A Comparative Approach Study on the Thermal and Calorimetric Analysis of Fire-Extinguishing Powders
Abstract
:1. Introduction
2. Materials and Experiments
2.1. Materials
2.2. Experiments
2.3. Quality Control and Validation
3. Results and Discussion
3.1. Thermal Decomposition Analysis
3.2. Fire Extinguishing Efficacy
3.3. Gaseous Product Analysis
3.4. Reaction Mechanisms and Energy Pathways
3.5. Structural Analysis and Visualization
3.6. Temperature Monitoring and Cooling Rate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bai, X.; Sun, P.; Luo, G.; Cao, H.; Wei, X. Large Leakage Sodium-Water Reaction Accident Analysis in a Sodium-Cooled Fast Reactor with Paralleling Steam Generators. Prog. Nucl. Energy 2023, 162, 104770. [Google Scholar] [CrossRef]
- Yan, L.; Wang, N.; Xu, Z. Experimental Study on the Effectiveness and Safety of Cement Powder on Extinguishing Metal Magnesium Fires Based on Pneumatic Conveying Technology. Case Stud. Therm. Eng. 2022, 37, 102279. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, Y.; Fan, R. Extinguishing Capability of Novel Ultra-Fine Dry Chemical Agents Loaded with Iron Hydroxide Oxide. Fire Saf. J. 2022, 130, 103578. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Liu, J.; Li, Q.; Pan, R.; Zhou, X. Alkaline Potassium Aluminum Carbonate: A Novel High-Efficiency Dry Powder Extinguishing Agent with High Heat-Resistant. J. Anal. Appl. Pyrolysis 2023, 173, 106038. [Google Scholar] [CrossRef]
- Zhao, J.; Fu, Y.; Lu, S.; Lu, G.; Xue, F.; Zhang, H. An Improved Method to Determine the Minimum Extinguishing Concentrations of Ultrafine Dry Powder Agents: Taking NaHCO3 and KHCO3 as Examples. Process Saf. Environ. Prot. 2023, 172, 846–856. [Google Scholar] [CrossRef]
- Lonergan, J.; Goncharov, V.; Swinhart, M.; Makovsky, K.; Rollog, M.; McNamara, B.; Clark, R.; Cutforth, D.; Armstrong, C.; Guo, X.; et al. Thermodynamic Investigation of the NaCl-KCl Salt System from 25 to 950 °C. J. Mol. Liq. 2023, 391, 122591. [Google Scholar] [CrossRef]
- Huang, L.; Jiang, H.; Zhang, T.; Shang, S.; Gao, W. Effect of Superfine KHCO3 and ABC Powder on Ignition Sensitivity of PMMA Dust Layer. J. Loss Prev. Process Ind. 2021, 72, 104567. [Google Scholar] [CrossRef]
- Baldissera, A.F.; Silveira, M.R.; Beraldo, C.H.; Tocchetto, N.S.; Ferreira, C.A. Evaluation of the Expandable Graphite/Polyaniline Combination in Intumescent Coatings. Synth. Met. 2019, 256, 116141. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Yang, Y.; Pan, Y.; Shu, C.M. Catalytic Effects of Magnesium-Transition Metal (Fe and Ni) Hydrides on Oxygen and Nitrogen Reduction: A Case Study of Explosive Characteristics and Their Environmental Contaminants. Energy 2023, 280, 128222. [Google Scholar] [CrossRef]
- Wang, S.; Tan, L.; Xu, T. Synergistic effects of developed composite flame retardant on VOCs constituents of heated asphalt and carbonized layer compositions. J. Clean. Prod. 2022, 367, 133107. [Google Scholar] [CrossRef]
- Huang, C.F.; Chen, W.T.; Kao, C.K.; Chang, H.J.; Kao, P.M.; Wan, T.J. Application of Fuzzy Multi-Objective Programming to Regional Sewer System Planning. Processes 2023, 11, 183. [Google Scholar] [CrossRef]
