# Pedestrian Injury Severity Analysis in Motor Vehicle Crashes in Ohio

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results and Discussion

## 4. Conclusions and Recommendations

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## References

- National Highway Traffic Safety Administration. Traffic Safety Facts 2015 Data. Available online: Crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812375 (accessed on 5 March 2018).
- Bureau of Transportation Statistics. Transportation Fatalities by Mode. Available online: https://www.bts.gov/content/transportation-fatalities-mode (accessed on 5 March 2018).
- Abdul-Aziz, H.M.; Ukkusuri, S.V.; Hasan, S. Exploring the determinants of pedestrian–vehicle crash severity in New York City. Accid. Anal. Prev.
**2010**, 50, 1298–1309. [Google Scholar] [CrossRef] [PubMed] - Anderson, R.W.G.; McLean, A.J.; Farmer, M.J.B.; Lee, B.H.; Brooks, C.G. Vehicle travel speeds and the incidence of fatal pedestrian crashes. Accid. Anal. Prev.
**1997**, 29, 667–674. [Google Scholar] [CrossRef] - Ballesteros, M.F.; Dischinger, P.C.; Langenberg, P. Pedestrian injuries and vehicle type in Maryland, 1995–1999. Accid. Anal. Prev.
**2004**, 36, 73–81. [Google Scholar] [CrossRef] - Davis, G. Relating severity of pedestrian injury to impact speed in vehicle-pedestrian crashes: Simple threshold model. Transp. Res. Rec.
**2010**, 1773, 108–113. [Google Scholar] [CrossRef] - Garder, P.E. The impact of speed and other variables on pedestrian safety in Maine. Accid. Anal. Prev.
**2004**, 36, 533–542. [Google Scholar] [CrossRef] - Islam, S.; Jones, S.L. Pedestrian at-fault crashes on rural and urban roadways in Alabama. Accid. Anal. Prev.
**2014**, 72, 267–276. [Google Scholar] [CrossRef] [PubMed] - Kim, J.-K.; Ulfarsson, G.F.; Shankar, V.N.; Kim, S. Age and pedestrian injury severity in motor-vehicle crashes: A heteroskedastic logit analysis. Accid. Anal. Prev.
**2008**, 40, 1695–1702. [Google Scholar] [CrossRef] [PubMed] - Kim, J.-K.; Ulfarsson, G.F.; Shankar, V.N.; Mannering, F.L. A note on modeling pedestrian injury severity in motor vehicle crashes with the mixed logit model. Accid. Anal. Prev.
**2010**, 42, 1751–1758. [Google Scholar] [CrossRef] [PubMed] - Lee, C.; Abdel-Aty, M. Comprehensive analysis of vehicle–pedestrian crashes at intersections in Florida. Accid. Anal. Prev.
**2005**, 37, 775–786. [Google Scholar] [CrossRef] [PubMed] - Matsui, Y. Effects of vehicle bumper height and impact velocity on type of lower extremity injury in vehicle–pedestrian accidents. Accid. Anal. Prev.
**2005**, 37, 633–640. [Google Scholar] [CrossRef] [PubMed] - Moudon, A.V.; Lin, L.; Jiao, J.; Hurvitz, P.; Reeves, P. The risk of pedestrian injury and fatality in collisions with motor vehicles, a social ecological study of state routes and city streets in king county, Washington. Accid. Anal. Prev.
**2011**, 43, 11–24. [Google Scholar] [CrossRef] [PubMed] - Pour-Rouholamin, M.; Zhou, H. Investigating the risk factors associated with pedestrian injury severity in Illinois. J. Saf. Res.
**2016**, 57, 9–17. [Google Scholar] [CrossRef] [PubMed] - Sasidharan, L.; Menedez, M. Partial proportional odds model—An alternate choice for analyzing pedestrian crash injury severities. Accid. Anal. Prev.
**2014**, 72, 330–340. [Google Scholar] [CrossRef] [PubMed] - Ulfarsson, G.F.; Kim, S.; Booth, K.M. Analyzing fault in pedestrian–motor vehicle crashes in North Carolina. Accid. Anal. Prev.
**2010**, 42, 1805–1813. [Google Scholar] [CrossRef] [PubMed] - Zajac, S.S.; Ivan, J.N. Factors influencing injury severity of motor vehicle-crossing pedestrian crashes in rural Connecticut. Accid. Anal. Prev.
**2003**, 35, 369–379. [Google Scholar] [CrossRef] - Uddin, M.; Huynh, N. Truck-involved crashes injury severity analysis for different lighting conditions on rural and urban roadways. Accid. Anal. Prev.
**2017**, 108, 44–55. [Google Scholar] [CrossRef] [PubMed] - Uddin, M.; Huynh, N. Factors influencing injury severity of crashes involving HAZMAT trucks. Int. J. Transp. Sci. Technol.
**2018**, 7, 1–9. [Google Scholar] [CrossRef] - Huynh, N.; Uddin, M.; Minh, C.C. Data analytics for intermodal freight transportation applications. In Data Analytics for Intelligent Transportation Systems, 1st ed.; Chowdhury, M., Apon, A., Dey, K., Eds.; Elsevier Science: Cambridge, MA, USA, 2017; Chapter 10; pp. 241–262. ISBN 9780128097151. [Google Scholar] [CrossRef]
- Abdel-Aty, M. Analysis of driver injury severity levels at multiple locations using ordered probit models. J. Saf. Res.
**2003**, 34, 597–603. [Google Scholar] [CrossRef] - Washington, S.P.; Karlaftis, M.G.; Mannering, F.L. Statistical and Econometric Methods for Transportation Data Analysis, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2011; ISBN 9781420082852. [Google Scholar]
- Greene, W. Econometric Analysis, 3rd ed.; Macmillan: New York, NY, USA, 1997; ISBN 9780023466021. [Google Scholar]
- Anderson, J.; Hernandez, S. Roadway classifications and the accident injury severities of heavy-vehicle drivers. Anal. Methods Accid. Res.
**2017**, 15, 17–28. [Google Scholar] [CrossRef] - Pai, C.-W.; Saleh, W. Modelling motorcyclist injury severity by various crash types at T-junctions in the UK. Saf. Sci.
**2008**, 46, 1234–1247. [Google Scholar] [CrossRef] - Koepsell, T.; McCloskey, L.; Wolf, M.; Moudon, A.V.; Buchner, D.; Kraus, J.; Patternson, M. Crosswalk markings and the risk of pedestrian-motor vehicle collisions in older pedestrians. JAMA
**2002**, 288, 2136–2143. [Google Scholar] [CrossRef] [PubMed] - U.S. Census Bureau. The Older Population: 2010. Available online: https://www.census.gov/prod/cen2010/briefs/c2010br-09.pdf (accessed on 5 March 2018).

