BotanicX-AI: Identification of Tomato Leaf Diseases Using an Explanation-Driven Deep-Learning Model
Abstract
:1. Introduction
- 1.
- An explainable driven deep-learning framework for TLD recognition is developed using transfer learning with EfficientNetB5. The framework is named “(BotanicX-AI)”.
- 2.
- GradCAM and LIME are utilized to provide explanation of the outcomes provided by the BotanicX-AI framework.
- 3.
2. Related Works
3. Materials and Methods
3.1. Dataset and Pre-Processing
3.2. Proposed Method
3.2.1. EfficientNetB5
3.2.2. Explainable AI
3.3. Implementation Details
4. Evaluation Metrics
5. Results and Discussion
5.1. Comparison with Existing Pre-Trained DL Models
5.2. Model Explanation with EfficientNetB5
5.3. Model Explanation with XAI
5.3.1. GradCAM
5.3.2. LIME
5.4. Comparison with the State-of-the-Art Methods
6. Independent Validation
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bock, C.; Parker, P.; Cook, A.; Gottwald, T. Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves. Plant Dis. 2008, 92, 530–541. [Google Scholar] [CrossRef] [Green Version]
- Khakimov, A.; Salakhutdinov, I.; Omolikov, A.; Utaganov, S. Traditional and current-prospective methods of agricultural plant diseases detection: A review. IOP Conf. Ser. Earth Environ. Sci. 2022, 951, 012002. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Bouguettaya, A.; Zarzour, H.; Kechida, A.; Taberkit, A.M. Deep learning techniques to classify agricultural crops through UAV imagery: A review. Neural Comput. Appl. 2022, 34, 9511–9536. [Google Scholar] [CrossRef]
- Rietra, R.; Heinen, M.; Oenema, O. A Review of Crop Husbandry and Soil Management Practices Using Meta-Analysis Studies: Towards Soil-Improving Cropping Systems. Land 2022, 11, 255. [Google Scholar] [CrossRef]
- Collinge, D.B.; Jensen, D.F.; Rabiey, M.; Sarrocco, S.; Shaw, M.W.; Shaw, R.H. Biological control of plant diseases–what has been achieved and what is the direction? Plant Pathol. 2022, 71, 1024–1047. [Google Scholar] [CrossRef]
- Elsakhawy, T.; Omara, A.E.D.; Abowaly, M.; El-Ramady, H.; Badgar, K.; Llanaj, X.; Törős, G.; Hajdú, P.; Prokisch, J. Green Synthesis of Nanoparticles by Mushrooms: A Crucial Dimension for Sustainable Soil Management. Sustainability 2022, 14, 4328. [Google Scholar] [CrossRef]
- Singh, A.; Goswami, S.; Vinutha, T.; Jain, R.; Ramesh, S.; Praveen, S. Retrotransposons-based genetic regulation underlies the cellular response to two genetically diverse viral infections in tomato. Physiol. Mol. Plant Pathol. 2022, 120, 101839. [Google Scholar] [CrossRef]
- Fidan, H.; Gonbadi, A.; Sarikaya, P.; Çaliş, Ö. Investigation of activity of Tobamovirus in pepper plants containing L4 resistance gene. Mediterr. Agric. Sci. 2022, 35, 83–90. [Google Scholar] [CrossRef]
- Kumar, M.S.; Ganesh, D.; Turukmane, A.V.; Batta, U.; Sayyadliyakat, K.K. Deep Convolution Neural Network Based solution for Detecting Plant Diseases. J. Pharm. Negat. Results 2022, 13, 464–471. [Google Scholar]
- Russel, N.S.; Selvaraj, A. Leaf species and disease classification using multiscale parallel deep CNN architecture. Neural Comput. Appl. 2022, 34, 19217–19237. [Google Scholar] [CrossRef]
- Trivedi, N.K.; Gautam, V.; Anand, A.; Aljahdali, H.M.; Villar, S.G.; Anand, D.; Goyal, N.; Kadry, S. Early Detection and Classification of Tomato Leaf Disease Using High-Performance Deep Neural Network. Sensors 2021, 21, 7987. [Google Scholar] [CrossRef] [PubMed]
- Munquad, S.; Si, T.; Mallik, S.; Das, A.B.; Zhao, Z. A Deep Learning–Based Framework for Supporting Clinical Diagnosis of Glioblastoma Subtypes. Front. Genet. 2022, 13, 855420. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, M.; Shahi, T.B.; Siku, B.; Neupane, A. Explanatory classification of CXR images into COVID-19, Pneumonia and Tuberculosis using deep learning and XAI. Comput. Biol. Med. 2022, 150, 106156. [Google Scholar] [CrossRef] [PubMed]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef] [Green Version]
