Exploring Simulation Sickness in Virtual Reality Pedestrian Scenarios: Effects of Gender, Exposure, and User Perceptions
Abstract
1. Introduction
1.1. Background
1.2. Related Works
1.3. Research Gap
1.4. Research Objectives and Questions
- RQ1:
- How does exposure to different VR scenarios, specifically road-crossing and sidewalk walking, affect the severity of simulator sickness (SS) symptoms? These two scenarios were selected because research on pedestrian behavior often focuses either on road-crossing actions or interactions among pedestrians and other sidewalk users.
- RQ2:
- How do individual demographic characteristics influence the severity of SS symptoms in pedestrian VR environments?
- RQ3:
- To what extent do user perceptions, including perceived realism and disengagement, contribute to the severity of SS symptoms in pedestrian VR environments?
- RQ4:
- Are there significant relationships among the SSQ subscales in measuring SS symptoms?
2. Materials and Methods
2.1. VR Simulation
2.2. Simulated Environment
2.3. Simulation Sickness Questionnaire
2.4. Procedure
2.5. Participants
2.6. Analysis
3. Results
3.1. Descriptive Statistics of SS
3.2. Comparison of Simulation Sickness Symptoms Between Males and Females
3.3. Structure Equation Model
3.4. Correlations Among Simulation Sickness Subscales
4. Discussion
Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VR | Virtual reality |
HMDs | Head-mounted displays |
SS | Simulation sickness |
SSQ | Simulation sickness questionnaire |
QTCM | Qatar Traffic Control Manual |
SSM | Structural equation modeling |
References
- Wynne, R.A.; Beanland, V.; Salmon, P.M. Systematic Review of Driving Simulator Validation Studies. Saf. Sci. 2019, 117, 138–151. [Google Scholar] [CrossRef]
- Calhoun, V.D.; Pearlson, G.D. A Selective Review of Simulated Driving Studies: Combining Naturalistic and Hybrid Paradigms, Analysis Approaches, and Future Directions. Neuroimage 2012, 59, 25–35. [Google Scholar] [CrossRef]
- Alyamani, H.; Alharbi, N.; Roboey, A.; Kavakli, M. The Impact of Gamifications and Serious Games on Driving under Unfamiliar Traffic Regulations. Appl. Sci. 2023, 13, 3262. [Google Scholar] [CrossRef]
- Kwon, J.-H.; Kim, J.; Kim, S.; Cho, G.-H. Pedestrians Safety Perception and Crossing Behaviors in Narrow Urban Streets: An Experimental Study Using Immersive Virtual Reality Technology. Accid. Anal. Prev. 2022, 174, 106757. [Google Scholar] [CrossRef] [PubMed]
- Strzałkowski, P.; Bęś, P.; Szóstak, M.; Napiórkowski, M. Application of Virtual Reality (Vr) Technology in Mining and Civil Engineering. Sustainability 2024, 16, 2239. [Google Scholar] [CrossRef]
- Van Wyk, E.; De Villiers, R. Virtual Reality Training Applications for the Mining Industry. In Proceedings of the 6th International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, Pretoria, South Africa, 4–6 February 2009; pp. 53–63. [Google Scholar]
- Filigenzi, M.T.; Orr, T.J.; Ruff, T.M. Virtual Reality for Mine Safety Training. Appl. Occup. Environ. Hyg. 2000, 15, 465–469. [Google Scholar] [CrossRef]
- Sharma, S.; Otunba, S. Virtual Reality as a Theme-Based Game Tool for Homeland Security Applications. In Proceedings of the 2011 Military Modeling & Simulation Symposium, Boston, MA, USA, 3–7 April 2011; pp. 61–65. [Google Scholar]
- Sharma, S.; Rajeev, S.P.; Devearux, P. An Immersive Collaborative Virtual Environment of a University Campus for Performing Virtual Campus Evacuation Drills and Tours for Campus Safety. In Proceedings of the 2015 International Conference on Collaboration Technologies and Systems (CTS), Atlanta, GA, USA, 1–5 June 2015; pp. 84–89. [Google Scholar]