- Ni, X.; Zheng, Z. Extinguishment of Sodium Fires with Graphite@Stearate Core-Shell Structured Particles. Fire Saf. J. 2020, 111, 102933. [Google Scholar] [CrossRef]
- Wang, S.; Xu, Z.; Xu, T. Improving the controlled-release effects of composite flame retardant by loading on porous attapulgite and coating. Ceram. Int. 2023, 49, 7871–7887. [Google Scholar] [CrossRef]
- Liu, A.; Lu, X.; Zhou, X.; Xu, C.; Liang, X.; Xiong, K. Experimental Investigation on Suppression of Methane Explosion Using KHCO3/Zeolite Composite Powder. Powder Technol. 2023, 415, 118157. [Google Scholar] [CrossRef]
- Liu, J.W.; Xiao, Y.; Wang, Z.P.; Li, Q.W. Electron heat transport in low-rank lignite: Combining experimental and computational methods. J. Therm. Anal. Calorim. 2023, 148, 4759–4768. [Google Scholar] [CrossRef]
- Ma, X.Y.; Cao, F.C.; Zhou, H.L.; Liu, Y.C.; Tang, Y.; Kang, Q.C.; Shu, Z.J.; Dong, X.L.; Huang, A.C. Experimental Investigation of the Performance of Modified Expanded Graphite Powder Doped with Zinc Borate in Extinguishing Sodium Fires. J. Loss Prev. Process Ind. 2023, 84, 105110. [Google Scholar] [CrossRef]
- Zhang, M.L.; Dong, X.L.; Tang, Y.; Huang, A.C.; Chen, F.; Kang, Q.C.; Shu, Z.J.; Xing, Z.X. Experimental Investigations of Extinguishing Sodium Pool Fires Using Modified Expandable Graphite Powders. Case Stud. Therm. Eng. 2022, 32, 101911. [Google Scholar] [CrossRef]
- Cao, F.C.; Ma, X.Y.; Zhou, H.L.; Tang, Y.; Dong, X.L.; Huang, A.C. Enhanced Suppression of Metal Combustion Processes Using a Compound Expansible Graphite Extinguishing Agent: Experimental Study and Mechanistic Insights. J. Loss Prev. Process Ind. 2023, 85, 105154. [Google Scholar] [CrossRef]
- Hu, W.; Yu, R.; Chang, Z.; Tan, Z.; Liu, X. The Fire Extinguishing Mechanism of Ultrafine Composite Dry Powder Agent Containing Mg(OH)2. Int. J. Quantum Chem. 2021, 121, e26810. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Xie, L.J.; Sun, H.Q.; Wang, X.; Zhou, H.L.; Tang, Y.; Jiang, J.C.; Huang, A.C. 4,5-Difluoro-1,3-dioxolan-2-one as a film-forming additive improves the cycling and thermal stability of SiO/C anode Li-ion batteries. Process Saf. Environ. Prot. 2024, 183, 496–504. [Google Scholar] [CrossRef]
- Jinzhang, J.; Xiuyuan, T.; Fengxiao, W. Study on the Effect of KHCO3 Particle Size and Powder Spraying Pressure on the Methane Explosion Suppression Characteristics of Pipe Networks. ACS Omega 2022, 7, 31974–31982. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, H.; Guo, X.; Li, S.; Zhang, H.; Pan, X.; Hua, M. Experimental and Theoretical Studies on the Effect of Al(OH)3 on the Fire-Extinguishing Performance of Superfine ABC Dry Powder. Powder Technol. 2021, 393, 280–290. [Google Scholar] [CrossRef]
- Řezáč, J. Non-Covalent Interactions Atlas Benchmark Data Sets 2: Hydrogen Bonding in an Extended Chemical Space. J. Chem. Theory Comput. 2020, 16, 6305–6316. [Google Scholar] [CrossRef]
- Tang, Y.; Sun, H.; Liu, J.; Zhang, D.; Wang, R.; Dai, J. Computational Study on the Mechanisms and Reaction Pathways of the CX3O2 + Br (X=F and Cl) Reactions. J. Fluor. Chem. 2013, 153, 130–136. [Google Scholar] [CrossRef]
