Digital Breast Tomosynthesis: Towards Dose Reduction through Image Quality Improvement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Reconstruction
2.2. Formulation of the TV Minimization Problem
2.3. Image Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Coleman, C. Early detection and screening for breast cancer. In Proceedings of the Seminars in Oncology Nursing; Elsevier: Amsterdam, The Netherlands, 2017; Volume 33, pp. 141–155. [Google Scholar]
- Lewin, J.M. Digital mammography. Cancer Imaging 2008, 455–458. [Google Scholar]
- Løberg, M.; Lousdal, M.L.; Bretthauer, M.; Kalager, M. Benefits and harms of mammography screening. Breast Cancer Res. 2015, 17, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Vedantham, S.; Karellas, A.; Vijayaraghavan, G.R.; Kopans, D.B. Digital breast tomosynthesis: State of the art. Radiology 2015, 277, 663–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niell, B.L.; Freer, P.E.; Weinfurtner, R.J.; Arleo, E.K.; Drukteinis, J.S. Screening for breast cancer. Radiol. Clin. 2017, 55, 1145–1162. [Google Scholar] [CrossRef]
- Haas, B.M.; Kalra, V.; Geisel, J.; Raghu, M.; Durand, M.; Philpotts, L.E. Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening. Radiology 2013, 269, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Zackrisson, S.; Lång, K.; Rosso, A.; Johnson, K.; Dustler, M.; Förnvik, D.; Förnvik, H.; Sartor, H.; Timberg, P.; Tingberg, A.; et al. One-view breast tomosynthesis versus two-view mammography in the Malmö Breast Tomosynthesis Screening Trial (MBTST): A prospective, population-based, diagnostic accuracy study. Lancet Oncol. 2018, 19, 1493–1503. [Google Scholar] [CrossRef]
- Bernardi, D.; Macaskill, P.; Pellegrini, M.; Valentini, M.; Fantò, C.; Ostillio, L.; Tuttobene, P.; Luparia, A.; Houssami, N. Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): A population-based prospective study. Lancet Oncol. 2016, 17, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Lång, K.; Andersson, I.; Rosso, A.; Tingberg, A.; Timberg, P.; Zackrisson, S. Performance of one-view breast tomosynthesis as a stand-alone breast cancer screening modality: Results from the Malmö Breast Tomosynthesis Screening Trial, a population-based study. Eur. Radiol. 2016, 26, 184–190. [Google Scholar] [CrossRef]
- Gilbert, F.J.; Tucker, L.; Gillan, M.G.; Willsher, P.; Cooke, J.; Duncan, K.A.; Michell, M.J.; Dobson, H.M.; Lim, Y.Y.; Suaris, T.; et al. Accuracy of digital breast tomosynthesis for depicting breast cancer subgroups in a UK retrospective reading study (TOMMY Trial). Radiology 2015, 277, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Hofvind, S.; Hovda, T.; Holen, Å.S.; Lee, C.I.; Albertsen, J.; Bjørndal, H.; Brandal, S.H.; Gullien, R.; Lømo, J.; Park, D.; et al. Digital breast tomosynthesis and synthetic 2D mammography versus digital mammography: Evaluation in a population-based screening program. Radiology 2018, 287, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Freer, P.E.; Riegert, J.; Eisenmenger, L.; Ose, D.; Winkler, N.; Stein, M.A.; Stoddard, G.J.; Hess, R. Clinical implementation of synthesized mammography with digital breast tomosynthesis in a routine clinical practice. Breast Cancer Res. Treat. 2017, 166, 501–509. [Google Scholar] [CrossRef]