- Sharma, S.; Jerripothula, S.; Mackey, S.; Soumare, O. Immersive Virtual Reality Environment of a Subway Evacuation on a Cloud for Disaster Preparedness and Response Training. In Proceedings of the 2014 IEEE symposium on computational intelligence for human-like intelligence (CIHLI), Orlando, FL, USA, 9–12 December 2014; pp. 1–6. [Google Scholar]
- Sharma, S.; Vadali, H. Simulation and Modeling of a Virtual Library for Navigation and Evacuation. In Proceedings of the MSV’08—The 2008 International Conference on Modeling, Simulation and Visualization Methods, Monte Carlo Resort, Las Vegas, NV, USA, 14–17 July 2008. [Google Scholar]
- Sharma, S.; Otunba, S. Collaborative Virtual Environment to Study Aircraft Evacuation for Training and Education. In Proceedings of the 2012 International Conference on Collaboration Technologies and Systems (CTS), Denver, CO, USA, 21–25 May 2012; pp. 569–574. [Google Scholar]
- Sharma, S. Improving Emergency Response Training and Decision Making Using a Collaborative Virtual Reality Environment for Building Evacuation. In Proceedings of the International Conference on Human-Computer Interaction, Copenhagen, Denmark, 19–24 July 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 213–224. [Google Scholar]
- Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [Google Scholar] [CrossRef]
- Dużmańska, N.; Strojny, P.; Strojny, A. Can Simulator Sickness Be Avoided? A Review on Temporal Aspects of Simulator Sickness. Front. Psychol. 2018, 9, 2132. [Google Scholar] [CrossRef]
- Reason, J.T.; Brand, J.J. Motion Sickness; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Firdaus, R.; Tantri, A.R.; Manggala, S.K. Factors Influencing Virtual Reality Sickness in Emergency Simulation Training. Med. Sci. Educ. 2024, 34, 1309–1315. [Google Scholar] [CrossRef]
- Hu, P.; Sun, Q.; Didyk, P.; Wei, L.-Y.; Kaufman, A.E. Reducing Simulator Sickness with Perceptual Camera Control. ACM Trans. Graph. (TOG) 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Bonato, F.; Bubka, A.; Palmisano, S. Combined Pitch and Roll and Cybersickness in a Virtual Environment. Aviat. Space Environ. Med. 2009, 80, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Lackner, J.R. Motion Sickness: More Than Nausea and Vomiting. Exp. Brain Res. 2014, 232, 2493–2510. [Google Scholar] [CrossRef]
- Keshavarz, B.; Riecke, B.E.; Hettinger, L.J.; Campos, J.L. Vection and Visually Induced Motion Sickness: How Are They Related? Front. Psychol. 2015, 6, 472. [Google Scholar] [CrossRef]
- Ebenholtz, S.M. Oculomotor Systems and Perception; Cambridge University Press: Cambridge, UK, 2001; Volume 212. [Google Scholar]
- Almallah, M.; Hussain, Q.; Reinolsmann, N.; Alhajyaseen, W.K.M. Driving Simulation Sickness and the Sense of Presence: Correlation and Contributing Factors. Transp. Res. Part F Traffic Psychol. Behav. 2021, 78, 180–193. [Google Scholar] [CrossRef]
- Classen, S.; Bewernitz, M.; Shechtman, O. Driving Simulator Sickness: An Evidence-Based Review of the Literature. Am. J. Occup. Ther. 2011, 65, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, R.; Rutrecht, H.M.; Hengstenberg, P.; Tutulmaz, E.; Geissler, B.; Hecht, H.; Muttray, A. The Best Way to Assess Visually Induced Motion Sickness in a Fixed-Base Driving Simulator. Transp. Res. Part F Traffic Psychol. Behav. 2017, 48, 74–88. [Google Scholar] [CrossRef]
- Keshavarz, B.; Ramkhalawansingh, R.; Haycock, B.; Shahab, S.; Campos, J.L. Comparing Simulator Sickness in Younger and Older Adults During Simulated Driving under Different Multisensory Conditions. Transp. Res. Part F Traffic Psychol. Behav. 2018, 54, 47–62. [Google Scholar] [CrossRef]
