Detecting Risk Factors of Road Work Zone Crashes from the Information Provided in Police Crash Reports: The Case Study of Portugal
Abstract
:1. Introduction
2. Method
2.1. Crash Data, Descriptive Analysis, and Variables Selection
2.2. Logistic and Probit Regression
3. Results
3.1. Modeling Process
3.2. Results
4. Discussion
- (a)
- Crash type results analysis
- (b)
- Contributing factor result analysis
- (c)
- Driver age groups results analysis
5. Conclusions
- (a)
- Work zone signaling and traffic speed control in the approach and throughout work zones, in Portuguese rural roads.
- (b)
- Work zone signaling, lighting, and delimitation; traffic speed control; special treatment of road intersections; and specific measures targeted at motorcycles and heavy vehicle drivers, inside Portuguese urban areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ullman, G.L.; Ullman, B.R.; Finley, M.D. Analysis of Crashes at Active Night Work Zones. In Proceedings of the TRB 85th Annual Meeting, Washington, DC, USA, 22–26 January 2006. Transportation Research Board. [Google Scholar]
- Meng, Q.; Weng, J.; Qu, X.-B. A probabilistic quantitative risk assessment model for the long-term work zone crashes. Accid. Anal. Prev. 2010, 42, 1866–1877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverstein, C.; Schorr, J.; Hamdar, S.H. Work zones versus nonwork zones: Risk factors leading to rear-end and sideswipe collisions. J. Transp. Saf. Secur. 2015, 8, 310–326. [Google Scholar] [CrossRef]
- La Torre, F.; Domenichini, L.; Nocentini, A. Effects of stationary work zones on motorway crashes. Saf. Sci. 2017, 92, 148–159. [Google Scholar] [CrossRef]
- Ambros, J.; Turek, R.; Elgner, J.; Křivánková, Z.; Valentová, V. Effectiveness Evaluation of Section Speed Control in Czech Motorway Work Zones. Safety 2020, 6, 38. [Google Scholar] [CrossRef]
- Pigman, J.G.; Agent, K.R. Analysis of Accidents in Construction and Maintenance Work Zones; Research Report UKTRP-88-13; Kentucky Transportation Cabinet: Lexington, KY, USA, 1988.
- Garber, N.J.; Zhao, M. Distribution and Characteristics of Crashes at Different Work Zone Locations in Virginia. Transp. Res. Rec. J. Transp. Res. Board 2002, 1794, 19–25. [Google Scholar] [CrossRef]
- Bai, Y.; Li, Y. Determining Major Causes of Highway Work Zone Accidents in Kansas; Final Report; Kansas Department of Transportation/Bureau of Materials and Research: Topeka, KS, USA, 2006.
- Swedish Transport Administration (Trafikverket). Plötsligt Var Det Ett Vägarbete! En Studie Av Trafikolyckor Vid Vägarbeten 2003–2009 Med Speciellt Fokus På Upphinnandeolyckor. Available online: https://trafikverket.ineko.se/Files/sv-SE/11501/RelatedFiles/2011_007_plotsligt_var_det_ett_vagarbete.pdf (accessed on 2 October 2020).
- Santos, B.; Picado-Santos, L. Impact Assessment of Road Work Zones in Operating Conditions, Safety and User Costs. Pavement and Asset Management. In Proceedings of the World Conference on Pavement and Asset Management, Baveno, Italy, 12–16 June 2017; Maurizio, C., Ed.; CRC Press/Balkema Taylor & Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- Li, Y.; Bai, Y. Effectiveness of temporary traffic control measures in highway work zones. Saf. Sci. 2009, 47, 453–458. [Google Scholar] [CrossRef]
- Paolo, P.; Sar, D. Driving Speed Behaviour Approaching Road Work Zones On Two-Lane Rural Roads. Procedia Soc. Behav. Sci. 2012, 53, 672–681. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.; Paleti, R.; Mishra, S.; Golias, M. Analysis of injury severity of large truck crashes in work zones. Accid. Anal. Prev. 2016, 97, 261–273. [Google Scholar] [CrossRef] [PubMed]
- FORMAT—Fully Optimised Road Maintenance. Project, Final Technical Report; Project funded by the European Community; Dienst Weg- en Waterbouwkunde, Ministerie van Verkeer en Waterstaat, Directoraat-Generaal Rijkswaterstaat: Delft, The Netherlands, 2005.