- Lin, S.; Dong, L.; Zhang, J.; Lu, H. Room-Temperature Intercalation and ~1000-Fold Chemical Expansion for Scalable Preparation of High-Quality Graphene. Chem. Mater. 2016, 28, 2138–2146. [Google Scholar] [CrossRef]
- Zhou, J.; Li, B.; Ma, D.; Jiang, H.; Gan, B.; Bi, M.; Gao, W. Suppression of Nano-Polymethyl Methacrylate Dust Explosions by ABC Powder. Process Saf. Environ. Prot. 2019, 122, 144–152. [Google Scholar] [CrossRef]
- Meng, F.; Amyotte, P.; Hou, X.; Li, C.; He, C.; Li, G.; Yuan, C.; Liang, Y. Suppression Effect of Expandable Graphite on Fire Hazard of Dust Layers. Process Saf. Environ. Prot. 2022, 168, 1120–1130. [Google Scholar] [CrossRef]
- Roosendans, D.; Van Wingerden, K.; Holme, M.N.; Hoorelbeke, P. Experimental Investigation of Explosion Mitigating Properties of Aqueous Potassium Carbonate Solutions. J. Loss Prev. Process Ind. 2017, 46, 209–226. [Google Scholar] [CrossRef]
- Qu, J.; Deng, J.; Luo, Z.M.; Xiao, Y.; Shu, C.M. Thermal Reaction Characteristics and Microstructure Evolution of Aluminium Nano-Powder in Various Mixtures of Oxygen and Nitrogen Atmosphere. Process Saf. Environ. Prot. 2023, 170, 45–53. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, K.; Li, J.; Liu, B.; Wang, B. Hydrogen inhibition effect of chitosan and sodium phosphate on ZK60 waste dust in a wet dust removal system: A feasible way to control hydrogen explosion. J. Magnes. Alloys 2023, 11, 2916–2926. [Google Scholar] [CrossRef]
Material Designation | EG | KHCO3 |
---|---|---|
Percentage (%) | 50% | 50% |
75% | 25% | |
90% | 10% |
Samples | Arguments | First Stage | Second Stage | Third Stage |
---|---|---|---|---|
EG | T0 (°C) | 212.42 | 614.95 | – |
Residue (%) | 67.21 | 65.34 | – | |
Peak rate (%/°C) | 0.0022 | – | – | |
EG–KHCO3 3:1 | T0 (°C) | 35.42 | 228.19 | 615.71 |
Residue (%) | 90.48 | 72.66 | 68.49 | |
Peak rate (%/°C) | 0.0016 | 0.0022 | 0.0002 |
Powder | Metal Sodium Mass (g) | Extinguishing Time (s) | Agent Mass Consumed (g) | Cooling Rate from 350 to 200 °C (°C/s) | Standard Deviations | |
---|---|---|---|---|---|---|
Extinguishing Time (s) | Agent Mass Consumed (g) | |||||
EG | 5.45 | 30 | 10.00 | 1.53 | 2.57 | 1.79 |
EG–KHCO3 (1:1) | 5.25 | 26 | 12.36 | 1.44 | 2.74 | 2.44 |
EG–KHCO3 (3:1) | 5.55 | 20 | 6.33 | 2.34 | 2.00 | 0.47 |
EG–KHCO3 (9:1) | 5.55 | 24 | 6.55 | 1.30 | 2.05 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, A.-C.; Cao, F.-C.; Ma, X.-Y. A Comparative Approach Study on the Thermal and Calorimetric Analysis of Fire-Extinguishing Powders. Safety 2024, 10, 31. https://doi.org/10.3390/safety10010031
Huang A-C, Cao F-C, Ma X-Y. A Comparative Approach Study on the Thermal and Calorimetric Analysis of Fire-Extinguishing Powders. Safety. 2024; 10(1):31. https://doi.org/10.3390/safety10010031
Chicago/Turabian StyleHuang, An-Chi, Fang-Chao Cao, and Xin-Yue Ma. 2024. "A Comparative Approach Study on the Thermal and Calorimetric Analysis of Fire-Extinguishing Powders" Safety 10, no. 1: 31. https://doi.org/10.3390/safety10010031
APA StyleHuang, A. -C., Cao, F. -C., & Ma, X. -Y. (2024). A Comparative Approach Study on the Thermal and Calorimetric Analysis of Fire-Extinguishing Powders. Safety, 10(1), 31. https://doi.org/10.3390/safety10010031