Stratigraphy of Fresco Paintings: A New Approach with Photoacoustic and SORS Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.1.1. Real Samples of Fresco
2.1.2. Mock Up Samples of Fresco Paint
2.2. PA Imaging Setup
2.3. Cross-Section SEM Images
2.4. Raman Spectroscopy and SORS
3. Results
3.1. Frescoes from San Giuseppe Church
3.2. PA and SORS on Fresco Mock-Ups: Comparing Limits and Applicability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.; Chen, Y.-S.; Luke, G.P.; Emelianov, S.Y. In vivo three-dimensional spectroscopic photoacoustic imaging for monitoring nanoparticle delivery. Biomed. Opt. Express 2011, 2, 2540–2550. [Google Scholar] [CrossRef] [PubMed]
- Mallidi, S.; Larson, T.; Tam, J.; Joshi, P.P.; Karpiouk, A.; Sokolov, K.; Emelianov, S. Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett. 2009, 9, 2825–2831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, J.; Li, R.; Phillips, E.H.; Goergen, C.J.; Sturek, M.; Cheng, J.X. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves. Photoacoustics 2016, 15, 12277–12285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manohar, S.; Vaartjes, S.E.; van Hespen, J.C.G.; Klaase, J.M.; van den Engh, F.M.; Steenbergen, W.; van Leeuwen, T.G. Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt. Express 2007, 43, 7132–7170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, L.; Chen, X. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem. Soc. Rev. 2014, 43, 7132–7170. [Google Scholar] [CrossRef]
- Dal Fovo, A.; Tserevelakis, G.J.; Klironomou, E.; Zacharakis, G.; Fontana, R. First combined application of photoacoustic and optical techniques to the study of an historical oil painting. Eur. Phys. J. Plus 2021, 136, 757. [Google Scholar] [CrossRef]
- Tserevelakis, G.J.; Chaban, A.; Klironomou, E.; Melessanaki, K.; Striova, J.; Zacharakis, G. Revealing hidden features in multilayered artworks by means of an epi-illumination photoacoustic imaging system. J. Imaging 2021, 7, 183. [Google Scholar] [CrossRef]
- Tserevelakis, G.J.; Vrouvaki, I.; Siozos, P.; Melessanaki, K.; Hatzigiannakis, K.; Fotakis, C.; Zacharakis, G. Photoacoustic imaging reveals hidden underdrawings in paintings. Sci. Rep. 2017, 7, 747. [Google Scholar] [CrossRef] [Green Version]
- Tserevelakis, G.J.; Siozos, P.; Papanikolaou, A.; Melessanaki, K.; Zacharakis, G. Non-invasive photoacoustic detection of hidden underdrawings in paintings using air-coupled transducers. Ultrasonics 2019, 98, 94–98. [Google Scholar] [CrossRef]
- Tserevelakis, G.J.; Tsagkaraki, M.; Siozos, P.; Zacharakis, G. Uncovering the hidden content of layered documents by means of photoacoustic imaging. Strain 2019, 55, e12289. [Google Scholar] [CrossRef]
- Tserevelakis, G.J.; Pozo-Antonio, J.S.; Siozos, P.; Rivas, T.; Pouli, P.; Zacharakis, G. On-line photoacoustic monitoring of laser cleaning on stone: Evaluation of cleaning effectiveness and detection of potential damage to the substrate. J. Cult. Herit. 2019, 35, 108–115. [Google Scholar] [CrossRef]
- Papanikolaou, A.; Tserevelakis, G.J.; Melessanaki, K.; Fotakis, C.; Zacharakis, G.; Pouli, P. Development of a hybrid photoacoustic and optical monitoring system for the study of laser ablation processes upon the removal of encrustation from stonework. Opto Electron. Adv. 2020, 3, 190037. [Google Scholar] [CrossRef]
- Adam, A.J.L.; Planken, P.C.M.; Meloni, S.; Dik, J. TeraHertz imaging of hidden paint layers on canvas. Opt. Express 2009, 17, 3407–3416. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Hewitt, T.D.; Zhang, X.C. Two-dimensional electro-optic imaging of THz beams. Appl. Phys. Lett. 1996, 69, 1026–1028. [Google Scholar] [CrossRef]
- Redo-Sanchez, A.; Heshmat, B.; Aghasi, A.; Naqvi, S.; Zhang, M.; Romberg, J.; Raskar, R. Terahertz time-gated spectral imaging for content extraction through layered structures. Nat. Commun. 2016, 7, 12665. [Google Scholar] [CrossRef] [Green Version]
