Analysis of Viability as Readout of Lymphocyte Transformation Test in Drug Hypersensitivity Diagnostics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Data
2.2. Preparation of Drugs for LTT
2.3. Lymphocyte Transformation Testing
2.4. Meta-Analysis, Statistical Methods
3. Results
3.1. Variance of Negative Control
3.2. Effects of Age and Sex
3.3. Adjustment of Cut-Off for SI
3.4. Frequencies and Relationships of Positive Responses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coleman, J.J.; Pontefract, S.K. Adverse drug reactions. Clin. Med. 2016, 16, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Gomes, E.R.; Marques, M.L.; Regateiro, F. Epidemiology and risk factors for severe delayed drug hypersensitivity reactions. Curr. Pharm. Des. 2019, 25, 3799–3812. [Google Scholar] [CrossRef]
- Illing, P.T.; Mifsud, N.A.; Ardern-Jones, M.R.; Trubiano, J. Editorial: The immunology of adverse drug reactions. Front. Immunol. 2022, 13, 863414. [Google Scholar] [CrossRef]
- Chu, M.-T.; Chang, W.-C.; Pao, S.-C.; Hung, S.-I. Delayed drug hypersensitivity reactions: Molecular recognition, genetic susceptibility, and immune mediators. Biomedicines 2023, 11, 177. [Google Scholar] [CrossRef] [PubMed]
- Pichler, W.J.; Adam, J.; Watkins, S.; Wuillemin, N.; Yun, J.; Yerly, D. Drug Hypersensitivity: How Drugs Stimulate T Cells via Pharmacological Interaction with Immune Receptors. Int. Arch. Allergy Immunol. 2015, 168, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, Q.; Shi, C.; Zhang, X. Drug-Induced Pseudoallergy: A Review of the Causes and Mechanisms. Pharmacology 2018, 101, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Redwood, A.J.; Pavlos, R.K.; White, K.D.; Phillips, E.J. HLAs: Key regulators of T-cell-mediated drug hypersensitivity. HLA 2018, 91, 3–16. [Google Scholar] [CrossRef]
- Pichler, W.J. Delayed drug hypersensitivity reactions. Ann. Intern. Med. 2003, 139, 683–693. [Google Scholar] [CrossRef]
- Schrijvers, R.; Gilissen, L.; Chiriac, A.M.; Demoly, P. Pathogenesis and diagnosis of delayed-type drug hypersensitivity reactions, from bedside to bench and back. Clin. Transl. Allergy 2015, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Jutel, M.; Agache, I.; Zemelka-Wiacek, M.; Akdis, M.; Chivato, T.; Del Giacco, S.; Gajdanowicz, P.; Gracia, I.E.; Klimek, L.; Lauerma, A.; et al. Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper. Allergy 2023, 78, 2851–2874. [Google Scholar] [CrossRef] [PubMed]
- Doña, I.; Torres, M.J.; Celik, G.; Phillips, E.; Tanno, L.K.; Castells, M. Changing patterns in the epidemiology of drug allergy. Allergy 2024, 79, 613–628. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.J.; Romano, A.; Celik, G.; Demoly, P.; Khan, D.A.; Macy, E.; Park, M.; Blumenthal, K.; Aberer, W.; Castells, M.; et al. Approach to the diagnosis of drug hypersensitivity reactions: Similarities and differences between Europe and North America. Clin. Transl. Allergy 2017, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Srinoulprasert, Y.; Rerkpattanapipat, T.; Sompornrattanaphan, M.; Wongsa, C.; Kanistanon, D. Clinical value of in vitro tests for the management of severe drug hypersensitivity reactions. Asia Pac. Allergy 2020, 10, e44. [Google Scholar] [CrossRef]