- Tan, M.; Al-Shabi, M.; Chan, W.Y.; Thomas, L.; Rahmat, K.; Ng, K.H. Comparison of two-dimensional synthesized mammograms versus original digital mammograms: A quantitative assessment. Med. Biol. Eng. Comput. 2021, 59, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Cavagnetto, F.; Taccini, G.; Rosasco, R.; Bampi, R.; Calabrese, M.; Tagliafico, A. ‘In vivo’ average glandular dose evaluation: One-to-one comparison between digital breast tomosynthesis and full-field digital mammography. Radiat. Prot. Dosim. 2013, 157, 53–61. [Google Scholar] [CrossRef]
- Gennaro, G.; Bernardi, D.; Houssami, N. Radiation dose with digital breast tomosynthesis compared to digital mammography: Per-view analysis. Eur. Radiol. 2018, 28, 573–581. [Google Scholar] [CrossRef]
- Borges, L.R.; Guerrero, I.; Bakic, P.R.; Foi, A.; Maidment, A.D.; Vieira, M.A. Method for simulating dose reduction in digital breast tomosynthesis. IEEE Trans. Med. Imaging 2017, 36, 2331–2342. [Google Scholar] [CrossRef]
- Svalkvist, A.; Båth, M. Simulation of dose reduction in tomosynthesis. Med. Phys. 2010, 37, 258–269. [Google Scholar] [CrossRef]
- Liu, J.; Zarshenas, A.; Qadir, A.; Wei, Z.; Yang, L.; Fajardo, L.; Suzuki, K. Radiation dose reduction in digital breast tomosynthesis (DBT) by means of deep-learning-based supervised image processing. In Proceedings of the Medical Imaging 2018: Image Processing; SPIE: Houston, TX, USA, 2018; Volume 10574, pp. 89–97. [Google Scholar]
- Gomi, T.; Kijima, Y.; Kobayashi, T.; Koibuchi, Y. Evaluation of a Generative Adversarial Network to Improve Image Quality and Reduce Radiation-Dose during Digital Breast Tomosynthesis. Diagnostics 2022, 12, 495. [Google Scholar] [CrossRef]
- Borges, L.R.; Bakic, P.R.; Foi, A.; Maidment, A.D.; Vieira, M.A. Pipeline for effective denoising of digital mammography and digital breast tomosynthesis. In Proceedings of the Medical Imaging 2017: Physics of Medical Imaging; SPIE: Houston, TX, USA, 2017; Volume 10132, pp. 36–46. [Google Scholar]
- Wu, T.; Moore, R.H.; Rafferty, E.A.; Kopans, D.B. A comparison of reconstruction algorithms for breast tomosynthesis. Med. Phys. 2004, 31, 2636–2647. [Google Scholar] [CrossRef]
- Krammer, J.; Zolotarev, S.; Hillman, I.; Karalis, K.; Stsepankou, D.; Vengrinovich, V.; Hesser, J.; M. Svahn, T. Evaluation of a new image reconstruction method for digital breast tomosynthesis: Effects on the visibility of breast lesions and breast density. Br. J. Radiol. 2019, 92, 20190345. [Google Scholar] [CrossRef] [PubMed]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Mota, A.M.; Matela, N.; Oliveira, N.; Almeida, P. Total variation minimization filter for DBT imaging. Med. Phys. 2015, 42, 2827–2836. [Google Scholar] [CrossRef] [PubMed]
- Chambolle, A. An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 2004, 20, 89–97. [Google Scholar]
- Sawatzky, A.; Brune, C.; Müller, J.; Burger, M. Total variation processing of images with Poisson statistics. In Proceedings of the Computer Analysis of Images and Patterns: 13th International Conference, CAIP 2009, Münster, Germany, 2–4 September 2009; pp. 533–540. [Google Scholar]
- Tian, Z.; Jia, X.; Yuan, K.; Pan, T.; Jiang, S.B. Low-dose CT reconstruction via edge-preserving total variation regularization. Phys. Med. Biol. 2011, 56, 5949. [Google Scholar] [CrossRef] [Green Version]
- Ehrhardt, M.J.; Betcke, M.M. Multicontrast MRI reconstruction with structure-guided total variation. SIAM J. Imaging Sci. 2016, 9, 1084–1106. [Google Scholar] [CrossRef] [Green Version]