- Kinger, S.; Kulkarni, V. Explainable ai for deep learning based disease detection. In Proceedings of the 2021 Thirteenth International Conference on Contemporary Computing (IC3-2021), Noida, India, 5–7 August 2021; pp. 209–216. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Wu, X.; Liu, R.; Yang, H.; Chen, Z. An Xception Based Convolutional Neural Network for Scene Image Classification with Transfer Learning. In Proceedings of the 2020 second International Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 18–20 December 2020; pp. 262–267. [Google Scholar] [CrossRef]
- Çinar, A.; Yildirim, M. Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture. Med. Hypotheses 2020, 139, 109684. [Google Scholar] [CrossRef]
- Nandhini, S.; Ashokkumar, K. An automatic plant leaf disease identification using DenseNet-121 architecture with a mutation-based henry gas solubility optimization algorithm. Neural Comput. Appl. 2022, 34, 5513–5534. [Google Scholar] [CrossRef]
- Bhandari, M.; Neupane, A.; Mallik, S.; Gaur, L.; Qin, H. Auguring Fake Face Images Using Dual Input Convolution Neural Network. J. Imaging 2023, 9, 3. [Google Scholar] [CrossRef]
- Masood, M.; Nawaz, M.; Malik, K.M.; Javed, A.; Irtaza, A.; Malik, H. Deepfakes Generation and Detection: State-of-the-art, open challenges, countermeasures, and way forward. Appl. Intell. 2022, 53, 3974–4026. [Google Scholar] [CrossRef]
- McAllister, E.; Payo, A.; Novellino, A.; Dolphin, T.; Medina-Lopez, E. Multispectral satellite imagery and machine learning for the extraction of shoreline indicators. Coast. Eng. 2022, 174, 104102. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Liu, G. Tomato pests recognition algorithm based on improved YOLOv4. Front. Plant Sci. 2022, 13, 1894. [Google Scholar] [CrossRef]
- Arco, J.E.; Ortiz, A.; Ramírez, J.; Martínez-Murcia, F.J.; Zhang, Y.D.; Górriz, J.M. Uncertainty-driven ensembles of multi-scale deep architectures for image classification. Inf. Fusion 2023, 89, 53–65. [Google Scholar] [CrossRef]
- Bhandari, M.; Parajuli, P.; Chapagain, P.; Gaur, L. Evaluating Performance of Adam Optimization by Proposing Energy Index. In Recent Trends in Image Processing and Pattern Recognition: Proceedings of the fourth International Conference, RTIP2R 2021, Msida, Malta, 8–10 December 2021; Santosh, K., Hegadi, R., Pal, U., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 156–168. [Google Scholar]
- Alsaiari, A.O.; Moustafa, E.B.; Alhumade, H.; Abulkhair, H.; Elsheikh, A. A coupled artificial neural network with artificial rabbits optimizer for predicting water productivity of different designs of solar stills. Adv. Eng. Softw. 2023, 175, 103315. [Google Scholar] [CrossRef]
- Shahi, T.B.; Sitaula, C. Natural language processing for Nepali text: A review. Artif. Intell. Rev. 2021, 55, 3401–3429. [Google Scholar] [CrossRef]
- Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; Neubig, G. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Comput. Surv. 2023, 55, 1–35. [Google Scholar] [CrossRef]
- Khanal, M.; Khadka, S.R.; Subedi, H.; Chaulagain, I.P.; Regmi, L.N.; Bhandari, M. Explaining the Factors Affecting Customer Satisfaction at the Fintech Firm F1 Soft by Using PCA and XAI. FinTech 2023, 2, 70–84. [Google Scholar] [CrossRef]
- Chapagain, P.; Timalsina, A.; Bhandari, M.; Chitrakar, R. Intrusion Detection Based on PCA with Improved K-Means. In Proceedings of the Innovations in Electrical and Electronic Engineering, New Delhi, India, 8–9 January 2022; Mekhilef, S., Shaw, R.N., Siano, P., Eds.; Springer: Singapore, 2022; pp. 13–27. [Google Scholar]