- Mayorga, C.; Celik, G.; Rouzaire, P.; Whitaker, P.; Bonadonna, P.; Rodrigues-Cernadas, J.; Vultaggio, A.; Brockow, K.; Caubet, J.C.; Makowska, J.; et al. In vitro tests for Drug Allergy Task Force of EAACI Drug Interest Group In vitro tests for drug hypersensitivity reactions: An ENDA/EAACI Drug Allergy Interest Group position paper. Allergy 2016, 71, 1103–1134. [Google Scholar] [CrossRef]
- Saretta, F.; Mori, F.; Cardinale, F.; Liotti, L.; Franceschini, F.; Crisafulli, G.; Caimmi, S.; Bottau, P.; Bernardini, R.; Caffarelli, C. Pediatric drug hypersensitivity: Which diagnostic tests? Acta Biomed 2019, 90, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Steiner, M.; Harrer, A.; Himly, M. Basophil Reactivity as Biomarker in Immediate Drug Hypersensitivity Reactions-Potential and Limitations. Front. Pharmacol. 2016, 7, 171. [Google Scholar] [CrossRef]
- Cabrera, C.M.; Clarcast, M.; Palacios-Cañas, A. Clinical validation of the basophil activation test in immediate hypersensitivity reactions to gadolinium-based contrast agents. Int. Immunopharmacol. 2023, 117, 110000. [Google Scholar] [CrossRef]
- Bahri, R.; Custovic, A.; Korosec, P.; Tsoumani, M.; Barron, M.; Wu, J.; Sayers, R.; Weimann, A.; Ruiz-Garcia, M.; Patel, N.; et al. Mast cell activation test in the diagnosis of allergic disease and anaphylaxis. J. Allergy Clin. Immunol. 2018, 142, 485–496.e16. [Google Scholar] [CrossRef] [PubMed]
- Ebo, D.G.; De Puysseleyr, L.P.; Van Gasse, A.L.; Elst, J.; van der Poorten, M.-L.; Faber, M.A.; Mertens, C.; Van Houdt, M.; Hagendorens, M.M.; Sermeus, L.; et al. Mast cell activation during suspected perioperative hypersensitivity: A need for paired samples analysis. J. Allergy Clin. Immunol. Pract. 2021, 9, 3051–3059.e1. [Google Scholar] [CrossRef] [PubMed]
- Fatangare, A.; Glässner, A.; Sachs, B.; Sickmann, A. Future perspectives on in-vitro diagnosis of drug allergy by the lymphocyte transformation test. J. Immunol. Methods 2021, 495, 113072. [Google Scholar] [CrossRef]
- Glässner, A.; Dubrall, D.; Weinhold, L.; Schmid, M.; Sachs, B. Lymphocyte transformation test for drug allergy detection: When does it work? Ann. Allergy Asthma Immunol. 2022, 129, 497–506.e3. [Google Scholar] [CrossRef] [PubMed]
- Pichler, W.J.; Tilch, J. The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy 2004, 59, 809–820. [Google Scholar] [CrossRef]
- Porebski, G.; Piotrowicz-Wojcik, K.; Spiewak, R. ELISpot assay as a diagnostic tool in drug hypersensitivity reactions. J. Immunol. Methods 2021, 495, 113062. [Google Scholar] [CrossRef]
- Copaescu, A.M.; Ben-Shoshan, M.; Trubiano, J.A. Tools to improve the diagnosis and management of T-cell mediated adverse drug reactions. Front. Med. 2022, 9, 923991. [Google Scholar] [CrossRef]
- Drygala, S.; Rdzanek, E.; Porebski, G.; Dubiela, P. In Vitro Assays for Diagnosis of Drug-Induced Nonsevere Exanthemas: A Systematic Review and Meta-Analysis. J. Immunol. Res. 2022, 2022, 2386654. [Google Scholar] [CrossRef] [PubMed]
- Copaescu, A.; Gibson, A.; Li, Y.; Trubiano, J.A.; Phillips, E.J. An updated review of the diagnostic methods in delayed drug hypersensitivity. Front. Pharmacol. 2020, 11, 573573. [Google Scholar] [CrossRef] [PubMed]
- Dobozy, A.; Hunyadi, J.; Simon, N. Lymphocyte-transformation test in detection of drug hypersensitivity. Lancet 1972, 2, 1319. [Google Scholar] [CrossRef]