- ARROWS—Advanced Research on Road Work Zone Safety Standards in Europe. Project, Deliverable 4, Volume II, Road Work Zone Safety Practical Handbook; Project funded by the European Community; National Technical University of Athens: Athens, Greece, 1998. [Google Scholar]
- Motor Vehicle Traffic Accident Police Investigation Report; MV6020; BC, Canada, 1998.
- Investigating Agency. Kentucky Uniform Police Traffic Collision Report; KSP 74 (1/00); Investigating Agency: Frankfort, KY, USA, 2012.
- Massachusetts Department of Transportation. Motor Vehicle Crash Operator Report; 2012–2020 Report; CRA-23; Massachusetts Department of Transportation: Boston, MA, USA, 2012.
- Texas Department of Public Safety. Texas Peace Officer’s Crash Report; CR-3CS; Texas Department of Public Safety: Austin, TX, USA, 2010.
- Autoridade Nacional de Segurança Rodoviária (ANSR). Boletim Estatístico de Acidentes de Viação.; Ministério da Administração Interna: Lisbon, Portugal, 2013.
- Dirección General de Tráfico. Formulário de Accidentes con Víctimas; Boletín Oficial del Estado, n. 289; Ministerio del Interior: Montevideo, Spain, 2014. [Google Scholar]
- Istituto Nazionale di Statistica (ISTAT). Rilevazione degli Incidenti Stradali com Lesioni a Persone; Istituto Nazionale di Statistica (ISTAT): Rome, Italy, 2016.
- STATS19 Road Accident Injury Statistics; MG NSRF/A; Reporting Form: UK, 2011.
- Pigman, J.G.; Agent, K.R. Highway Accidents in Construction and Maintenance Work Zones. Transp. Res. Rec. J. Transp. Res. Board 1990, 1270, 12–21. [Google Scholar]
- Dissanayake, S.; Akepati, S. Identification of Work Zone Crash Characteristics. Research Report; Sponsored by the Smart Work Zone Deployment Initiative and the Iowa Department of Transportation; Iowa State University: Ames, IA, USA, 2009. [Google Scholar]
- Charman, S.; Fletcher, J.; Lawton, B.; Scoons, J.; Clark, S.; Cocu, X.; Nuallain, N.; Turk, M.; Zimmermann, M.; Rillie, I. BRoWSER: Base-Lining Road Works Safety on European Roads. Final trial report, Project funded under the CEDR Transnational Road. 2014. Available online: https://www.cedr.eu/strategic-plan-tasks/research/cedr-call-2012/call-2012-safety/browser-project-results/ (accessed on 2 October 2020).
- Yang, H.; Ozbay, K.; Ozturk, O.; Xie, K. Work Zone Safety Analysis and Modeling: A State-of-the-Art Review. Traffic Inj. Prev. 2014, 16, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.; Paleti, R.; Mishra, S. Analysis of passenger-car crash injury severity in different work zone configurations. Accid. Anal. Prev. 2018, 111, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, Z.; Wang, X. Integrated Work Zone Safety Management System and Analysis Tools; Report; Florida Department of Transportation: Tallahassee, FL, USA, 2008.
- Mannering, F.L.; Bhat, C.R. Analytic methods in accident research: Methodological frontier and future directions. Anal. Methods Accid. Res. 2014, 1, 1–22. [Google Scholar] [CrossRef]
- Santos, B.; Picado-Santos, L.; Trindade, V. Using Binary Logistic Regression to Explain the Impact of Accident Factors on Work Zone Crashes. In Proceedings of the RSS 2017—Road Safety & Simulation, Delft, The Netherlands, 17–19 October 2017. [Google Scholar]
- Portuguese National Authority of Road Safety (ANSR). Available online: http://www.ansr.pt (accessed on 2 October 2020).