- Bhandari, M.; Panday, S.; Bhatta, C.P.; Panday, S.P. Image Steganography Approach Based Ant Colony Optimization with Triangular Chaotic Map. In Proceedings of the 2022 second International Conference on Innovative Practices in Technology and Management (ICIPTM), Pradesh, India, 23–25 February 2022; Volume 2, pp. 429–434. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mali, K. An overview of biomedical image analysis from the deep learning perspective. In Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention; IGI Global: Hershey, PA, USA, 2023; pp. 43–59. [Google Scholar]
- Lakshmanarao, A.; Babu, M.R.; Kiran, T.S.R. Plant Disease Prediction and classification using Deep Learning ConvNets. In Proceedings of the 2021 International Conference on Artificial Intelligence and Machine Vision (AIMV), Gandhinagar, India, 24–26 September 2021; pp. 1–6. [Google Scholar]
- Militante, S.V.; Gerardo, B.D.; Dionisio, N.V. Plant leaf detection and disease recognition using deep learning. In Proceedings of the 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 3–6 October 2019; pp. 579–582. [Google Scholar]
- Mattihalli, C.; Gedefaye, E.; Endalamaw, F.; Necho, A. Real time automation of agriculture land, by automatically detecting plant leaf diseases and auto medicine. In Proceedings of the 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA), Krakow, Poland, 16–18 May 2018; pp. 325–330. [Google Scholar]
- Pinto, L.A.; Mary, L.; Dass, S. The Real-Time Mobile Application for Identification of Diseases in Coffee Leaves using the CNN Model. In Proceedings of the 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 4–6 August 2021; pp. 1694–1700. [Google Scholar]
- Gaur, L.; Bhandari, M.; Shikhar, B.S.; Nz, J.; Shorfuzzaman, M.; Masud, M. Explanation-Driven HCI Model to Examine the Mini-Mental State for Alzheimer’s Disease. ACM Trans. Multimed. Comput. Commun. Appl. 2022. [Google Scholar] [CrossRef]
- Hughes, D.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv 2015, arXiv:1511.08060. [Google Scholar]
- Zhao, S.; Peng, Y.; Liu, J.; Wu, S. Tomato leaf disease diagnosis based on improved convolution neural network by attention module. Agriculture 2021, 11, 651. [Google Scholar] [CrossRef]
- Bhujel, A.; Kim, N.E.; Arulmozhi, E.; Basak, J.K.; Kim, H.T. A lightweight Attention-based convolutional neural networks for tomato leaf disease classification. Agriculture 2022, 12, 228. [Google Scholar] [CrossRef]
- Ozbılge, E.; Ulukok, M.K.; Toygar, O.; Ozbılge, E. Tomato Disease Recognition Using a Compact Convolutional Neural Network. IEEE Access 2022, 10, 77213–77224. [Google Scholar] [CrossRef]
- Guerrero-Ibañez, A.; Reyes-Muñoz, A. Monitoring Tomato Leaf Disease through Convolutional Neural Networks. Electronics 2023, 12, 229. [Google Scholar] [CrossRef]
- Suryawati, E.; Sustika, R.; Yuwana, R.; Subekti, A.; Pardede, H. Deep Structured Convolutional Neural Network for Tomato Diseases Detection. In Proceedings of the 2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Yogyakarta, Indonesia, 27–28 October 2018; pp. 385–390. [Google Scholar] [CrossRef]
- Hong, H.; Lin, J.; Huang, F. Tomato Disease Detection and Classification by Deep Learning. In Proceedings of the 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Fuzhou, China, 12–14 June 2020; pp. 25–29. [Google Scholar] [CrossRef]
- Vijay, N. Detection of Plant Diseases in Tomato Leaves: With Focus on Providing Explainability and Evaluating User Trust. Master’s Thesis, University of Skövde, Skövde, Sweden, September 2021. [Google Scholar]
- Noyan, M.A. Uncovering bias in the PlantVillage dataset. arXiv 2022, arXiv:2206.04374. [Google Scholar]
- Mzoughi, O.; Yahiaoui, I. Deep learning-based segmentation for disease identification. Ecol. Inform. 2023, 75, 102000. [Google Scholar] [CrossRef]
- Kaur, P.; Harnal, S.; Tiwari, R.; Upadhyay, S.; Bhatia, S.; Mashat, A.; Alabdali, A.M. Recognition of leaf disease using hybrid convolutional neural network by applying feature reduction. Sensors 2022, 22, 575. [Google Scholar] [CrossRef] [PubMed]
- Kaustubh, B. Tomato Leaf Disease Detection. Available online: https://www.kaggle.com/datasets/kaustubhb999/tomatoleaf (accessed on 3 July 2022).