- Sachs, B.; Fatangare, A.; Sickmann, A.; Glässner, A. Lymphocyte transformation test: History and current approaches. J. Immunol. Methods 2021, 493, 113036. [Google Scholar] [CrossRef]
- Ganesan, N.; Ronsmans, S.; Hoet, P. Methods to assess proliferation of stimulated human lymphocytes in vitro: A narrative review. Cells 2023, 12, 386. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Szabó, I.; Gonda, A.; Bakos, B.; Tóth, K.; Hunyadi, J. Lymphoblast transformation colorimetry in the diagnosis of drug hypersensitivity. Orv. Hetil. 1998, 139, 2379–2382. [Google Scholar] [PubMed]
- Weir, C.; Li, J.; Fulton, R.; Fernando, S.L. Development and initial validation of a modified lymphocyte transformation test (LTT) assay in patients with DRESS and AGEP. Allergy Asthma Clin. Immunol. 2022, 18, 90. [Google Scholar] [CrossRef] [PubMed]
- Douglas, S.D.; Goldberg, L.S.; Fudenberg, H.H.; Goldberg, S.B. Agammaglobulinaemia and co-existent pernicious anaemia. Clin. Exp. Immunol. 1970, 6, 181–187. [Google Scholar] [PubMed]
- Weksler, M.E.; Bodine, S.; Rommer, J. Response of lymphocytes to plant lectins. I. A thymic-dependent lymphoid population responsive to pokeweed mitogen. Immunology 1974, 26, 281–290. [Google Scholar] [PubMed]
- Fauci, A.S.; Dale, D.C. Alternate-day prednisone therapy and human lymphocyte subpopulations. J. Clin. Invest. 1975, 55, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Mawas, C.; Sasportes, M.; Charmot, D.; Christen, Y.; Dausset, J. Cell-mediated lympholysis in vitro. Independence of mixed lymphocyte reactions and T-cell mitogen responses from the in vitro generation of cytotoxic effectors in primary immunodeficiency diseases. Clin. Exp. Immunol. 1975, 20, 83–92. [Google Scholar] [PubMed]
- Tsai, D.-Y.; Wang, C.-H.; Schiro, P.G.; Chen, N.; Tseng, J.-Y. Tracking B Cell Memory to SARS-CoV-2 Using Rare Cell Analysis System. Vaccines 2023, 11, 735. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Arakaki, R.; Yamada, A.; Tsunematsu, T.; Kudo, Y.; Ishimaru, N. Molecular mechanisms of nickel allergy. Int. J. Mol. Sci. 2016, 17, 202. [Google Scholar] [CrossRef] [PubMed]
- Shigematsu, H.; Kumagai, K.; Kobayashi, H.; Eguchi, T.; Kitaura, K.; Suzuki, S.; Horikawa, T.; Matsutani, T.; Ogasawara, K.; Hamada, Y.; et al. Accumulation of metal-specific T cells in inflamed skin in a novel murine model of chromium-induced allergic contact dermatitis. PLoS ONE 2014, 9, e85983. [Google Scholar] [CrossRef] [PubMed]
- Picascia, S.; Mandile, R.; Auricchio, R.; Troncone, R.; Gianfrani, C. Gliadin-Specific T-Cells Mobilized in the Peripheral Blood of Coeliac Patients by Short Oral Gluten Challenge: Clinical Applications. Nutrients 2015, 7, 10020–10031. [Google Scholar] [CrossRef]
- Cabañas, R.; Calderón, O.; Ramírez, E.; Fiandor, A.; Caballero, T.; Heredia, R.; Herranz, P.; Madero, R.; Quirce, S.; Bellón, T. Sensitivity and specificity of the lymphocyte transformation test in drug reaction with eosinophilia and systemic symptoms causality assessment. Clin. Exp. Allergy 2017, 48, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Nyfeler, B.; Pichler, W.J. The lymphocyte transformation test for the diagnosis of drug allergy: Sensitivity and specificity. Clin. Exp. Allergy 1997, 27, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Spoerri, I.; Scherer, K.; Michel, S.; Link, S.; Bircher, A.J.; Heijnen, I.A.F.M. Detection of nickel and palladium contact hypersensitivity by a flow cytometric lymphocyte proliferation test. Allergy 2015, 70, 323–327. [Google Scholar] [CrossRef]