- Ertas, M.; Yildirim, I.; Kamasak, M.; Akan, A. Digital breast tomosynthesis image reconstruction using 2D and 3D total variation minimization. Biomed. Eng. Online 2013, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Seyyedi, S.; Yildirim, I. 3D digital breast tomosynthesis image reconstruction using anisotropic total variation minimization. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 6052–6055. [Google Scholar]
- Gomi, T.; Koibuchi, Y. Use of a total variation minimization iterative reconstruction algorithm to evaluate reduced projections during digital breast Tomosynthesis. BioMed Res. Int. 2018, 2018, 5239082. [Google Scholar] [CrossRef] [Green Version]
- Samei, E.; Bakalyar, D.; Boedeker, K.L.; Brady, S.; Fan, J.; Leng, S.; Myers, K.J.; Popescu, L.M.; Ramirez Giraldo, J.C.; Ranallo, F.; et al. Performance evaluation of computed tomography systems: Summary of AAPM Task Group 233. Med. Phys. 2019, 46, e735–e756. [Google Scholar] [CrossRef] [Green Version]
- Thanh, D.; Dvoenko, S. A method of total variation to remove the mixed Poisson-Gaussian noise. Pattern Recognit. Image Anal. 2016, 26, 285–293. [Google Scholar] [CrossRef]
Gammex 156 | Our Phantom | ||||
---|---|---|---|---|---|
kVp | Exposure (mAs) | Dose (mGy) | kVp | Exposure (mAs) | Dose (mGy) |
30 | 56 | 0.88 | 28 | 56 | 0.65 |
71 | 1.11 | 71 | 0.84 | ||
90 | 1.43 | 90 | 1.08 | ||
110 | 1.72 | 110 | 1.33 | ||
140 | 2.19 | 140 | 1.71 |
Gammex 156 | 2D TV | |||
---|---|---|---|---|
Dose (mGy) | Original | Filtered | var | |
0.88 | 156 | 8.59 × | 6.09 × | −29.2% |
1.11 | 149 | 7.73 × | 5.60 × | −27.6% |
1.43 | 166 | 7.20 × | 5.25 × | −27.0% |
1.72 | 230 | 6.50 × | 4.81 × | −25.9% |
2.19 | 286 | 6.41 × | 4.80 × | −25.1% |
Our Phantom | 2D TV | |||
---|---|---|---|---|
Dose (mGy) | Original | Filtered | var | |
0.65 | 143 | 9.06 × | 6.24 × | −31.2% |
0.84 | 155 | 8.39 × | 5.79 × | −30.9% |
1.08 | 164 | 7.95 × | 5.55 × | −30.2% |
1.33 | 175 | 7.57 × | 5.35 × | −29.4% |
1.71 | 199 | 6.96 × | 4.99 × | −28.2% |
Dose (mGy) | Designer Profile | Rectangular Profile | ||||||
---|---|---|---|---|---|---|---|---|
Ø 5.0 mm | Ø 3.0 mm | Ø 1.0 mm | Ø 0.5 mm | Ø 5.0 mm | Ø 3.0 mm | Ø 1.0 mm | Ø 0.5 mm | |
0.65 | 3.0% | 1.8% | 6.0% | 12.8% | 4.8% | 4.0% | 4.9% | 11.1% |
0.84 | 1.9% | 0.7% | 6.0% | 13.9% | 5.0% | 4.9% | 5.1% | 11.7% |
1.08 | 3.5% | 1.7% | 5.4% | 11.5% | 5.1% | 4.7% | 4.1% | 10.1% |
1.33 | 1.8% | 1.3% | 6.9% | 13.9% | 5.2% | 4.4% | 6.3% | 12.0% |
1.71 | −2.5% | −2.1% | 5.3% | 12.1% | 2.4% | 1.2% | 4.1% | 10.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mota, A.M.; Mendes, J.; Matela, N. Digital Breast Tomosynthesis: Towards Dose Reduction through Image Quality Improvement. J. Imaging 2023, 9, 119. https://doi.org/10.3390/jimaging9060119
Mota AM, Mendes J, Matela N. Digital Breast Tomosynthesis: Towards Dose Reduction through Image Quality Improvement. Journal of Imaging. 2023; 9(6):119. https://doi.org/10.3390/jimaging9060119
Chicago/Turabian StyleMota, Ana M., João Mendes, and Nuno Matela. 2023. "Digital Breast Tomosynthesis: Towards Dose Reduction through Image Quality Improvement" Journal of Imaging 9, no. 6: 119. https://doi.org/10.3390/jimaging9060119
APA StyleMota, A. M., Mendes, J., & Matela, N. (2023). Digital Breast Tomosynthesis: Towards Dose Reduction through Image Quality Improvement. Journal of Imaging, 9(6), 119. https://doi.org/10.3390/jimaging9060119