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Sitaula, C.; Shahi, T.B. Monkeypox virus detection using pre-trained deep learning-based approaches. J. Med Syst. 2022, 46, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chollet, F. Keras. Available online: https://github.com/fchollet/keras (accessed on 3 July 2022).
- Van der Velden, B.; Kuijf, H.; Gilhuijs, K.; Viergever, M. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 2022, 79, 102470. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Carneiro, T.; Da NóBrega, R.V.M.; Nepomuceno, T.; Bian, G.B.; De Albuquerque, V.H.C.; Filho, P.P.R. Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications. IEEE Access 2018, 6, 61677–61685. [Google Scholar] [CrossRef]
- Shahi, T.B.; Sitaula, C.; Neupane, A.; Guo, W. Fruit classification using attention-based MobileNetV2 for industrial applications. PLoS ONE 2022, 17, e0264586. [Google Scholar] [CrossRef] [PubMed]
- Khan, Q. Tomato Disease Multiple Sources. Available online: https://www.kaggle.com/datasets/cookiefinder/tomato-disease-multiple-sources (accessed on 3 July 2022).
Layer (Type) | Output Shape | Param. # |
---|---|---|
efficientnetb5 (Functional) | (None, 2048) | 28,513,527 |
batch_normalization (BatchNormalization) | (None, 2048) | 8192 |
dense (Dense) | (None, 256) | 524,544 |
dropout (Dropout) | (None, 256) | 0 |
dense (Dense) | (None, 10) | 2570 |
Total parameters: 29,048,833 | ||
Trainable parameters: 28,871,994 | ||
Non-trainable parameters: 176,839 |
DL Model | TA | TL | VA | VL | TsA | TsL |
---|---|---|---|---|---|---|
MobileNet | 99.90 | 0.1957 | 96.10 | 0.2871 | 94.00 | 0.9012 |
Xception | 99.90 | 0.1836 | 97.70 | 0.3494 | 95.32 | 0.3921 |
VGG16 | 83.20 | 1.0951 | 79.10 | 1.1589 | 93.35 | 2.39 |
ResNet50 | 99.95 | 0.2204 | 97.80 | 0.2702 | 96.03 | 0.3569 |
DenseNet121 | 99.90 | 0.2235 | 96.80 | 0.2972 | 96.30 | 0.3038 |
This work (EfficientNetB5) | 99.84 | 0.18 | 99.07 | 0.24 | 99.07 | 0.20 |
TA | TL | VA | VL | TsA | TsL | |
---|---|---|---|---|---|---|
K1 | 99.85 | 0.1842 | 98.00 | 0.2263 | 99.10 | 0.1980 |
K2 | 99.95 | 0.1851 | 97.90 | 0.2392 | 99.20 | 0.1874 |
K3 | 99.82 | 0.1738 | 98.34 | 0.2195 | 99.21 | 0.1890 |
K4 | 99.90 | 0.1900 | 98.50 | 0.2830 | 98.30 | 0.2630 |
K5 | 99.85 | 0.1865 | 98.60 | 0.2515 | 99.70 | 0.2497 |
K6 | 99.85 | 0.1981 | 98.40 | 0.2593 | 99.10 | 0.2180 |
K7 | 99.90 | 0.1331 | 98.20 | 0.2480 | 98.90 | 0.1914 |
K8 | 99.70 | 0.1567 | 98.30 | 0.2131 | 98.65 | 0.1856 |
K9 | 99.60 | 0.2011 | 98.37 | 0.2211 | 99.10 | 0.1760 |
K10 | 99.95 | 0.1883 | 98.20 | 0.2187 | 99.50 | 0.1754 |
99.84 ± 0.10 | 0.18 ± 0.01 | 98.28 ± 0.20 | 0.24 ± 0.02 | 99.07 ± 0.38 | 0.20 ± 0.03 |
Precision | Recall | F1-Score | |