- Di Blasi, D.; Claessen, I.; Turksma, A.W.; van Beek, J.; Ten Brinke, A. Guidelines for analysis of low-frequency antigen-specific T cell results: Dye-based proliferation assay vs 3H-thymidine incorporation. J. Immunol. Methods 2020, 487, 112907. [Google Scholar] [CrossRef] [PubMed]
- Karami, Z.; Mesdaghi, M.; Karimzadeh, P.; Mansouri, M.; Taghdiri, M.M.; Kayhanidoost, Z.; Jebelli, B.; Shekarriz Foumani, R.; Babaie, D.; Chavoshzadeh, Z. Evaluation of Lymphocyte Transformation Test Results in Patients with Delayed Hypersensitivity Reactions following the Use of Anticonvulsant Drugs. Int. Arch. Allergy Immunol. 2016, 170, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Alsalamah, M.; Vong, L.; Cimpean, L.; Dadi, H. Establishing reference ranges for lymphocyte proliferation responses to phytohemagglutinin in patients with T cell dysfunction. LymphoSign J. 2019, 6, 26–30. [Google Scholar] [CrossRef]
- Frome, E.L.; Smith, M.H.; Littlefield, L.G.; Neubert, R.L.; Colyer, S.P. Statistical methods for the blood beryllium lymphocyte proliferation test. Environ. Health Perspect. 1996, 104 (Suppl. S5), 957–968. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, R.E.; Brodskyn, C.; Barbosa, G.; Clarêncio, J.; Andrade-Filho, A.S.; Figueiroa, F.; Galvão-Castro, B.; Grassi, F. Peripheral blood mononuclear cells from individuals infected with human T-cell lymphotropic virus type 1 have a reduced capacity to respond to recall antigens. Clin. Vaccine Immunol. 2006, 13, 547–552. [Google Scholar] [CrossRef]
- Jaatinen, T.; Laine, J. Isolation of mononuclear cells from human cord blood by Ficoll-Paque density gradient. Curr. Protoc. Stem Cell Biol. 2007, Chapter 2, Unit 2A.1. [Google Scholar] [CrossRef]
- Nowell, P.C. Phytohemagglutinin: An initiator of mitosis in cultures of normal human leukocytes. Cancer Res. 1960, 20, 462–466. [Google Scholar]
- Sharon, N.; Lis, H. History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology 2004, 14, 53R–62R. [Google Scholar] [CrossRef]
- Depta, J.P.H.; Altznauer, F.; Gamerdinger, K.; Burkhart, C.; Weltzien, H.U.; Pichler, W.J. Drug interaction with T-cell receptors: T-cell receptor density determines degree of cross-reactivity. J. Allergy Clin. Immunol. 2004, 113, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Gerber, B.O.; Pichler, W.J. Noncovalent interactions of drugs with immune receptors may mediate drug-induced hypersensitivity reactions. AAPS J. 2006, 8, E160–E165. [Google Scholar] [CrossRef] [PubMed]
- Adam, J.; Pichler, W.J.; Yerly, D. Delayed drug hypersensitivity: Models of T-cell stimulation. Br. J. Clin. Pharmacol. 2011, 71, 701–707. [Google Scholar] [CrossRef]
- Pichler, W.J. The p-i Concept: Pharmacological Interaction of Drugs with Immune Receptors. World Allergy Organiz. J. 2008, 1, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Doña, I.; Blanca-López, N.; Torres, M.J.; García-Campos, J.; García-Núñez, I.; Gómez, F.; Salas, M.; Rondón, C.; Canto, M.G.; Blanca, M. Drug hypersensitivity reactions: Response patterns, drug involved, and temporal variations in a large series of patients. J. Investig. Allergol. Clin. Immunol. 2012, 22, 363–371. [Google Scholar]