- Trindade, V. Road Work Zone Crash Data Analysis (in Portuguese). Master’s Thesis, University of Beira Interior, Covilhã, Portugal, 2017. [Google Scholar]
- Polonia, C. Registration and Diagnosis of Road Accidents in Work Zones (in Portuguese). Master’s Thesis, University of Beira Interior, Covilhã, Portugal, 2014. [Google Scholar]
- SAS Institute Inc. SAS/STAT® 13.2 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, version 24.0; IMB Corp.: Armonk, NY, USA, 2016. [Google Scholar]
- O’Halloran, S. Lecture 9: Logit / Probit. Sustainable Development U9611 Econometrics II; Columbia University: New York, NY, USA, 2016. [Google Scholar]
- Marôco, J. Análise Estatística com o SPSS Statistics, 7th ed.; ReportNumber: Pêro Pinheiro, Portugal, 2018; ISBN 9789899676350. [Google Scholar]
- Long, J. Regression Models for Categorical and Limited Dependent Variables; SAGE Publications: Thousand Oaks, CA, USA, 1997. [Google Scholar]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Freitas, L.; Filho, S.; Júnior, J.; Silva, F. Comparison of Logit and Probit Link Functions in Binary Regression Considering Different Sample Sizes. Enciclopédia Biosfera. 2013, 9, 2936–2951. [Google Scholar]
- Hosmer, D.; Lemeshow, S.; Sturdivant, R. Applied Logistic Regression, 3rd ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
Topic | Field | Crash Report |
---|---|---|
Type | Construction, reconstruction, maintenance | Kentucky (USA) |
Duration | Long-term, short-term, mobile | *** |
Size | Length of work zone | *** |
Work zone layout | Lane narrowing/closure, diversion/detour, contraflow/crossover, alternative one-way traffic | United Kingdom (*) |
Work zone location | Intersection, shoulder/roadside, median, footway/bikeway, tramway | All |
Speed | Temporary speed limit | Portugal, Spain, British Columbia (Canada) |
Traffic control devices employed | Traffic signs, traffic markings, traffic lights, variable message signs (VMSs), other | Portugal, Spain, Kentucky (USA), Texas (USA), Massachusetts (USA), Italy (**) |
Other road equipment | Closure equipment, warning equipment, guiding equipment, protective equipment, road reflectors, speed reducer bumps, other | Massachusetts (USA) |
Enforcement/Publicity | Police presence, electronic devices/cameras, traffic information, other | Spain, Kentucky (USA), Texas (USA), British Columbia (Canada) |
Work zone operation | In operation, not in operation, in process of being assembled/disassembled, abandoned | *** |
Crash location in work zone | Advance warning area, transition area, buffer zone, activity area, termination area | *** |
Crash Type | % of WZ Crashes | Contributing Factors | % of WZ Crashes | Driver Age Group | % of Drivers Involved in WZ Crashes |
---|---|---|---|---|---|
Run off road (simple) | 13.1% | Excessive speed | 6.3% | Under 25 years old | 13.8% |
Pedestrian | 12.6% | Unexpected obstacle (for at least one driver involved) | 8.3% | Between 25 and 64 | 75.1% |
