Conscientiousness in Pilots Correlates with Electrodermal Stability: Study on Simulated Flights under Social Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Individual Differences Assessment
2.2.1. Personality Traits
2.2.2. Subjective Anxiety
2.2.3. Experimental Setting and Procedure
2.2.4. Stress Manipulation
2.2.5. Cognitive Workload Manipulation
2.3. Data Acquisition and Processing
2.3.1. Physiological Data: Electrodermal Activity
2.3.2. Performance Measurements
2.4. Statistical Analysis
3. Results
3.1. Personality Traits (Conscientiousness and Neuroticism) and State Subjective Anxiety (CSAI-2R)
3.2. Personality Traits (Conscientiousness and Neuroticism) and Physiology (SCR)
4. Discussion
4.1. Neuroticism Level Modulates Subjective Anxiety in Pilots
4.2. Conscientiousness Correlates with Electrodermal Stability
4.3. Limitations of the Study
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stokes, A.F.; Kite, K. Flight Stress: Stress, Fatigue and Performance in Aviation; Routledge: London, UK, 2017; ISBN 1-351-93634-4. [Google Scholar]
- Costa, P.T.; McCrae, R.R. The NEO Personality Inventory; Psychological Assessment Resources: Odessa, FL, USA, 1985. [Google Scholar]
- Fitzgibbons, A.; Davis, D.; Schutte, P.C. Pilot Personality Profile Using the NEO-PI-R; National Aeronautics and Space Administration, Langely Research Center: Hampton, VA, USA, 2004.
- Weiss, A.; Sutin, A.R.; Duberstein, P.R.; Friedman, B.; Bagby, R.M.; Costa, P.T., Jr. The Personality Domains and Styles of the Five-Factor Model Are Related to Incident Depression in Medicare Recipients Aged 65 to 100. Am. J. Geriatr. Psychiatry 2009, 17, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Vollrath, M.; Torgersen, S. Who Takes Health Risks? A Probe into Eight Personality Types. Personal. Individ. Differ. 2002, 32, 1185–1197. [Google Scholar] [CrossRef]
- Penley, J.A.; Tomaka, J. Associations among the Big Five, Emotional Responses, and Coping with Acute Stress. Personal. Individ. Differ. 2002, 32, 1215–1228. [Google Scholar] [CrossRef]
- Bishop, S.; Forster, S. Trait Anxiety, Neuroticism, and the Brain Basis of Vulnerability to Affective Disorder. In The Cambridge Handbook of Human Affective Neuroscience; Armony, J., Vuilleumier, P., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 553–574. [Google Scholar]
- Studer-Luethi, B.; Jaeggi, S.M.; Buschkuehl, M.; Perrig, W.J. Influence of Neuroticism and Conscientiousness on Working Memory Training Outcome. Personal. Individ. Differ. 2012, 53, 44–49. [Google Scholar] [CrossRef]
- Stoeber, J.; Otto, K.; Dalbert, C. Perfectionism and the Big Five: Conscientiousness Predicts Longitudinal Increases in Self-Oriented Perfectionism. Personal. Individ. Differ. 2009, 47, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, D.; Mulgrew, J.; Hautus, M.J. Exploring the Autonomic Correlates of Personality. Auton. Neurosci. 2015, 193, 127–131. [Google Scholar] [CrossRef]
- Stemmler, G.; Wacker, J. Personality, Emotion, and Individual Differences in Physiological Responses. Biol. Psychol. 2010, 84, 541–551. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, J.; Ducharme, M.; Thompson, M. Study on the Correlation of the Autonomic Nervous System Responses to a Stressor of High Discomfort with Personality Traits. Physiol. Behav. 2004, 82, 647–652. [Google Scholar] [CrossRef]
