Analysis of Heat Transfer in the Welding Processes of Naval Metallic Sheets from an Occupational Safety Perspective
Abstract
1. Introduction
2. Materials and Methods
2.1. Naval Steel
2.2. FCAW-G Welding
2.3. Thermal Camera and Thermal Waxes
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghasemi, F.; Doosti-Irani, A.; Aghaei, H. Applications, Shortcomings, and New Advances of Job Safety Analysis (JSA): Findings from a Systematic Review. Saf. Health Work 2023, 14, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Tian, W.; Wei, R.; Pan, B.; Chen, Y.; Chen, S. Application of a Wall-Climbing, Welding Robot in Ship Automatic Welding. J. Coast. Res. 2020, 106, 609. [Google Scholar] [CrossRef]
- Islam, R.; Khan, F.; Abbassi, R.; Garaniya, V. Human Error Probability Assessment During Maintenance Activities of Marine Systems. Saf. Health Work 2018, 9, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.-Y.; Nam, J.-H. Physical Welding Factors for Reclassified Welding Positions in Shipbuilding Assembly Process Based on Muscle Activity Measured by Surface Electromyography. J. Mar. Sci. Eng. 2021, 9, 1211. [Google Scholar] [CrossRef]
- Yuan, Y.; Yamazaki, K.; Suzuki, R. Relationship between Penetration and Porosity in Horizontal Fillet Welding by a New Process “Hybrid Tandem MAG Welding Process”. Weld. World 2016, 60, 515–524. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Shao, S.; Zhang, Z. Methodology of Shipboard Spare Parts Requirements Based on Whole Part Repair Strategy. Mathematics 2024, 12, 3053. [Google Scholar] [CrossRef]
- Hong, T.S.; Ghobakhloo, M. Safety and Security Conditions in Welding Processes. In Comprehensive Materials Processing; Elsevier: Amsterdam, The Netherlands, 2014; pp. 213–225. [Google Scholar]
- Ren, J.; Yue, Y.; Zhang, X.; Yang, Z.; Liu, Z.; Dong, Y.; Ma, J.; Liu, C.; Ma, J. Investigation of Welding-Induced Residual Stresses in a Herringbone Column Using the Blind Hole Technique: An Experimental and Numerical Study. Buildings 2025, 15, 398. [Google Scholar] [CrossRef]
- Ahola, A.; Lipiäinen, K.; Lindroos, J.; Koskimäki, M.; Laukia, K.; Björk, T. On the Fatigue Strength of Welded High-Strength Steel Joints in the As-Welded, Post-Weld-Treated and Repaired Conditions in a Typical Ship Structural Detail. J. Mar. Sci. Eng. 2023, 11, 644. [Google Scholar] [CrossRef]
- Yang, Q.; Dong, Y.; Zhang, R.; Fu, Q.; Chen, J.; Chen, J.; Zhang, X.; Fu, Y.; Chen, H. Effects of Spatial Welding Positions on Arc Bubble Behavior, Droplet Transfer Process, and Weld Microstructure and Properties in Underwater Wet Welding. J. Manuf. Process. 2025, 135, 46–68. [Google Scholar] [CrossRef]
- Al-Jumaili, S.A.K.; Al-Mukhtar, A.M.; Fahem, A. Effect of Heat Treatments on 302 Austenitic Stainless Steel Spot Weld. Adv. Eng. Forum. 2018, 29, 19–25. [Google Scholar] [CrossRef]
- Jo, W.; Woo, I.; Mikami, Y.; An, G. Residual Stress Characteristics in Spot Weld Joints of High-Strength Steel: Influence of Welding Parameters. Appl. Sci. 2024, 14, 11971. [Google Scholar] [CrossRef]
- Park, R.M. Risk Assessment for Metalworking Fluids and Respiratory Outcomes. Saf. Health Work 2019, 10, 428–436. [Google Scholar] [CrossRef] [PubMed]
- ASTM A131/A131M-19; Standard Specification for Structural Steel for Ships. ASTM International: West Conshohocken, PA, USA, 2019.