- Filippidis, G.; Massaouti, M.; Selimis, A.; Gualda, E.J.; Manceau, J.M.; Tzortzakis, S. Nonlinear imaging and THz diagnostic tools in the service of cultural heritage. Appl. Phys. A Mater. Sci. Process. 2012, 106, 257–263. [Google Scholar] [CrossRef]
- Liang, H.; Cid, M.G.; Cucu, R.G.; Dobre, G.M.; Podoleanu, A.G.; Pedro, J.; Saunders, D. En-face optical coherence tomography—A novel application of non-invasive imaging to art conservation. Opt. Express 2005, 13, 6133–6144. [Google Scholar] [CrossRef]
- Targowski, P.; Iwanicka, M. Optical coherence tomography: Its role in the non-invasive structural examination and conservation of cultural heritage objects—A review. Appl. Phys. A Mater. Sci. Process. 2012, 106, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Dal Fovo, A.; Sanz, M.; Mattana, S.; Oujja, M.; Marchetti, M.; Pavone, F.S.; Cicchi, R.; Fontana, R.; Castillejo, M. Safe limits for the application of nonlinear optical microscopies to cultural heritage: A new method for in-situ assessment. Microchem. J. 2020, 154, 104568. [Google Scholar] [CrossRef]
- Villafana, T.E.; Brown, W.P.; Delaney, J.K.; Palmer, M.; Warren, W.S.; Fischer, M.C. Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork. Proc. Natl. Acad. Sci. USA 2014, 111, 1708–1713. [Google Scholar] [CrossRef]
- Oujja, M.; Agua, F.; Sanz, M.; Morales-Martin, D.; García-Heras, M.; Villegas, M.A.; Castillejo, M. Multiphoton Excitation Fluorescence Microscopy and Spectroscopic Multianalytical Approach for Characterization of Historical Glass Grisailles. Talanta 2021, 230, 122314. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-I.; Wang, L.V. Biomedical Optics: Principles and Imaging—Wang; Wiley Online Library: Hoboken, NJ, USA, 2007; Volume 46, pp. 476–482. [Google Scholar]
- Wang, Y.; Wang, L.V. Förster resonance energy transfer photoacoustic microscopy. J. Biomed. Opt. 2012, 17, 086007. [Google Scholar] [CrossRef] [PubMed]
- Conti, C.; Colombo, C.; Realini, M.; Matousek, P. Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset Raman spectroscopy (micro-SORS). J. Raman Spectrosc. 2015, 46, 476–482. [Google Scholar] [CrossRef]
- Botteon, A.; Colombo, C.; Realini, M.; Bracci, S.; Magrini, D.; Matousek, P.; Conti, C. Exploring street art paintings by microspatially offset Raman spectroscopy. J. Raman Spectrosc. 2018, 46, 476–482. [Google Scholar] [CrossRef]
- Gierlinger, N.; Schwanninger, M. The potential of Raman microscopy and Raman imaging in plant research. Spectroscopy 2007, 21, 69–89. [Google Scholar] [CrossRef] [Green Version]
- Chiriu, D.; Desogus, G.; Pisu, F.A.; Fiorino, D.R.; Grillo, S.M.; Ricci, P.C.; Carbonaro, C.M. Beyond the surface: Raman micro-SORS for in depth non-destructive analysis of fresco layers. Microchem. J. 2020, 153, 104404. [Google Scholar] [CrossRef]
- Conti, C.; Botteon, A.; Colombo, C.; Realini, M.; Matousek, P.; Vandenabeele, P.; Laforce, B.; Vekemans, B.; Vincze, L. Contrasting confocal XRF with micro-SORS: A deep view within micrometric painted stratigraphy. Anal. Methods 2018, 10, 3837–3844. [Google Scholar] [CrossRef]
- Piovesan, R.; Mazzoli, C.; Maritan, L.; Cornale, P. Fresco and lime-paint: An experimental study and objective criteria for distinguishing between these painting techniques. Archaeometry 2012, 54, 723–736. [Google Scholar] [CrossRef]
- Regazzoni, L.; Cavallo, G.; Biondelli, D.; Gilardi, J. Microscopic Analysis of Wall Painting Techniques: Laboratory Replicas and Romanesque Case Studies in Southern Switzerland. Stud. Conserv. 2018, 63, 326–341. [Google Scholar] [CrossRef]
- Cavallo, G.; Vergani, R.C.; Gianola, L.; Meregalli, A. Archaeological, stylistic and scientific research on 11th–13th century ad painted fragments from the san giovanni battista church in cevio (Switzerland). Archaeometry 2012, 54, 294–310. [Google Scholar] [CrossRef]
- Chiriu, D.; Ricci, P.C.; Scattini, M.; Polcaro, A.; D’Andrea, M.; Richard, S.; Qader, A.A.; Carbonaro, C.M. Portable NIR Raman microspectroscopy investigation on Early Bronze IV pottery (2500–1950 BCE) from Khirbat Iskandar, Jordan. Vib. Spectrosc. 2018, 97, 8–15. [Google Scholar] [CrossRef]