Explanatory Variable | Mean | SD |
---|---|---|

Pedestrian Characteristics | ||

Age | ||

Less than 18 (1 if less than 18 years old; 0 otherwise) | 0.225 | 0.417 |

18–24 (1 if between 18 and 24 years; 0 otherwise) | 0.156 | 0.363 |

25–54 (1 if between 25 and 54 years; 0 otherwise) | 0.427 | 0.495 |

55–64 (1 if between 55 and 64 years; 0 otherwise) | 0.104 | 0.305 |

Over 65 (1 if over 65 years; 0 otherwise) | 0.088 | 0.284 |

Gender (1 if female; 0 otherwise) | 0.415 | 0.493 |

Driver Characteristics | ||

Age | ||

Less than 24 (1 if less than 24 years old; 0 otherwise) | 0.190 | 0.393 |

25–54 (1 if between 25 and 54 years; 0 otherwise) | 0.526 | 0.499 |

55–64 (1 if between 55 and 64 years; 0 otherwise) | 0.147 | 0.354 |

Over 65 (1 if over 65 years; 0 otherwise) | 0.137 | 0.344 |

Gender (1 if female; 0 otherwise) | 0.437 | 0.496 |

DUI driving (1 if yes; 0 otherwise) | 0.074 | 0.261 |

Restraint use (1 if seat belt; 0 otherwise) | 0.868 | 0.338 |

Vehicle Type | ||

Passenger car (1 if passenger car; 0 otherwise) | 0.549 | 0.498 |

Truck (1 if truck; 0 otherwise) | 0.048 | 0.213 |

Minivan (1 if minivan; 0 otherwise) | 0.064 | 0.245 |

Sport-utility vehicle (SUV) (1 if SUV; 0 otherwise) | 0.178 | 0.393 |

Pickup truck (1 if pickup truck; 0 otherwise) | 0.127 | 0.332 |

Crash Characteristics | ||

Crash location (1 if urban; 0 otherwise) | 0.875 | 0.331 |

Time of day | ||

7 a.m.–9:59 a.m. (1 if between 7 a.m. and 10 a.m.; 0 otherwise) | 0.119 | 0.324 |

10 a.m.–3:59 p.m. (1 if between 10 a.m. and 4 p.m.; 0 otherwise) | 0.302 | 0.459 |