- Kim, J.; Park, T. Investigation of Factors Influencing Simulator Sickness and the Sense of Presence in Flight Simulator. ICIC Express Lett. Part B Appl. 2020, 11, 463–470. [Google Scholar]
- Scorza, K.; Williams, A.; Phillips, J.D.; Shaw, J. Evaluation of Nausea and Vomiting. Am. Fam. Physician 2007, 76, 76–84. [Google Scholar]
- Singh, P.; Yoon, S.S.; Kuo, B. Nausea: A Review of Pathophysiology and Therapeutics. Ther. Adv. Gastroenterol. 2016, 9, 98–112. [Google Scholar] [CrossRef]
- Hirsig, A.; Barbey, C.; Schüpbach, M.W.M.; Bargiotas, P. Oculomotor Functions in Focal Dystonias: A Systematic Review. Acta Neurol. Scand. 2020, 141, 359–367. [Google Scholar] [CrossRef]
- Park, G.D.; Allen, R.W.; Fiorentino, D.; Rosenthal, T.J.; Cook, M.L. Simulator Sickness Scores According to Symptom Susceptibility, Age, and Gender for an Older Driver Assessment Study. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, San Fransisco, CA, USA, 16–20 October 2006. [Google Scholar]
- Luong, T.; Pléchata, A.; Möbus, M.; Atchapero, M.; Böhm, R.; Makransky, G.; Holz, C. Demographic and Behavioral Correlates of Cybersickness: A Large Lab-in-the-Field Study of 837 Participants. In Proceedings of the 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Singapore, 17–21 October 2022. [Google Scholar]
- Rangelova, S.; Rehm, K.; Diefenbach, S.; Motus, D.; André, E. Gender Differences in Simulation Sickness in Static vs. Moving Platform Vr Automated Driving Simulation. In Proceedings of the Second International Conference, MobiTAS 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, 19–24 July 2020; Proceedings, Part I 22. Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 146–165. [Google Scholar]
- Ramaseri-Chandra, A.N.; Reza, H. Predicting Cybersickness Using Machine Learning and Demographic Data in Virtual Reality. Electronics 2024, 13, 1313. [Google Scholar] [CrossRef]
- Reddy, A.; Kim, J.R. Assessment and Quantification of Virtual Reality Induced Sickness in Relation to Age and Gender: A Multi-Modal Approach. In Proceedings of the 2023 IEEE MIT Undergraduate Research Technology Conference (URTC), Cambridge, MA, USA, 6–8 October 2023. [Google Scholar]
- Hughes, B.P.; Naeem, H.N.; Davidenko, N. Factors Affecting Vection and Motion Sickness in a Passive Virtual Reality Driving Simulation. Sci. Rep. 2024, 14, 30214. [Google Scholar] [CrossRef]
- Hughes, B.; Naeem, H.; Davidenko, N. Vection, Presence, and Cybersickness in a Virtual Reality Driving Simulation. J. Vis. 2023, 23, 5030. [Google Scholar] [CrossRef]
- Kemeny, A.; Colombet, F.; Denoual, T. How to Avoid Simulation Sickness in Virtual Environments During User Displacement. In Proceedings of the Engineering Reality of Virtual Reality, San Francisco, CA, USA, 9–10 February 2015. [Google Scholar]
- Guna, J.; Geršak, G.; Humar, I.; Krebl, M.; Orel, M.; Lu, H.; Pogačnik, M. Virtual Reality Sickness and Challenges Behind Different Technology and Content Settings. Mob. Netw. Appl. 2020, 25, 1436–1445. [Google Scholar] [CrossRef]
- Rangelova, S.; Andre, E. A Survey on Simulation Sickness in Driving Applications with Virtual Reality Head-Mounted Displays. PRESENCE Virtual Augment. Real. 2018, 27, 15–31. [Google Scholar] [CrossRef]
- Yeo, S.S.; Kwon, J.W.; Park, S.Y. Eeg-Based Analysis of Various Sensory Stimulation Effects to Reduce Visually Induced Motion Sickness in Virtual Reality. Sci. Rep. 2022, 12, 18043. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.-M.; Son, H.; Park, T. Effects of Unlimited Angular Motion Cue and Cue Discrepancy on Simulator Sickness. Expert Syst. Appl. 2023, 213, 119196. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Stanney, K.M.; Dunlap, W.P. Duration and Exposure to Virtual Environments: Sickness Curves During and across Sessions. Presence Teleoperators Virtual Environ. 2000, 9, 463–472. [Google Scholar] [CrossRef]