- Pawlyta, M.; Rouzaud, J.N.; Duber, S. Raman microspectroscopy characterization of carbon blacks: Spectral analysis and structural information. Carbon 2015, 84, 479–490. [Google Scholar] [CrossRef]
- Buzgar, N.; Apopei, A.I. The Raman study of certain carbonates. Anal. Şt. Univ. “Al. I. Cuza” Iaşi, Geol. 2009, 2, 97–112. [Google Scholar]
- Rutt, H.N.; Nicola, J.H. Raman spectra of carbonates of calcite structure. J. Phys. C Solid State Phys. 1974, 7, 4522–4528. [Google Scholar] [CrossRef]
- Marcaida, I.; Maguregui, M.; Morillas, H.; Prieto-Taboada, N.; Veneranda, M.; Fdez-Ortiz de Vallejuelo, S.; Martellone, A.; Nigris, B.; Osanna, M.; Madariaga, J.M. In situ non-invasive multianalytical methodology to characterize mosaic tesserae from the House of Gilded Cupids, Pompeii. Herit. Sci. 2019, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Chamritski, I.; Burns, G. Infrared—And raman-active phonons of magnetite, maghemite, and hematite: A computer simulation and spectroscopic study. J. Phys. Chem. B 2005, 109, 4965–4968. [Google Scholar] [CrossRef]
- Antunes, V.; Candeias, A.; Oliveira, M.J.; Longelin, S.; Serrão, V.; Seruya, A.I.; Coroado, J.; Dias, L.; Mirão, J.; Carvalho, M.L. Characterization of gypsum and anhydrite ground layers in 15th and 16th centuries Portuguese paintings by Raman Spectroscopy and other techniques. J. Raman Spectrosc. 2014, 45, 1026–1033. [Google Scholar] [CrossRef]
- Berenblut, B.J.; Dawson, P.; Wilkinson, G.R. A comparison of the Raman spectra of anhydrite (CaSO4) and gypsum (CaSO4).2H2O). Spectrochim. Acta Part A Mol. Spectrosc. 1973, 29, 29–36. [Google Scholar] [CrossRef]
- Pisu, F.A.; Chiriu, D.; Ricci, P.C.; Carbonaro, C.M. Defect Related Emission in Calcium Hydroxide: The Controversial Band at 780 cm−1. Crystals 2020, 10, 266. [Google Scholar] [CrossRef]
Fresco Fragments from San Giuseppe Church | |||
---|---|---|---|
Sample | Substratum | Painted Region or Line | N° of Layers |
F.01 | Mortar, calcium hydroxide | L1 | 3 layers |
L2 | 2 layers | ||
L3 | 2 layers | ||
F.02 | Mortar, calcium hydroxide | L4 | 1 layer |
F.03 | Mortar, calcium hydroxide | L5 | 3 layers (same composition of L1) |
Fresco Mock-ups | |||
Sample | Substratum | Painted Area or Line | N° of Layers |
M.02 | Lime, sand, calcium hydroxide | Total area | 1 layer: lapis lazuli |
M.07 | Lime, sand, calcium hydroxide | Total area | 1 layer: cadmium orange (CdSeS) |
V.02 | Compact earthenware | Area 1 | 3 layers: graphite, cadmium yellow (CdS) and ochre |
Area 2 | 2 layers: graphite, cadmium yellow | ||
Area 3 | 1 layer: graphite | ||
V.03 | Compact earthenware | Area 1 | 2 layers: ochre and cadmium yellow |
Area 2 | 2 layers: ochre and cadmium orange | ||
Area 3 | 1 layer: ochre (between yellow and orange) |
SEM analysis | |||||
L1 | L3 | L4 | |||
1st layer [] | 2nd layer [] | 3rd layer [] | 1st layer [] | 2nd layer [] | 1st layer [] |
PA analysis | |||||
L1 | L3 | L4 | |||
1st layer [] | 2nd layer [] | 3rd layer [] | 1st layer [] | 2nd layer [] | 1st layer [] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisu, F.A.; Chiriu, D.; Klironomou, E.; Zacharakis, G.; Tserevelakis, G.J. Stratigraphy of Fresco Paintings: A New Approach with Photoacoustic and SORS Imaging. J. Imaging 2023, 9, 16. https://doi.org/10.3390/jimaging9010016
Pisu FA, Chiriu D, Klironomou E, Zacharakis G, Tserevelakis GJ. Stratigraphy of Fresco Paintings: A New Approach with Photoacoustic and SORS Imaging. Journal of Imaging. 2023; 9(1):16. https://doi.org/10.3390/jimaging9010016
Chicago/Turabian StylePisu, Francesca A., Daniele Chiriu, Evgenia Klironomou, Giannis Zacharakis, and George J. Tserevelakis. 2023. "Stratigraphy of Fresco Paintings: A New Approach with Photoacoustic and SORS Imaging" Journal of Imaging 9, no. 1: 16. https://doi.org/10.3390/jimaging9010016
APA StylePisu, F. A., Chiriu, D., Klironomou, E., Zacharakis, G., & Tserevelakis, G. J. (2023). Stratigraphy of Fresco Paintings: A New Approach with Photoacoustic and SORS Imaging. Journal of Imaging, 9(1), 16. https://doi.org/10.3390/jimaging9010016