Angle | 11.9% | Disregard for vertical signs (for at least one driver involved) | 2.9% | Over 64 years old | 11.1% |
Rear-end | 10.8% | Disregard for safety distance (for at least one driver involved) | 2.8% | ||
Others | 51.6% | Others | 79.7% |
Variable | Description | % Yes (1) | % No (0) |
---|---|---|---|
Urban | The crash occurred in an urban environment (not rural) | 73.5% | 26.5% |
HV involved | At least one heavy vehicle involved | 7.2% | 92.8% |
Moto involved | At least one motorcycle involved | 25.5% | 74.5% |
Driver action | Before crash, at least one driver involved was running straight | 75.1% | 24.9% |
Excessive speed | Before crash, and for the prevailing conditions, at least one driver involved exceeded speed | 6.3% | 93.7% |
Obstacle | Unexpected obstacle on the road (for at least one driver involved) | 8.3% | 91.7% |
Vertical signs | At least one driver involved disregarded vertical signs | 2.9% | 97.1% |
Safety distance | At least one driver involved disregarded safety distance to the vehicle ahead | 2.8% | 97.2% |
Speed limit | Posted speed limit ≥ 90 km/h (high standard divided roads—freeways) | 7.2% | 92.8% |
Intersection | The accident occurred in a road intersection | 25.8% | 74.2% |
Horizontal design | The road horizontal geometric design is straight (not curved) | 73.8% | 26.2% |
Vertical design | The road vertical geometric design is level (not upgrade/downgrade) | 64.2% | 35.8% |
Pav. Grip conditions | Clean and dry pavement (not with ice, snow, mud, gravel, sand, oil, or wet). | 66.7% | 33.3% |
Luminosity | Good luminosity conditions—daylight (not dazzling sun, dawn, dusk, or night) | 68.7% | 31.3% |
Weather | Clear (not rain, strong wind, fog, snow, smoke, or hail) | 79.2% | 20.8% |
Number of Observations | 1767 | ||||
Response Profile | 1 | 211 | |||
0 | 1556 | ||||
Link Function | Odds Ratio | Coefficient Logit | Coefficient Logit (standardized) | Coefficient Probit | |
Parameters | Intercept | - | −4.2082 | −2.3201 | −2.2831 |
Urban | 1.639 | 0.4940 | 0.2724 | 0.2628 | |
Driver action | 2.314 | 0.8390 | 0.4626 | 0.4140 | |
Obstacle | 0.296 | −1.2166 | −0.6707 | −0.6120 | |
Vertical signs | 3.922 | 1.3667 | 0.7535 | 0.8129 | |
HV involved | 2.286 | 0.8267 | 0.4558 | 0.4695 | |
Intersection | 4.828 | 1.5744 | 0.8680 | 0.8450 | |
Grip conditions | 1.649 | 0.5000 | 0.2757 | 0.2413 | |
Hosmer and Lemeshow Test | 0.5065 | 0.4149 |
Number of Observations | 2668 | ||||
Response Profile | 1 | 288 | |||
0 | 2309 | ||||
Link Function | Odds Ratio | Logit | Logit (standardized) | Probit | |
Parameters | Intercept | - | −2.9791 | −1.6425 | −1.6814 |
HV involved | 0.141 | −1.9613 | −1.0813 | −0.8992 | |
Driver action | 1.385 | 0.3260 | 0.1797 | 0.1729 | |
Vertical signs | 2.029 | 0.7077 | 0.3902 | 0.3886 | |
Grip conditions | 1.470 | 0.3850 | 0.2123 | 0.1942 | |
Luminosity | 1.641 | 0.4954 | 0.2731 | 0.2549 | |
Hosmer and Lemeshow Test | 0.9913 | 0.9905 |