- Haddi, E.; Charpin, D.; Tafforeau, M.; Kulling, G.; Lanteaume, A.; Kleisbauer, J.P.; Vervloet, D. Atopy and systemic reactions to drugs. Allergy 1990, 45, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Messaad, D.; Sahla, H.; Benahmed, S.; Godard, P.; Bousquet, J.; Demoly, P. Drug provocation tests in patients with a history suggesting an immediate drug hypersensitivity reaction. Ann. Intern. Med. 2004, 140, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Bigby, M.; Jick, S.; Jick, H.; Arndt, K. Drug-induced cutaneous reactions. A report from the Boston Collaborative Drug Surveillance Program on 15,438 consecutive inpatients, 1975 to 1982. JAMA 1986, 256, 3358–3363. [Google Scholar] [CrossRef]
- Torres, M.J.; Ariza, A.; Mayorga, C.; Doña, I.; Blanca-Lopez, N.; Rondon, C.; Blanca, M. Clavulanic acid can be the component in amoxicillin-clavulanic acid responsible for immediate hypersensitivity reactions. J. Allergy Clin. Immunol. 2010, 125, 502–505.e2. [Google Scholar] [CrossRef] [PubMed]
Parameters | Man | Woman |
---|---|---|
patient number | 178 | 560 |
age (mean ± SD, years) | 45.3 ± 15.1 | 47.1 ± 15.3 |
age range (years) | 18–89 | 18–91 |
Medicine/Substance | n Patient | − | +/− | + | − (%) | +/− (%) | + (%) |
---|---|---|---|---|---|---|---|
amoxicillin | 201 | 166 | 18 | 17 | 82.6 | 9.0 | 8.5 |
clavulanic acid | 173 | 149 | 13 | 11 | 86.1 | 7.5 | 6.4 |
lidocaine | 119 | 104 | 6 | 9 | 87.4 | 5.0 | 7.6 |
clavulanic acid * alone | 96 | 89 | 3 | 4 | 92.7 | 3.1 | 4.2 |
metamizole | 92 | 72 | 11 | 9 | 78.3 | 12.0 | 9.8 |
articaine | 90 | 74 | 9 | 7 | 82.2 | 10.0 | 7.8 |
diclofenac | 85 | 78 | 0 | 7 | 91.8 | 0.0 | 8.2 |
paracetamol | 81 | 70 | 4 | 7 | 86.4 | 4.9 | 8.6 |
phenoxymethylpenicillin | 78 | 71 | 5 | 2 | 91.0 | 6.4 | 2.6 |
acetylsalicylic acid | 72 | 53 | 9 | 10 | 73.6 | 12.5 | 13.9 |
ibuprofen | 69 | 55 | 7 | 7 | 79.7 | 10.1 | 10.1 |
cefuroxime | 32 | 25 | 3 | 4 | 78.1 | 9.4 | 12.5 |
benzylpenicillin | 27 | 22 | 3 | 2 | 81.5 | 11.1 | 7.4 |
sulfamethoxazole & trimethoprim | 24 | 19 | 2 | 3 | 79.2 | 8.3 | 12.5 |
ciprofloxacin | 22 | 18 | 1 | 3 | 81.8 | 4.5 | 13.6 |
azithromycin | 21 | 17 | 2 | 2 | 81.0 | 9.5 | 9.5 |
levofloxacin | 19 | 13 | 4 | 2 | 68.4 | 21.1 | 10.5 |
tolperisone | 17 | 14 | 0 | 3 | 82.4 | 0.0 | 17.6 |
perindopril | 17 | 15 | 1 | 1 | 88.2 | 5.9 | 5.9 |
levothyroxine | 13 | 6 | 3 | 4 | 46.2 | 23.1 | 30.8 |
enoxaparin | 10 | 7 | 2 | 1 | 70.0 | 20.0 | 10.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyovai, A.; Metzler, G.; Papp, K.; Prechl, J. Analysis of Viability as Readout of Lymphocyte Transformation Test in Drug Hypersensitivity Diagnostics. Allergies 2025, 5, 1. https://doi.org/10.3390/allergies5010001
Gyovai A, Metzler G, Papp K, Prechl J. Analysis of Viability as Readout of Lymphocyte Transformation Test in Drug Hypersensitivity Diagnostics. Allergies. 2025; 5(1):1. https://doi.org/10.3390/allergies5010001
Chicago/Turabian StyleGyovai, András, Gabriella Metzler, Krisztián Papp, and József Prechl. 2025. "Analysis of Viability as Readout of Lymphocyte Transformation Test in Drug Hypersensitivity Diagnostics" Allergies 5, no. 1: 1. https://doi.org/10.3390/allergies5010001
APA StyleGyovai, A., Metzler, G., Papp, K., & Prechl, J. (2025). Analysis of Viability as Readout of Lymphocyte Transformation Test in Drug Hypersensitivity Diagnostics. Allergies, 5(1), 1. https://doi.org/10.3390/allergies5010001