Literature Review on Artificial Intelligence Methods for Glaucoma Screening, Segmentation, and Classification
Abstract
:1. Introduction
2. Public Databases
- Availability of publicly accessible image sets, labeled by various experts, sufficient for use in DL methods;
- Clear separation between training and testing sets to increase reliability between training and testing data;
- Presence of diversity in the set of images, with variety meaning images captured by various devices involving patients of different ethnicities, and images captured in different conditions of lighting, contrast, noise, etc., in addition to having a preliminary diagnosis and including the segmentation of disc and cup manual reference.
- The combination of the other arrangements for DL problem solving and the indiscriminate variety of images from the three versions can lead to inconsistent results since different experts performed the segmentation;
- Since RIM-ONE was not initially designed for DL, a clear division of training and testing images was never established;
- Images were taken in different hospitals with different cameras, but only one camera was used in each version;
- Only the r3 version had the cup segmented manually, and the previous versions only had the optic disc segmented. The experts involved in manual segmentation were not the same in all cases.
3. Deep Learning Methods
- The ratio between the cupping and the total vertical or horizontal diameter of the papilla or cup-to-disc ratio (CDR) indicates the presence of glaucoma if it has high values;
- The ratio of the cup area to the papilla area, also called the cup-to-disc area ratio (CDAR);
- Inferior, superior, nasal, and temporal (ISNT) rule describes a feature of the healthy optic disc thicker in the inferior pole, followed by superior, nasal, and temporal ones. When this sequence is altered (in this order), either by a change in diameter or area, it can be an early sign of injury. Optical Disc Damage Probability Scale or Disc Damage Likelihood Scale (DDLS) is based on the probability of optic disc damage by comparing the neural rim diameter with the optic disc diameter and the shortest distance between the optical disc contour and excavation.
- Appearance or glaucoma screening (Section 3.1);
- The segmentation of the outer limits and measurement calculations of optic disc structures (Section 3.2);
- The segmentation of the outer limits of the optic disc and the excavation by detecting glaucomatous features of the papilla (Section 3.3);
- Identification of early forms of glaucoma by CNN through fiber layer defects (Section 5).
3.1. Glaucoma Screening
3.2. Segmentation of the Outer Limits and Measurement Calculations of Optic Disc Structures
3.3. Segmentation of the Outer Limits of the Optic Disc and the Excavation by Detecting Glaucomatous Features of the Papilla
4. Segmentation Methods
- Clustering algorithms: Segmentation is performed pixel by pixel, using information from readings through RGB and HSV color channels. These have the advantages of simplicity in terms of implementation and low requirements in terms of computational time; and, as disadvantages, problems in defining the best set of attributes, sensitivity to noise, initialization of centroids and which group represents each region. For example, the authors of [121] obtained an excavation F-Score of 97.50% in 59 images from the local Ophthalmological Hospital, DIARETDBo, and RIM-One-r1, whilst the authors of [122] obtained an excavation accuracy of 97.04%, evaluating the CDR in 209 images from the DRIHTI-GS and RIM-One-r3 databases. Among the main clustering algorithms are:
- K-Means: Unsupervised algorithm that divides images into parts based on a model created by averaging each piece. Its disadvantage is its sensitivity to inconsistent values, noise, and initial centroids;
- Fuzzy K-Means: Unsupervised algorithm often used in medical images based on the mean of each group which groups similar data values using fuzzy logic to calculate this similarity. It has the advantage of being efficient in the segmentation of images with noise.