- Bibbey, A.; Carroll, D.; Roseboom, T.J.; Phillips, A.C.; de Rooij, S.R. Personality and Physiological Reactions to Acute Psychological Stress. Int. J. Psychophysiol. 2013, 90, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Steenhaut, P.; Demeyer, I.; De Raedt, R.; Rossi, G. The Role of Personality in the Assessment of Subjective and Physiological Emotional Reactivity: A Comparison between Younger and Older Adults. Assessment 2018, 25, 285–301. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo-Muñoz, A.R.; Pereira, A.T.; López, M.M.; Galvao-Carmona, A.; Tomé, A.M.; Vázquez-Marrufo, M.; Santos, I.M. Individual EEG Differences in Affective Valence Processing in Women with Low and High Neuroticism. Clin. Neurophysiol. 2013, 124, 1798–1806. [Google Scholar] [CrossRef]
- Tett, R.P.; Burnett, D.D. A Personality Trait-Based Interactionist Model of Job Performance. J. Appl. Psychol. 2003, 88, 500. [Google Scholar] [CrossRef] [PubMed]
- Causse, M.; Dehais, F.; Faaland, P.-O.; Cauchard, F. An Analysis of Mental Workload and Psychological Stress in Pilots during Actual Flight Using Heart Rate and Subjective Measurements. In Proceedings of the 5th International Conference on Research in Air Transportation (ICRAT 2012), Barkely, CA, USA, 22–25 May 2012. [Google Scholar]
- Hidalgo-Muñoz, A.R.; Mouratille, D.; Matton, N.; Causse, M.; Rouillard, Y.; El-Yagoubi, R. Cardiovascular Correlates of Emotional State, Cognitive Workload and Time-on-Task Effect during a Realistic Flight Simulation. Int. J. Psychophysiol. 2018, 128, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucsein, W. Electrodermal Activity; Springer Science & Business Media: New York, NY, USA, 2012; ISBN 1-4614-1126-2. [Google Scholar]
- Setz, C.; Arnrich, B.; Schumm, J.; La Marca, R.; Tröster, G.; Ehlert, U. Discriminating Stress from Cognitive Load Using a Wearable EDA Device. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, J.J.; Watson, D.G.; Jones, R.; Rowe, M. A Guide for Analysing Electrodermal Activity (EDA) & Skin Conductance Responses (SCRs) for Psychological Experiments. Psychophysiology 2013, 49, 1017–1034. [Google Scholar]
- Moon, S.M.; Qu, Y. A Quantitative Approach for Determining Pilot Affective Patterns during Soaring Flight Simulation; IEEE: Toulouse, France, 2017; pp. 2617–2624. [Google Scholar]
- Koglbauer, I.; Kallus, K.W.; Braunstingl, R.; Boucsein, W. Recovery Training in Simulator Improves Performance and Psychophysiological State of Pilots during Simulated and Real Visual Flight Rules Flight. Int. J. Aviat. Psychol. 2011, 21, 307–324. [Google Scholar] [CrossRef]
- Gaetan, S.; Dousset, E.; Marqueste, T.; Bringoux, L.; Bourdin, C.; Vercher, J.-L.; Besson, P. Cognitive Workload and Psychophysiological Parameters during Multitask Activity in Helicopter Pilots. Aerosp. Med. Hum. Perform. 2015, 86, 1052–1057. [Google Scholar] [CrossRef]
- Lassalle, J.; Rauffet, P.; Leroy, B.; Guillet, L.; Chauvin, C.; Coppin, G. Innovative Multi-Sensors Device Deployment for Fighter Pilots Activity Study in a Highly Realistic Rafale Simulator. In Proceedings of the Human Factors and Ergonomics Society Europe Chapter 2014 Annaual Conference, Lisbon, Portugal, 8–10 October 2014; Available online: http://hfes-europe.org (accessed on 18 June 2021).