4 p.m.–6:59 p.m. (1 if between 4 p.m. and 7 p.m.; 0 otherwise) | 0.227 | 0.418 |

7 p.m.–6:59 a.m. (1 if between 7 p.m. and 7 a.m.; 0 otherwise) | 0.352 | 0.478 |

Day of week (1 if weekday; 0 otherwise) | 0.793 | 0.405 |

Lighting Condition | ||

Daylight (1 if daylight; 0 otherwise) | 0.557 | 0.497 |

Dark-unlighted (1 if dark without street light; 0 otherwise) | 0.117 | 0.321 |

Dark-lighted (1 if dark with street light; 0 otherwise) | 0.268 | 0.443 |

Weather condition (1 if adverse weather; 0 otherwise) | 0.176 | 0.381 |

Roadway Characteristics | ||

Number of lanes | ||

Two lanes (1 if two lanes roadway; 0 otherwise) | 0.290 | 0.454 |

Four lanes (1 if four lanes roadway; 0 otherwise) | 0.585 | 0.493 |

Six lanes (1 if six lanes roadway; 0 otherwise) | 0.087 | 0.282 |

Speed limit | ||

≤35 mph (1 if ≤35 mph roadway; 0 otherwise) | 0.698 | 0.459 |

40 mph (1 if 40 mph roadway; 0 otherwise) | 0.113 | 0.317 |

50 mph (1 if 50 mph roadway; 0 otherwise) | 0.121 | 0.326 |

≥60 mph (1 if ≥60 mph roadway; 0 otherwise) | 0.068 | 0.251 |

Explanatory Variable | Parameter Estimates | Average Direct Pseudo-Elasticities ^{‡} | |||
---|---|---|---|---|---|

Fixed-Parameters Model | Random-Parameters Model | Major Injury | Minor Injury | Possible/No Injury | |

Pedestrian Characteristics | |||||

Over 65 | −0.27 *** | −0.39 *** (1.00 ***) ^{†} | 43.1% | −5.1% | −59.4% |

Driver Characteristics | |||||

Less than 24 | −0.12 ** | −0.18 *** | 18.9% | −0.8% | −30.5% |

Over 65 | 0.12 ** | 0.23 *** (1.03 ***) ^{†} | −21.1% | −1.7% | 41.9% |

DUI driving | −0.45 *** | −0.80 *** (1.07 ***) ^{†} | 95.2% | −20.5% | −102.2% |

Vehicle Type | |||||

Passenger car | 0.07 * | 0.08 * | −8.1% | −0.1% | 14.1% |

Truck | −0.29 *** | −0.49 *** (0.77 ***) ^{†} | 55.9% | −8.7% | −70.5% |

Crash Characteristics | |||||

Crash location | 0.16 ** | 0.26 *** (0.89 ***) ^{†} | −27.4% | 2.0% | 41.5% |

10 a.m. to 3:59 p.m. | 0.17 *** | 0.24 *** | −23.0% | −1.1% | 43.4% |

Day of week | 0.12 ** | 0.17 *** | −17.5% | 0.6% | 28.4% |

Daylight | 0.09 * | 0.12 ** | −12.0% | 0.1% | 20.8% |

Dark-unlighted | −0.29 *** | −0.50 *** (1.10 ***) ^{†} | 56.4% | −7.7% | −74.3% |

Roadway Characteristics | |||||

Six lanes | −0.13 * | −0.17 ** (0.85 ***) ^{†} | 18.2% | −1.0% | −28.7% |

40 mph | −0.24 *** | −0.36 *** | 39.3% | −4.0% | −55.9% |

50 mph | −0.37 *** | −0.55 *** | 62.3% | −9.1% | −80.2% |

Constant | 0.36 *** | 0.52 *** | |||

Threshold 1, ${\mu}_{1}$ | 1.05 *** | 1.52 *** | |||

Log-likelihood at zero, $LL\left(0\right)$ | −3481.60 | −3481.60 | |||

Log-likelihood at convergence, $LL\left(\beta \right)$ | −3336.07 | −3318.15 | |||

Akaike information criterion (AIC) | 6704.1 | 6682.3 | |||

Number of observations | 3184 | 3184 |

^{†}the value in parenthesis represents the standard deviation of the random parameter;

^{‡}average direct pseudo-elasticities are calculated from the random-parameters ordered probit model.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Uddin, M.; Ahmed, F.
Pedestrian Injury Severity Analysis in Motor Vehicle Crashes in Ohio. *Safety* **2018**, *4*, 20.
https://doi.org/10.3390/safety4020020

**AMA Style**

Uddin M, Ahmed F.
Pedestrian Injury Severity Analysis in Motor Vehicle Crashes in Ohio. *Safety*. 2018; 4(2):20.
https://doi.org/10.3390/safety4020020

**Chicago/Turabian Style**

Uddin, Majbah, and Fahim Ahmed.
2018. "Pedestrian Injury Severity Analysis in Motor Vehicle Crashes in Ohio" *Safety* 4, no. 2: 20.
https://doi.org/10.3390/safety4020020