- Superpixel: Based on partitioning the image into multiple pixel clusters and analyzing the image to be examined by regions, it has the advantage of less interference from image noise and the disadvantage of a pre-processing step with the risk of data loss related to the image edge. The best results were obtained by [123] using CDR and ISNT evaluation metrics in 101 DRISHT images with a cupping accuracy of 98.42% and an optic disc accuracy of 97.23%;
- Active contour: The detection and imaging using curved evolution techniques can represent the curve as it allows a topology change. The disadvantage is that any change in the initial curve and the object to be detected modifies the result, making the method extremely sensitive to initialization. The best results were obtained by [124], who obtained an accuracy of 99.22% with the advantage of allowing the segmentation of the optic disc regions and the cup using low-quality images;
- Mathematical morphology: The image is improved through morphological operations, including dilation, erosion, opening, and closing. It has the advantage of the simplicity of its implementation and the disadvantage of choosing the right structural element to transform intellectual intuition into practical application. The authors of [125] obtained excellent results in detecting glaucoma with 96% correct answers in the CDR and ISNT ratios.
- Convolutional neural network: The use of neural networks to recognize and classify images and videos requires less pre-processing to homogenize optical disc images in terms of image quality, brightness, and contrast. Moreover, the same network can recognize patterns with different photos of different objects compared to other methods. For example, the authors of [126] obtained an F-score of 83.5% for the excavation, 94.5% for the optic disc, 72% for the excavation overlay, and 89% for the optic disk overlay—evaluating 319 images with F-Score evaluation metrics and overlay on DRIONS-DB, DRISHTI-GS, and RIM-ONEv3. In [127], it was verified that convolutional neural networks have been gaining ground and proving to be a powerful tool for segmentation, emphasizing that a large set of images is needed to train these networks.
5. Classification Methods
6. Discussion
- The need for continuous learning with the help of systems so that models can improve;
- Potential forgetfulness when updating models;
- The high dependence on data quality, as different image services containing other noises can affect different image protocols and influence models and performance;
- Incorrect results arising from learning the network with multi-referential training data, that is, with biased characteristics pointed out by several experts;
- Possibility of adding other factors such as visual acuity, refractometry, presence of familial glaucoma, ocular history (e.g., genetic and degenerative diseases of the anterior segment, cataracts, and choroidal diseases), and systemic factors (e.g., glycemic control, and diabetic vascular diseases), and other comorbidities that current algorithms may not incorporate, the severity of the illness, and the urgency of the referral;
- Particular (individual) image-processing techniques are required according to the severity of the disease;
- Errors inherent in training networks with only one type of image, for example, images with a slightly temporal optic disc, cause the network to incorrectly learn to associate the temporal location of the disc with the presence of the disease;
- Existing datasets are still insufficient and should contain a more significant number of images with normal anatomical variations of the papillary region;
- Population characteristics and phenotypes should be considered when input data are selected. DL architectures are based on training data from different databases. There is a lack of more robust studies that consider individual clinical particularities to classify into disease and non-disease, in addition to these databases requiring permanent data updating.
- The lack of availability of large datasets is a problem because the model learns from large amounts of data. The model proposed by [155] may be an essential solution to this problem, but little effort has been made to synthesize new annotated background images and adequate clinical relevance. The generative contradictory network of automatic variational encoders is a trendy architecture for imaging. Their application can generate large amounts of clinically relevant synthetic data that will help increase the amount of data and prevent issues of data privacy.