- Crider, A. Personality and Electrodermal Response Lability: An Interpretation. Appl. Psychophysiol. Biofeedback 2008, 33, 141–148. [Google Scholar] [CrossRef]
- Zaharia, C.M.; Grigore, D.; Moldovan, M. Determining Personality Profile through Inferential Method by EDA Neurosignals. Sci. Res. Educ. Air Force AFASES 2017, 2, 241–256. [Google Scholar] [CrossRef]
- Binboga, E.; Guven, S.; Çatıkkaş, F.; Bayazıt, O.; Tok, S. Psychophysiological Responses to Competition and the Big Five Personality Traits. J. Hum. Kinet. 2012, 33, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Bloguţ, A. Stressing Factors in Aviation. Sci. Res. Educ. Air Force AFASES 2015, 1, 165–170. [Google Scholar]
- Mandrick, K.; Peysakhovich, V.; Rémy, F.; Lepron, E.; Causse, M. Neural and Psychophysiological Correlates of Human Performance under Stress and High Mental Workload. Biol. Psychol. 2016, 121, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Sehlström, M. Personality and Stress in Simulated Aviation Training (Dissertation). 2018. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:umn:diva-149068 (accessed on 18 June 2021).
- Martens, R.; Vealey, R.S.; Burton, D. Competitive Anxiety in Sport; Human Kinetics Books: Champaign, IL, USA, 1990. [Google Scholar]
- Martinent, G.; Ferrand, C.; Guillet, E.; Gautheur, S. Validation of the French Version of the Competitive State Anxiety Inventory-2 Revised (CSAI-2R) Including Frequency and Direction Scales. Psychol. Sport Exerc. 2010, 11, 51–57. [Google Scholar] [CrossRef]
- Balyan, K.Y.; Tok, S.; Tatar, A.; Binboga, E.; Balyan, M. The Relationship among Personality, Cognitive Anxiety, Somatic Anxiety, Physiological Arousal, and Performance in Male Athletes. J. Clin. Sport Psychol. 2016, 10, 48–58. [Google Scholar] [CrossRef]
- Laborde, S.; Lautenbach, F.; Allen, M.S.; Herbert, C.; Achtzehn, S. The Role of Trait Emotional Intelligence in Emotion Regulation and Performance under Pressure. Personal. Individ. Differ. 2014, 57, 43–47. [Google Scholar] [CrossRef]
- Allsop, J.; Gray, R. Flying under Pressure: Effects of Anxiety on Attention and Gaze Behavior in Aviation. J. Appl. Res. Mem. Cogn. 2014, 3, 63–71. [Google Scholar] [CrossRef]
- Benedek, M.; Kaernbach, C. Decomposition of Skin Conductance Data by Means of Nonnegative Deconvolution. Psychophysiology 2010, 47, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Pakarinen, T.; Pietilä, J.; Nieminen, H. Prediction of Self-Perceived Stress and Arousal Based on Electrodermal Activity; IEEE: Toulouse, France, 2019; pp. 2191–2195. [Google Scholar]
- Hernandez, J.; Morris, R.R.; Picard, R.W. Call Center Stress Recognition with Person-Specific Models; Springer: Berlin/Heidelberg, Germany, 2011; pp. 125–134. [Google Scholar]
- Hidalgo-Munoz, A.R.; Mouratille, D.; Rouillard, Y.; Matton, N.; Causse, M.; Yagoubi, R.E. Influence of Anxiety and Mental Workload on Flight Performance in a Flight Simulator. In Proceedings of the ICCAS 2020 1st International Conference on Cognitive Aircraft Systems, Toulouse, France, 18–19 March 2020. [Google Scholar]
- Glicksohn, J.; Naor-Ziv, R. Personality Profiling of Pilots: Traits and Cognitive Style. Int. J. Personal. Psychol. 2016, 2, 7–14. [Google Scholar]