- Draper, M.H. The Adaptive Effects of Virtual Interfaces: Vestibulo-Ocular Reflex and Simulator Sickness; University of Washington: Washington, DC, USA, 1998. [Google Scholar]
- DiZio, P.; Lackner, J.R. Motion Sickness Side Effects and Aftereffects of Immersive Virtual Environments Created with Helmet-Mounted Visual Displays. Capab. Virtual Real. Meet Mil. Requir. 2000, 1, 11–12. [Google Scholar]
- Jung, J.-Y.; Cho, K.-S.; Choi, J.; Choi, J. Causes of Cyber Sickness of Vr Contents: An Experimental Study on the Viewpoint and Movement. J. Korea Contents Assoc. 2017, 17, 200–208. [Google Scholar]
- Kennedy, R.S.; Lanham, D.S.; Drexler, J.M.; Massey, C.J.; Lilienthal, M.G. A Comparison of Cybersickness Incidences, Symptom Profiles, Measurement Techniques, and Suggestions for Further Research. Presence Teleoperators Virtual Environ. 1997, 6, 638–644. [Google Scholar] [CrossRef]
- Saredakis, D.; Szpak, A.; Birckhead, B.; Keage, H.A.D.; Rizzo, A.; Loetscher, T. Factors Associated with Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2020, 14, 96. [Google Scholar] [CrossRef]
- Hussain, Z.; Dias, C.; Samson, C.; Hussain, Q.; Alhajyaseen, W.; Abbasi, S.A.; Hussain, I. Experimental Investigation of Pedestrians Interacting with E-Scooter Riders on Residential Roads. Procedia Comput. Sci. 2024, 251, 303–310. [Google Scholar] [CrossRef]
- Deb, S.; Carruth, D.W.; Sween, R.; Strawderman, L.; Garrison, T.M. Efficacy of Virtual Reality in Pedestrian Safety Research. Appl. Ergon. 2017, 65, 449–460. [Google Scholar] [CrossRef]
- Bindschädel, J.; Krems, I.; Kiesel, A. Interaction between Pedestrians and Automated Vehicles: Exploring a Motion-Based Approach for Virtual Reality Experiments. Transp. Res. Part F Traffic Psychol. Behav. 2021, 82, 316–332. [Google Scholar] [CrossRef]
- Reinolsmann, N.; Alhajyaseen, W.; Brijs, T.; Ross, V.; Timmermans, C.; Pirdavani, A.; Hussain, Q.; Brijs, K. Investigating the Impacts of Graphical Route Information Panel Layouts on Drivers’ Comprehension and Response Time. Arab. J. Sci. Eng. 2019, 44, 8439–8450. [Google Scholar] [CrossRef]
- Timmermans, C.; Alhajyaseen, W.; Reinolsmann, N.; Nakamura, H.; Suzuki, K. Traffic Safety Culture of Professional Drivers in the State of Qatar. IATSS Res. 2019, 43, 286–296. [Google Scholar] [CrossRef]
- Timmermans, C.P.M.; Alhajyaseen, W.K.M.; Ross, V.; Nakamura, H. Introducing a Multi-Variate Classification Method: Risky Driving Acceptance among Different Heterogeneous Driver Sub-Cultures. J. Saf. Res. 2020, 73, 81–91. [Google Scholar] [CrossRef]
- Balk, S.A.; Bertola, D.B.; Inman, V.W. Simulator Sickness Questionnaire: Twenty Years Later. In Driving Assessment Conference; Volume 7, No. 2013; University of Iowa: Iowa City, IA, USA, 2013. [Google Scholar]
- Uğur, E.; Kurter, A.; Aydın, Ç.; Konukseven, B.Ö. Novel Approach to the Simulator Sickness Questionnaire. J. Audiol. Otol. 2025, 29, 57. [Google Scholar] [CrossRef]
- Teasdale, N.; Lavallière, M.; Tremblay, M.; Laurendeau, D.; Simoneau, M. Multiple Exposition to a Driving Simulator Reduces Simulator Symptoms for Elderly Drivers. In Driving Assessment Conference; Volume 5, No. 2009; University of Iowa: Iowa City, IA, USA, 2009. [Google Scholar]
- QNPC. Qatar National Planning Council; Census. Available online: https://www.npc.qa/en/statistics/census2020/Pages/results/default.aspx (accessed on 11 June 2025).