- Due to differences in camera configurations, in most literature, training data come from the same image distribution, which does not occur in real life. Transfer learning has been used for different applications in this area as well as subdomain adaptation (a subdomain of transfer learning), where data for training and testing are extracted from other distributions. However, it is not always possible to obtain data from training and testing the same distribution in the real world. Therefore, the model must be robust to test data from a different distribution. Accuracy often decreases due to this domain-shifting problem, and more emphasis should be placed on in-depth domain adaptation approaches to create robust models that can be implemented for real-world ophthalmological diagnosis.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaw, B.; Han, J.; Hawkins, R.; Stewart, J.; Mctavish, F.; Gustafson, D. Doctor–Patient Relationship as Motivation and Outcome: Examining Uses of an Interactive Cancer Communication System. Int. J. Med. Inform. 2007, 76, 274–282. [Google Scholar] [CrossRef]
- Moreira, M.W.L.; Rodrigues, J.J.P.C.; Korotaev, V.; Al-Muhtadi, J.; Kumar, N. A Comprehensive Review on Smart Decision Support Systems for Health Care. IEEE Syst. J. 2019, 13, 3536–3545. [Google Scholar] [CrossRef]
- Qi, J.; Yang, P.; Min, G.; Amft, O.; Dong, F.; Xu, L. Advanced Internet of Things for Personalised Healthcare Systems: A Survey. Pervasive Mob. Comput. 2017, 41, 132–149. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial Intelligence in Healthcare: Past, Present and Future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef]
- Lopes, H.; Pires, I.M.; Sánchez San Blas, H.; García-Ovejero, R.; Leithardt, V. PriADA: Management and Adaptation of Information Based on Data Privacy in Public Environments. Computers 2020, 9, 77. [Google Scholar] [CrossRef]
- Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big Data in Healthcare: Management, Analysis and Future Prospects. J. Big Data 2019, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ding, S.; Xu, Z.; Zheng, H.; Yang, S. Blockchain-Based Medical Records Secure Storage and Medical Service Framework. J. Med. Syst 2019, 43, 5. [Google Scholar] [CrossRef]
- Aceto, G.; Persico, V.; Pescapé, A. Industry 4.0 and Health: Internet of Things, Big Data, and Cloud Computing for Healthcare 4.0. J. Ind. Inf. Integr. 2020, 18, 100129. [Google Scholar] [CrossRef]
- Verri Lucca, A.; Augusto Silva, L.; Luchtenberg, R.; Garcez, L.; Mao, X.; García Ovejero, R.; Miguel Pires, I.; Luis Victória Barbosa, J.; Reis Quietinho Leithardt, V. A Case Study on the Development of a Data Privacy Management Solution Based on Patient Information. Sensors 2020, 20, 6030. [Google Scholar] [CrossRef]
- Kurtulmus, A.; Elbay, A.; Parlakkaya, F.B.; Kilicarslan, T.; Ozdemir, M.H.; Kirpinar, I. An Investigation of Retinal Layer Thicknesses in Unaffected First-Degree Relatives of Schizophrenia Patients. Schizophr. Res. 2020, 218, 255–261. [Google Scholar] [CrossRef]
- O’Brien, J.M.; Salowe, R.J.; Fertig, R.; Salinas, J.; Pistilli, M.; Sankar, P.S.; Miller-Ellis, E.; Lehman, A.; Murphy, W.H.A.; Homsher, M.; et al. Family History in the Primary Open-Angle African American Glaucoma Genetics Study Cohort. Am. J. Ophthalmol. 2018, 192, 239–247. [Google Scholar] [CrossRef] [Green Version]