---|---|---|---|
Bacterial spot | 0.9900 | 0.9900 | 0.9900 |
Early blight | 0.9901 | 1.0000 | 0.9950 |
Late blight | 1.0000 | 0.9900 | 0.9950 |
Leaf mold | 1.0000 | 0.9900 | 0.9950 |
Septoria leaf spot | 1.0000 | 1.0000 | 1.0000 |
Spider mite | 1.0000 | 0.9900 | 0.9901 |
Target spot | 0.9804 | 1.0000 | 0.9901 |
Yellow curl virus | 1.0000 | 0.9900 | 0.9950 |
Mosaic virus | 1.0000 | 1.0000 | 1.0000 |
Healthy | 0.9901 | 1.00 | 0.9955 |
Accuracy | 0.9950 | ||
Macro Avg | 0.9951 | 0.9950 | 0.9950 |
Weighted Avg | 0.9951 | 0.9950 | 0.9950 |
Category | Leaf | GradCAM | LIME |
---|---|---|---|
Bacterial spot | |||
Early blight | |||
Late blight | |||
Leaf mold | |||
Septoria spot | |||
Spider mite | |||
Target spot | |||
Yellow leaf | |||
Mosaic virus |
Ref. | Method | Accuracy (%) | XAI |
---|---|---|---|
[41] | CNN with attention module | 99.24 | No |
[50] | EfficientNet B7 | 98.7% | No |
[45] | Alexnet, GoogleNet, and VGGNet | 91.52%, 89.68%, and 95.25% | No |
[43] | Compact-CNN | 99.70% | GradCAM |
[12] | Deep-CNN | 98.49% | No |
[46] | Densenet Xception | 97.10% | No |
[47] | XAI-CNN | 98.5% | LIME |
This work | EfficientNetB5 | 99.84% ± 0.10% | GradCAM, LIME |
Image | Predicted Probability | GradCAM |
---|---|---|
Bacterial spot (80.56%) | ||
Early blight (90.26%) | ||
Late blight (91.60%) | ||
Leaf mold (93.42%) | ||
Septoria leaf spot (90.35%) | ||
Spider mite (88.41%) | ||
Target spot (96.87%) | ||
Yellow leaf (87.58%) | ||
Mosaic virus (85.33%) | ||
Healthy leaf (95.19%) |
Class | Accuracy |
---|---|
BS | 100% |
EB | 100% |
LB | 100% |
LM | 80% |
SP | 100% |
SM | 80% |
TS | 100% |
YV | 100% |
MV | 100% |
HL | 100% |
Average | 96% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhandari, M.; Shahi, T.B.; Neupane, A.; Walsh, K.B. BotanicX-AI: Identification of Tomato Leaf Diseases Using an Explanation-Driven Deep-Learning Model. J. Imaging 2023, 9, 53. https://doi.org/10.3390/jimaging9020053
Bhandari M, Shahi TB, Neupane A, Walsh KB. BotanicX-AI: Identification of Tomato Leaf Diseases Using an Explanation-Driven Deep-Learning Model. Journal of Imaging. 2023; 9(2):53. https://doi.org/10.3390/jimaging9020053
Chicago/Turabian StyleBhandari, Mohan, Tej Bahadur Shahi, Arjun Neupane, and Kerry Brian Walsh. 2023. "BotanicX-AI: Identification of Tomato Leaf Diseases Using an Explanation-Driven Deep-Learning Model" Journal of Imaging 9, no. 2: 53. https://doi.org/10.3390/jimaging9020053
APA StyleBhandari, M., Shahi, T. B., Neupane, A., & Walsh, K. B. (2023). BotanicX-AI: Identification of Tomato Leaf Diseases Using an Explanation-Driven Deep-Learning Model. Journal of Imaging, 9(2), 53. https://doi.org/10.3390/jimaging9020053