Crash Type Model | Pedestrian | Angle | Run of Road (Simple) | Rear End | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Size | 223 | 210 | 13 | 211 | 175 | 36 | 232 | 143 | 89 | 190 | 95 | 95 |
Factor | Total | Urban | Rural | Total | Urban | Rural | Total | Urban | Rural | Total | Urban | Rural |
Urban | ↑ * | n.a. | n.a. | ↑ | n.a. | n.a. | ↓ | n.a. | n.a. | ↓ | n.a. | n.a. |
HV involved | - | - | - | ↑ | - | ↑ | ↓ * | - | ↓ | - | - | - |
Moto involved | ↓ * | ↓ * | - | - | - | - | ↑ * | ↑ * | ↑ * | ↓ | ↓ | ↓ * |
Driver action | ↓ | ↓ | ↓ | ↑ | ↑ | - | - | ↑ | - | ↑ | ↑ | - |
Excessive speed | ↓ | ↓ | - | - | ↓ | - | ↓ | ↓ | - | ↑ ** | ↑ ** | - |
Obstacle | ↓ | ↓ | - | ↓ * | ↓ * | - | - | - | - | ↓ * | ↓ * | ↓ |
Vertical signs | - | - | - | ↑ ** | ↑ ** | ↑ * | - | ↓ * | - | - | - | - |
Safety distance | ↓ | ↓ | - | - | - | - | - | - | - | ↑ * | ↑ * | ↑ * |
Speed limit | - | - | - | - | - | - | - | - | - | - | - | - |
Intersection | ↓ | ↓ | - | ↑ * | ↑ * | ↑ ** | ↓ | ↓ | - | - | - | - |
Horizontal design | ↑ ** | ↑ * | - | - | - | - | ↓ | - | - | ↑ | ↑ | ↑ ** |
Vertical design | - | - | - | - | - | - | - | - | - | - | - | - |
Pav. Grip conditions | ↑ | ↑ | - | ↑ | ↑ | - | ↓ | ↓ | - | - | - | - |
Luminosity | ↑ | ↑ ** | - | - | - | - | - | - | - | ↑ | - | ↑ |
Weather | - | - | - | - | - | - | ↑ ** | ↑ ** | - | - | - | - |
Hosmer and Lemeshow Test | 0.455 | 0.989 | 1.000 | 0.506 | 0.216 | 0.145 | 0.077 | 0.619 | 1.000 | 0.634 | 0.648 | 0.949 |
Stepwise Number of steps | 6 | 5 | 13 | 9 | 8 | 12 | 6 | 6 | 12 | 7 | 7 | 10 |
Cases correctly classified (%) | 87.8 | 84.4 | 97.2 | 88.9 | 87.7 | 92.8 | 86.7 | 89.0 | 81.0 | 89.4 | 92.1 | 80.8 |
Classification by chance (%) (a) | 77.9 | 72.9 | 94.6 | 79.0 | 7 6.7 | 85.8 | 77.2 | 80.4 | 69.2 | 80.8 | 86.4 | 67.7 |
Contributing Factors | Unexpected Obstacle | Excessive Speed | Disregard for Vertical Signs | Disregard for Safety Distance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Size | 209 | 170 | 39 | 163 | 100 | 63 | 74 | 67 | 7 | 67 | 51 | 16 |
Factor | Total | Urban | Rural | Total | Urban | Rural | Total | Urban | Rural | Total | Urban | Rural |
Urban | ↑ ** | n.a. | n.a. | - | n.a. | n.a. | ↑ | n.a. | n.a. | - | n.a. | n.a. |
HV involved | - | - | - | - | - | - | ↑ ** | ↑ ** | - | - | - | - |
Moto involved | ↑ * | ↑ * | - | - | - | - | - | - | - | ↓ * | ↓ * | - |
Driver action | - | - | - | ↓ * | ↓ * | ↓ * | - | - | - | - | - | - |
Excessive speed | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Obstacle | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Vertical signs | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Safety distance | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Speed limit | - | - | ↑ * | - | ↑ * | - | - | - | - | - | - | |
Intersection | ↓ | ↓ | - | - | - | - | ↑ * | ↑ * | - | - | - | - |
Horizontal design | - | - | - | ↓ | ↓ | ↓ | - | - | - | ↑ * | ↑ ** | ↑ * |
Vertical design | ↓ | ↓ | - | - | - | - | - | - | - | - | - | - |