- McMonnies, C.W. Glaucoma History and Risk Factors. J. Optom. 2017, 10, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Misajon, R.; Hawthorne, G.; Richardson, J.; Barton, J.; Peacock, S.; Iezzi, A.; Keeffe, J. Vision and Quality of Life: The Development of a Utility Measure. Investig. Ophthalmol. Vis. Sci. 2005, 46, 4007. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.; Khawaja, A.P.; Pasquale, L.R.; Stein, J.D. A Review of Systemic Medications That May Modulate the Risk of Glaucoma. Eye 2020, 34, 12–28. [Google Scholar] [CrossRef]
- Balendra, S.I.; Zollet, P.; Cisa Asinari Di Gresy E Casasca, G.; Cordeiro, M.F. Personalized Approaches for the Management of Glaucoma. Expert Rev. Precis. Med. Drug Dev. 2020, 5, 145–164. [Google Scholar] [CrossRef]
- Mason, L.; Jafri, S.; Dortonne, I.; Sheppard, J.D. Emerging Therapies for Dry Eye Disease. Expert Opin. Emerg. Drugs 2021, 26, 401–413. [Google Scholar] [CrossRef]
- Muniesa, M.J.; Ezpeleta, J.; Benítez, I. Fluctuations of the Intraocular Pressure in Medically Versus Surgically Treated Glaucoma Patients by a Contact Lens Sensor. Am. J. Ophthalmol. 2019, 203, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jabbehdari, S.; Chen, J.L.; Vajaranant, T.S. Effect of Dietary Modification and Antioxidant Supplementation on Intraocular Pressure and Open-Angle Glaucoma. Eur. J. Ophthalmol. 2021, 31, 1588–1605. [Google Scholar] [CrossRef]
- Sharif, N. Glaucomatous Optic Neuropathy Treatment Options: The Promise of Novel Therapeutics, Techniques and Tools to Help Preserve Vision. Neural Regen. Res. 2018, 13, 1145. [Google Scholar] [CrossRef]
- Demer, J.L.; Clark, R.A.; Suh, S.Y.; Giaconi, J.A.; Nouri-Mahdavi, K.; Law, S.K.; Bonelli, L.; Coleman, A.L.; Caprioli, J. Optic Nerve Traction During Adduction in Open Angle Glaucoma with Normal versus Elevated Intraocular Pressure. Curr. Eye Res. 2020, 45, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xiong, Y.; Huang, W.; Xu, C.; Miao, F. SieveDroid: Intercepting Undesirable Private-Data Transmissions in Android Applications. IEEE Syst. J. 2020, 14, 375–386. [Google Scholar] [CrossRef]
- Chanal, P.M.; Kakkasageri, M.S. Security and Privacy in IoT: A Survey. Wirel. Pers. Commun. 2020. [Google Scholar] [CrossRef]
- Yang, P.; Xiong, N.; Ren, J. Data Security and Privacy Protection for Cloud Storage: A Survey. IEEE Access 2020, 8, 131723–131740. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Zhang, X.; Khosravi, M.R.; Sharma, S.; Pang, S.; Wang, T. Privacy-Aware Data Fusion and Prediction with Spatial-Temporal Context for Smart City Industrial Environment. IEEE Trans. Ind. Inf. 2020, 17, 4159–4167. [Google Scholar] [CrossRef]
- Vermeulen, A.F. Unsupervised Learning: Deep Learning. In Industrial Machine Learning; Apress: Berkeley, CA, USA, 2020; pp. 225–241. ISBN 978-1-4842-5315-1. [Google Scholar]
- Foote, K.D. A Brief History of Deep Learning. DATAVERSITY. Available online: https://www.dataversity.net/brief-history-deep-learning (accessed on 7 December 2021).
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Processing Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Song, C.; Yang, B.; Zhang, L.; Wu, D. A Handheld Device for Measuring the Diameter at Breast Height of Individual Trees Using Laser Ranging and Deep-Learning Based Image Recognition. Plant Methods 2021, 17, 67. [Google Scholar] [CrossRef]
- Bock, R.; Meier, J.; Michelson, G.; Nyúl, L.G.; Hornegger, J. Classifying Glaucoma with Image-Based Features from Fundus Photographs. In Joint Pattern Recognition Symposium; Springer: Berlin/Heidelberg, Germany, 2007; pp. 355–364. [Google Scholar]