- Guo, W.-G.; Gao, X. On the Constitutive Modeling of a Structural Steel over a Range of Strain Rates and Temperatures. Mater. Sci. Eng. A 2013, 561, 468–476. [Google Scholar] [CrossRef]
- Burca, M.; Seculin, R.C.; Țunea, D. The Technological Comparative Analysis between the Vertical MAG Welding with Solid Wire and with Cored Wire. Adv. Mater. Res. 2015, 1128, 199–208. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.; Zhang, Y.; Kannan, R.; Long, W.; Wu, M.; Wang, Y.; Li, L. Effect of Mo on Microstructure and Wear Resistance of Slag-Free Self-Shielded Metal-Cored Welding Overlay. J. Mater. Process. Technol. 2019, 270, 82–91. [Google Scholar] [CrossRef]
- Bembenek, M.; Prysyazhnyuk, P.; Shihab, T.; Machnik, R.; Ivanov, O.; Ropyak, L. Microstructure and Wear Characterization of the Fe-Mo-B-C—Based Hardfacing Alloys Deposited by Flux-Cored Arc Welding. Materials 2022, 15, 5074. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, A.; Guzman, C. Welding Handbook Volume 2—Part 1: Welding Processes, 9th ed.; American Welding Society: Miami, FL, USA, 2004; ISBN 978-0-87171-053-6. [Google Scholar]
- Jeffus, L. Flux Cored Arc Welding. Welding: Principles and Applications, 7th ed.; Cengage Learning: New York, NY, USA, 2012; ISBN 9781111039172. [Google Scholar]
- Ferreira, D.M.B.; Alves, A.d.N.S.; Cruz Neto, R.M.d.A.; Martins, T.F.; Brandi, S.D. A New Approach to Simulate HSLA Steel Multipass Welding through Distributed Point Heat Sources Model. Metals 2018, 8, 951. [Google Scholar] [CrossRef]
- Czupryński, A. Comparison of Properties of Hardfaced Layers Made by a Metal-Core-Covered Tubular Electrode with a Special Chemical Composition. Materials 2020, 13, 5445. [Google Scholar] [CrossRef] [PubMed]
ASTM (American Society for Testing and Materials) Mechanical Properties of Steel | |
---|---|
Minimum yield strength | 355 MPa |
Tensile strength | 490–620 MPa |
Minimum elongation | 22% |
Charpy impact test | At −22 degrees Celsius |
ASTM Chemical Requirements—Higher Strength Grades | |
---|---|
Element | DH36 (Composition %) |
Carbon, max | 0.18 |
Manganese | 0.9–1.6 |
Phosphorus, max | 0.035 |
Sulfur, max | 0.04 |
Silicon | 0.10–0.5 |
Nickel, max | 0.4 |
Chromium, max | 0.25 |
Molybdenum, max | 0.08 |
Copper, max | 0.35 |
Columbium (Niobium), max | 0.05 |
Vanadium, max | 0.1 |
Steel Samples Analyzed (All DH36) | |
---|---|
Thickness | Number of welding passes |
8 mm | 2 |
10 mm | 3 |
15 mm | 4 |
Welding Pass | Minimum Safe Distance to Avoid Risk of Burns (43 °C) in the Worst Case | Minimum Safe Distance to Avoid Risk of Inflammation (60 °C) in the Worst Case |
---|---|---|
1 | 250 mm | 200 mm |
2 | 300 mm | 250 mm |
3 | 350 mm | 250 mm |
4 | 350 mm | 250 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández de la Iglesia, R.J.; Calvo-Rolle, J.L.; Quintian-Pardo, H.; Mirza-Rosca, J.C. Analysis of Heat Transfer in the Welding Processes of Naval Metallic Sheets from an Occupational Safety Perspective. Safety 2025, 11, 78. https://doi.org/10.3390/safety11030078
Hernández de la Iglesia RJ, Calvo-Rolle JL, Quintian-Pardo H, Mirza-Rosca JC. Analysis of Heat Transfer in the Welding Processes of Naval Metallic Sheets from an Occupational Safety Perspective. Safety. 2025; 11(3):78. https://doi.org/10.3390/safety11030078
Chicago/Turabian StyleHernández de la Iglesia, Roberto José, José L. Calvo-Rolle, Héctor Quintian-Pardo, and Julia C. Mirza-Rosca. 2025. "Analysis of Heat Transfer in the Welding Processes of Naval Metallic Sheets from an Occupational Safety Perspective" Safety 11, no. 3: 78. https://doi.org/10.3390/safety11030078
APA StyleHernández de la Iglesia, R. J., Calvo-Rolle, J. L., Quintian-Pardo, H., & Mirza-Rosca, J. C. (2025). Analysis of Heat Transfer in the Welding Processes of Naval Metallic Sheets from an Occupational Safety Perspective. Safety, 11(3), 78. https://doi.org/10.3390/safety11030078