRef]
- Pérez-Sánchez, V.; Nekoo, S.R.; Arrue, B.; Ollero, A. A Finite-Time State-Dependent Differential Riccati Equation Control Design for Closed-Loop SMA-Actuated Hip Joint. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 6441–6448. [Google Scholar] [CrossRef]
- Broers, K.C.V.; Armanini, S.F. Design and Testing of a Bioinspired Lightweight Perching Mechanism for Flapping-Wing MAVs Using Soft Grippers. IEEE Robot. Autom. Lett. 2022, 7, 7526–7533. [Google Scholar] [CrossRef]
- Pfaff, O.; Simeonov, S.; Cirovic, I.; Stano, P. Application of fin ray effect approach for production process automation. Ann. DAAAM Proc. 2011, 22, 1247–1249. [Google Scholar]
- Crooks, W.; Vukasin, G.; O’Sullivan, M.; Messner, W.; Rogers, C. Fin ray® effect inspired soft robotic gripper: From the robosoft grand challenge toward optimization. Front. Robot. AI 2016, 3, 70. [Google Scholar] [CrossRef]
- Crooks, W.; Rozen-Levy, S.; Trimmer, B.; Rogers, C.; Messner, W. Passive gripper inspired by Manduca sexta and the Fin Ray Effect. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417721155. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, J.G.; Kim, D.I.; Yoon, H.S. A universal soft gripper with the optimized fin ray finger. Int. J. Precis. Eng. Manuf.-Green Technol. 2021, 8, 889–899. [Google Scholar] [CrossRef]
- Nekoo, S.R.; Sanchez-Laulhe, E.; Durán, R.G.; Hernandez, M.; Ollero, A. Increasing Repeatability of the Perching on Branch for Flapping-Wing Flying Robot. In Proceedings of the 2024 International Conference on Unmanned Aircraft Systems (ICUAS), Chania, Greece, 4–7 June 2024; pp. 618–623. [Google Scholar] [CrossRef]
- Watson, M. The Mechanism of Perching in Birds. J. Anat. Physiol. 1869, 3, 379–384. [Google Scholar]
- Quinn, T.H.; Baumel, J.J. The Digital Tendon Locking Mechanism of the Avian Foot (Aves). Zoomorphology 1990, 109, 281–293. [Google Scholar] [CrossRef]
- Galton, P.M.; Shepherd, J.D. Experimental Analysis of Perching in the European Starling (Sturnus vulgaris: Passeriformes; Passeres), and the Automatic Perching Mechanism of Birds. J. Exp. Zool. Part A Ecol. Genet. Physiol. 2012, 317, 205–215. [Google Scholar] [CrossRef]
- Nadan, P.M.; Anthony, T.M.; Michael, D.M.; Pflueger, J.B.; Sethi, M.S.; Shimazu, K.N.; Tieu, M.; Lee, C.L. A Bird-Inspired Perching Landing Gear System. J. Mech. Robot. 2019, 11, 061002. [Google Scholar] [CrossRef]
- Wang, B.; Yin, H.; Zi, P.; Xu, K.; Tian, Y.; Lyu, S.; Ding, X. Bionic Bird Claw Design for Grabbing and Perching Inspired by Tendon-Locking Mechanism. IEEE Robot. Autom. Lett. 2024, 9, 8090–8097. [Google Scholar] [CrossRef]
- Firouzeh, A.; Lee, J.; Yang, H.; Lee, D.; Cho, K.J. Perching and Grasping Using a Passive Dynamic Bioinspired Gripper. IEEE Trans. Robot. 2024, 40, 213–225. [Google Scholar] [CrossRef]
- Popek, K.M.; Johannes, M.S.; Wolfe, K.C.; Hegeman, R.A.; Hatch, J.M.; Moore, J.L.; Katyal, K.D.; Yeh, B.Y.; Bamberger, R.J. Autonomous Grasping Robotic Aerial System for Perching (AGRASP). In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Ma, R.R.; Odhner, L.U.; Dollar, A.M. A modular, open-source 3D printed underactuated hand. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 2737–2743. [Google Scholar] [CrossRef]
- Iida, H.; Sugihara, J.; Sugihara, K.; Kozuka, H.; Li, J.; Nagato, K.; Zhao, M. Adaptive Perching and Grasping by Aerial Robot with Light-weight and High Grip-force Tendon-driven Three-fingered Hand using Single Actuator. arXiv 2025, arXiv:2503.17711. [Google Scholar]
- Chi, W.; Low, K.H.; Hoon, K.H.; Tang, J.; Go, T.H. A Bio-Inspired Adaptive Perching Mechanism for Unmanned Aerial Vehicles. J. Robot. Mechatronics 2012, 24, 642–648. [Google Scholar] [CrossRef]
- Culler, E.; Thomas, G.; Lee, C. A perching landing gear for a quadcopter. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, 23–26 April 2012; p. 1722. [Google Scholar] [CrossRef]
- Lee, S.M.; Liu, J.; Chien, J.L.; Ng, W.H.; Lim, M.; Foong, S. Rapid Resistography with Passive Overhead-perching Mechanism in an Unmanned Aerial System for Wood Structure Inspection. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 1554–1560. [Google Scholar] [CrossRef]
- Burroughs, M.L.; Freckleton, K.B.; Abbott, J.J.; Minor, M.A. A Sarrus-Based Passive Mechanism for Rotorcraft Perching. J. Mech. Robot. 2016, 8, 011010. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, J.; Zhao, J. Compliant Bistable Gripper for Aerial Perching and Grasping. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 1248–1253. [Google Scholar] [CrossRef]
- Hsiao, H.; Sun, J.; Zhang, H.; Zhao, J. A Mechanically Intelligent and Passive Gripper for Aerial Perching and Grasping. IEEE/ASME Trans. Mechatronics 2022, 27, 5243–5253. [Google Scholar] [CrossRef]
- Kirchgeorg, S.; Benist, B.; Mintchev, S. Soft Gripper with Adjustable Microspines for Adhering to Tree Branches. In Proceedings of the 25th International Conference Series on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR 2022), Ponta Delgada, Portugal, 12–14 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; Volume 530, pp. 61–74. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speciale, C.; Milana, S.; Carcaterra, A.; Concilio, A. A Review of Bio-Inspired Perching Mechanisms for Flapping-Wing Robots. Biomimetics 2025, 10, 666. https://doi.org/10.3390/biomimetics10100666
Speciale C, Milana S, Carcaterra A, Concilio A. A Review of Bio-Inspired Perching Mechanisms for Flapping-Wing Robots. Biomimetics. 2025; 10(10):666. https://doi.org/10.3390/biomimetics10100666
Chicago/Turabian StyleSpeciale, Costanza, Silvia Milana, Antonio Carcaterra, and Antonio Concilio. 2025. "A Review of Bio-Inspired Perching Mechanisms for Flapping-Wing Robots" Biomimetics 10, no. 10: 666. https://doi.org/10.3390/biomimetics10100666
APA StyleSpeciale, C., Milana, S., Carcaterra, A., & Concilio, A. (2025). A Review of Bio-Inspired Perching Mechanisms for Flapping-Wing Robots. Biomimetics, 10(10), 666. https://doi.org/10.3390/biomimetics10100666