- Ringle, C.M.; Wende, S.; Becker, J. Smartpls 4; Smartpls: Bönningstedt, Germany, 2024. [Google Scholar]
- Grace, J.B.; Anderson, T.M.; Olff, H.; Scheiner, S.M. On the Specification of Structural Equation Models for Ecological Systems. Ecol. Monogr. 2010, 80, 67–87. [Google Scholar] [CrossRef]
- Fauzi, M.A. Partial Least Square Structural Equation Modelling (Pls-Sem) in Knowledge Management Studies: Knowledge Sharing in Virtual Communities. Knowl. Manag. E-Learn. 2022, 14, 103–124. [Google Scholar]
- Schubert, T.; Friedmann, F.; Regenbrecht, H. The Experience of Presence: Factor Analytic Insights. Presence Teleoperators Virtual Environ. 2001, 10, 266–281. [Google Scholar] [CrossRef]
- Cossio, S.; Chiappinotto, S.; Dentice, S.; Moreal, C.; Magro, G.; Dussi, G.; Palese, A.; Galazzi, A. Cybersickness and Discomfort from Head-Mounted Displays Delivering Fully Immersive Virtual Reality: A Systematic Review. Nurse Educ. Pract. 2025, 85, 104376. [Google Scholar] [CrossRef]
- Kim, E.; Shin, G. User Discomfort While Using a Virtual Reality Headset as a Personal Viewing System for Text-Intensive Office Tasks. Ergonomics 2021, 64, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Bannigan, G.M.; de Sousa, A.A.; Scheller, M.; Finnegan, D.J.; Proulx, M.J. Potential Factors Contributing to Observed Sex Differences in Virtual-Reality-Induced Sickness. Exp. Brain Res. 2024, 242, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Ashford, M.T.; Eichenbaum, J.; Williams, T.; Camacho, M.R.; Fockler, J.; Ulbricht, A.; Nosheny, R.L. Effects of Sex, Race, Ethnicity, and Education on Online Aging Research Participation. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2020, 6, e12028. [Google Scholar] [CrossRef]
- Ausburn, L.J.; Martens, J.; Washington, A.; Steele, D.; Washburn, E. A Cross-Case Analysis of Gender Issues in Desktop Virtual Reality Learning Environments. J. STEM Teach. Educ. 2009, 46, 6. [Google Scholar]
- Davis, S.; Nesbitt, K.; Nalivaiko, E. Comparing the Onset of Cybersickness Using the Oculus Rift and Two Virtual Roller Coasters. In Proceedings of the 11th Australasian Conference on Interactive Entertainment (IE 2015), Sydney, Australia, 27–30 January 2015. [Google Scholar]
- Chang, E.; Kim, H.T.; Yoo, B. Virtual Reality Sickness: A Review of Causes and Measurements. Int. J. Hum. Comput. Interact. 2020, 36, 1658–1682. [Google Scholar] [CrossRef]
Variable | Level | Sample Sidewalk | Sample Crosswalk | Total Sample |
---|---|---|---|---|
Gender | Female | 30.67% | 27.14% | 28.97% |
Male | 69.33% | 72.86% | 71.03% | |
Ethnicity | Non-Arab | 66.70% | 64.30% | 65.52% |
Arab | 33.30% | 35.70% | 34.48% | |
Educational level | Secondary education | 56.00% | 2.90% | 30.34% |
High school | 4.00% | 55.70% | 28.97% | |