- Vine, S.J.; Uiga, L.; Lavric, A.; Moore, L.J.; Tsaneva-Atanasova, K.; Wilson, M.R. Individual Reactions to Stress Predict Performance during a Critical Aviation Incident. Anxiety Stress Coping 2015, 28, 467–477. [Google Scholar] [CrossRef]
- Smith, A.J.; Rickard, N.S. Prediction of Music Performance Anxiety via Personality and Trait Anxiety in Young Musicians. Aust. J. Music Educ. 2004, 1, 1–32. [Google Scholar]
- Judge, T.A.; Erez, A.; Bono, J.E.; Thoresen, C.J. Are Measures of Self-Esteem, Neuroticism, Locus of Control, and Generalized Self-Efficacy Indicators of a Common Core Construct? J. Pers. Soc. Psychol. 2002, 83, 693. [Google Scholar] [CrossRef] [PubMed]
- Ebstrup, J.F.; Eplov, L.F.; Pisinger, C.; Jørgensen, T. Association between the Five Factor Personality Traits and Perceived Stress: Is the Effect Mediated by General Self-Efficacy? Anxiety Stress Coping 2011, 24, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Le Fevre, M.; Matheny, J.; Kolt, G.S. Eustress, Distress, and Interpretation in Occupational Stress. J. Manag. Psychol. 2003, 18, 726–744. [Google Scholar] [CrossRef]
- Dal, N.; Tok, S.; Dogan, E.; Balikçi, I.; Zekioglu, A.; Çatikkas, F. Somatic Anxiety May Represent Archers’ Actual Autonomic Nervous System Activity but How: Moderating Role of Personality Traits. Univers. J. Educ. Res. 2018, 6, 1831–1836. [Google Scholar] [CrossRef]
- McCord, D.M.; Achee, M.C.; Cannon, E.M.; Harrop, T.M.; Poynter, W.D. Using the Research Domain Criteria Framework to Explore Associations between MMPI–2–RF Constructs and Physiological Variables Assessed by Eye-Tracker Technology. J. Pers. Assess. 2017, 99, 363–374. [Google Scholar] [CrossRef]
- Cao, M.; Drasgow, F. Does Forcing Reduce Faking? A Meta-Analytic Review of Forced-Choice Personality Measures in High-Stakes Situations. J. Appl. Psychol. 2019, 104, 1347. [Google Scholar] [CrossRef]
Measure | Cronbach’s α | Mean | [Min–Max] | Std. Deviation | |
---|---|---|---|---|---|
Personality (BFI a) | Conscientiousness | 0.885 | 3.96 | [2.89–5.00] | 0.675 |
Neuroticism | 0.773 | 1.89 | [1.13–2.88] | 0.450 | |
Anxiety (CSAI-2R b) | Cognitive anxiety | 0.950 | 12.24 | [7–25] | 5.663 |
Somatic anxiety | 0.813 | 11.64 | [7–18] | 3.517 | |
Self confidence | 0.741 | 26.18 | [19–33] | 4.081 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo-Muñoz, A.R.; Mouratille, D.; El-Yagoubi, R.; Rouillard, Y.; Matton, N.; Causse, M. Conscientiousness in Pilots Correlates with Electrodermal Stability: Study on Simulated Flights under Social Stress. Safety 2021, 7, 49. https://doi.org/10.3390/safety7020049
Hidalgo-Muñoz AR, Mouratille D, El-Yagoubi R, Rouillard Y, Matton N, Causse M. Conscientiousness in Pilots Correlates with Electrodermal Stability: Study on Simulated Flights under Social Stress. Safety. 2021; 7(2):49. https://doi.org/10.3390/safety7020049
Chicago/Turabian StyleHidalgo-Muñoz, Antonio R., Damien Mouratille, Radouane El-Yagoubi, Yves Rouillard, Nadine Matton, and Mickaël Causse. 2021. "Conscientiousness in Pilots Correlates with Electrodermal Stability: Study on Simulated Flights under Social Stress" Safety 7, no. 2: 49. https://doi.org/10.3390/safety7020049
APA StyleHidalgo-Muñoz, A. R., Mouratille, D., El-Yagoubi, R., Rouillard, Y., Matton, N., & Causse, M. (2021). Conscientiousness in Pilots Correlates with Electrodermal Stability: Study on Simulated Flights under Social Stress. Safety, 7(2), 49. https://doi.org/10.3390/safety7020049