Pav. Grip conditions | ↓ * | ↓ * | - | - | - | - | ↑ | ↑ | - | ↑ ** | ↑ * | - |
Luminosity | ↓ | ↓ | ↓ * | ↓ | - | - | - | - | - | - | - | - |
Weather | - | - | - | - | - | - | - | - | - | - | - | - |
Hosmer and Lemeshow Test | 0.182 | 0.647 | - | 0.281 | 0.387 | 0.311 | 0.060 | 0.547 | - | 0.488 | 0.983 | 1.000 |
Stepwise Number of steps | 6 | 5 | 10 | 8 | 8 | 8 | 8 | 7 | 11 | 9 | 7 | 9 |
Cases correctly classified (%) | 88.2 | 86.9 | 91.7 | 90.8 | 92.3 | 86.4 | 95.8 | 94.8 | 98.5 | 96.2 | 96.1 | 96.6 |
Classification by chance (%) (a) | 79.1 | 77.2 | 84.8 | 83.3 | 85.8 | 76.7 | 92.0 | 90.2 | 97.1 | 92.7 | 92.5 | 93.4 |
Driver Age Group | Under 25 Years Old | Between 25 and 64 Years Old | Over 64 Years Old | ||||||
---|---|---|---|---|---|---|---|---|---|
Sample Size | 358 | 267 | 91 | 1951 | 1372 | 579 | 288 | 197 | 91 |
Factor | Total | Urban | Rural | Total | Urban | Rural | Total | Urban | Rural |
Urban | - | n.a. | n.a. | - | n.a. | n.a. | - | n.a. | n.a. |
HV involved | - | - | - | ↑ * | ↑ * | - | ↓ * | - | - |
Moto involved | - | - | - | - | - | - | - | - | - |
Driver action | - | - | - | ↑ | ↑ | - | ↑ | - | ↑ ** |
Excessive speed | ↑ * | ↑ * | - | - | - | - | - | - | - |
Obstacle | - | ↓ | - | ↑ ** | ↑ ** | - | - | - | - |
Vertical signs | - | - | - | - | ↓ * | ↑ * | - | ↑ * | |
Safety distance | - | - | ↑ * | - | - | - | - | - | - |
Speed limit | - | - | - | - | - | - | - | - | - |
Intersection | - | - | - | - | ↑ | - | - | - | - |
Horizontal design | - | - | ↓ * | - | - | - | - | - | - |
Vertical design | - | - | - | - | - | - | - | - | - |
Pav. Grip conditions | ↓ | ↓ | - | - | - | - | ↑ | - | ↑ |
Luminosity | ↓ * | ↓ * | - | ↑ | ↑ | - | ↑ ** | ↑ * | ↑ |
Weather | - | - | - | - | - | - | - | - | - |
Hosmer and Lemeshow Test | 0.752 | 0.189 | 0.899 | 0.807 | 0.828 | 1.000 | 0.991 | 1.000 | 0.795 |
Stepwise Number of steps | 12 | 9 | 12 | 12 | 9 | 13 | 11 | 12 | 10 |
Cases correctly classified (%) | 86.6 | 85.9 | 88.2 | 73.1 | 72.4 | 75.4 | 89.5 | 89.6 | 88.5 |
Classification by chance (%) (a) | 76.8 | 75.8 | 79.2 | 60.7 | 60.0 | 62.5 | 80.7 | 81.4 | 79.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, B.; Trindade, V.; Polónia, C.; Picado-Santos, L. Detecting Risk Factors of Road Work Zone Crashes from the Information Provided in Police Crash Reports: The Case Study of Portugal. Safety 2021, 7, 12. https://doi.org/10.3390/safety7010012
Santos B, Trindade V, Polónia C, Picado-Santos L. Detecting Risk Factors of Road Work Zone Crashes from the Information Provided in Police Crash Reports: The Case Study of Portugal. Safety. 2021; 7(1):12. https://doi.org/10.3390/safety7010012
Chicago/Turabian StyleSantos, Bertha, Valdemiro Trindade, Cláudia Polónia, and Luís Picado-Santos. 2021. "Detecting Risk Factors of Road Work Zone Crashes from the Information Provided in Police Crash Reports: The Case Study of Portugal" Safety 7, no. 1: 12. https://doi.org/10.3390/safety7010012