Diploma | 28.00% | 1.40% | 15.17% | |
Bachelor’s degree | 12.00% | 28.60% | 20.00% | |
Master’s or doctorate | 0.00% | 11.40% | 5.52% | |
Age | Minimum | 17.00 | 17.00 | 17.00 |
Maximum | 54.00 | 54.00 | 54.00 | |
Mean | 23.60 | 24.76 | 24.01 |
Path | β | STDEV | T Value | p Values |
---|---|---|---|---|
Condition -> Past experience | −0.381 | 0.079 | 4.850 | <0.001 |
Condition -> Perceived disengagement | −0.379 | 0.182 | 2.079 | 0.038 |
Educational Level -> Perceived disengagement | −0.220 | 0.103 | 2.138 | 0.033 |
Gender -> Vehicle speed perception | −0.384 | 0.170 | 2.255 | 0.024 |
Gender -> Perceived realism | −0.405 | 0.181 | 2.242 | 0.025 |
Perceived disengagement -> Nausea | 0.158 | 0.074 | 2.147 | 0.032 |
Perceived disengagement -> Oculomotor disturbance | 0.182 | 0.087 | 2.087 | 0.037 |
Perceived disengagement -> Disorientation | 0.218 | 0.073 | 2.971 | 0.003 |
Perceived disengagement -> Total scores | 0.208 | 0.078 | 2.665 | 0.008 |
Perceived Realism -> Nausea | −0.210 | 0.089 | 2.361 | 0.018 |
Perceived Realism -> Oculomotor disturbance | −0.221 | 0.109 | 2.032 | 0.042 |
Perceived Realism -> Total scores | −0.226 | 0.105 | 2.163 | 0.031 |
SS Subscale | Nausea | Oculomotor | Disorientation | |
---|---|---|---|---|
Nausea | Pearson correlation | 1 | 0.630 ** | 0.644 ** |
Sig. (2-tailed) | - | <0.001 | <0.001 | |
Oculomotor disturbance | Pearson correlation | 0.630 ** | 1 | 0.833 ** |
Sig. (2-tailed) | <0.001 | - | <0.001 | |
Disorientation | Pearson correlation | 0.644 ** | 0.833 ** | 1 |
Sig. (2-tailed) | <0.001 | <0.001 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Selo, T.; Hussain, Z.; Hussain, Q.; Alhajyaseen, W.; Al-Quradaghi, S.; Alqaradawi, M.Y. Exploring Simulation Sickness in Virtual Reality Pedestrian Scenarios: Effects of Gender, Exposure, and User Perceptions. Safety 2025, 11, 63. https://doi.org/10.3390/safety11030063
Abu Selo T, Hussain Z, Hussain Q, Alhajyaseen W, Al-Quradaghi S, Alqaradawi MY. Exploring Simulation Sickness in Virtual Reality Pedestrian Scenarios: Effects of Gender, Exposure, and User Perceptions. Safety. 2025; 11(3):63. https://doi.org/10.3390/safety11030063
Chicago/Turabian StyleAbu Selo, Tarek, Zahid Hussain, Qinaat Hussain, Wael Alhajyaseen, Shimaa Al-Quradaghi, and Mohammed Yousef Alqaradawi. 2025. "Exploring Simulation Sickness in Virtual Reality Pedestrian Scenarios: Effects of Gender, Exposure, and User Perceptions" Safety 11, no. 3: 63. https://doi.org/10.3390/safety11030063
APA StyleAbu Selo, T., Hussain, Z., Hussain, Q., Alhajyaseen, W., Al-Quradaghi, S., & Alqaradawi, M. Y. (2025). Exploring Simulation Sickness in Virtual Reality Pedestrian Scenarios: Effects of Gender, Exposure, and User Perceptions. Safety, 11(3), 63. https://doi.org/10.3390/safety11030063