- Cuesta-Vargas, A.I.; Pajares, B.; Trinidad-Fernandez, M.; Alba, E.; Roldan-Jiménez, C. Inertial Sensors Embedded in Smartphones as a Tool for Fatigue Assessment Based on Acceleration in Survivors of Breast Cancer. Phys. Ther. 2020, 100, 447–456. [Google Scholar] [CrossRef]
- Chai, Y.; Liu, H.; Xu, J. Glaucoma Diagnosis Based on Both Hidden Features and Domain Knowledge through Deep Learning Models. Knowl. -Based Syst. 2018, 161, 147–156. [Google Scholar] [CrossRef]
- Raghavendra, U.; Fujita, H.; Bhandary, S.V.; Gudigar, A.; Tan, J.H.; Acharya, U.R. Deep Convolution Neural Network for Accurate Diagnosis of Glaucoma Using Digital Fundus Images. Inf. Sci. 2018, 441, 41–49. [Google Scholar] [CrossRef]
- Cicinelli, M.V.; Cavalleri, M.; Brambati, M.; Lattanzio, R.; Bandello, F. New Imaging Systems in Diabetic Retinopathy. Acta Diabetol. 2019, 56, 981–994. [Google Scholar] [CrossRef] [PubMed]
- Cerentini, A.; Welfer, D.; d’Ornellas, M.C.; Haygert, C.J.P.; Dotto, G.N. Automatic Identification of Glaucoma Using Deep Learning Methods. Stud. Health Technol. Inform. 2017, 245, 318–321. [Google Scholar] [CrossRef]
- Fujihara, F.M.F.; de Arruda Mello, P.A.; Lindenmeyer, R.L.; Pakter, H.M.; Lavinsky, J.; Benfica, C.Z.; Castoldi, N.; Picetti, E.; Lavinsky, D.; Finkelsztejn, A. Individual Macular Layer Evaluation with Spectral Domain Optical Coherence Tomography in Normal and Glaucomatous Eyes. Clin. Ophthalmol. (Auckl. NZ) 2020, 14, 1591. [Google Scholar] [CrossRef]
- Armstrong, G.W.; Kalra, G.; De Arrigunaga, S.; Friedman, D.S.; Lorch, A.C. Anterior Segment Imaging Devices in Ophthalmic Telemedicine. Semin. Ophthalmol. 2021, 36, 149–156. [Google Scholar] [CrossRef]
- Ichhpujani, P.; Thakur, S. Smartphones and Telemedicine in Ophthalmology. In Smart Resources in Ophthalmology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 247–255. [Google Scholar]
- Omboni, S.; Caserini, M.; Coronetti, C. Telemedicine and M-Health in Hypertension Management: Technologies, Applications and Clinical Evidence. High Blood Press. Cardiovasc. Prev. 2016, 23, 187–196. [Google Scholar] [CrossRef]
- Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology. Asia Pac. J. Ophthalmol. (Phila) 2019, 8, 264–272. [CrossRef]
- Ting, D.S.W.; Peng, L.; Varadarajan, A.V.; Keane, P.A.; Burlina, P.M.; Chiang, M.F.; Schmetterer, L.; Pasquale, L.R.; Bressler, N.M.; Webster, D.R.; et al. Deep Learning in Ophthalmology: The Technical and Clinical Considerations. Prog. Retin. Eye Res. 2019, 72, 100759. [Google Scholar] [CrossRef]
- Wang, Z.; Keane, P.A.; Chiang, M.; Cheung, C.Y.; Wong, T.Y.; Ting, D.S.W. Artificial Intelligence and Deep Learning in Ophthalmology. In Artificial Intelligence in Medicine; Lidströmer, N., Ashrafian, H., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–34. ISBN 978-3-030-58080-3. [Google Scholar]
- Perdomo Charry, O.J.; González Osorio, F.A. A Systematic Review of Deep Learning Methods Applied to Ocular Images. Cien. Ing. Neogranadina 2019, 30, 9–26. [Google Scholar] [CrossRef]
- Grewal, P.S.; Oloumi, F.; Rubin, U.; Tennant, M.T.S. Deep Learning in Ophthalmology: A Review. Can. J. Ophthalmol. 2018, 53, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Pires, I.M.; Denysyuk, H.V.; Villasana, M.V.; Sá, J.; Lameski, P.; Chorbev, I.; Zdravevski, E.; Trajkovik, V.; Morgado, J.F.; Garcia, N.M. Mobile 5P-Medicine Approach for Cardiovascular Patients. Sensors 2021, 21, 6986. [Google Scholar] [CrossRef] [PubMed]
- Pires, I.M.; Marques, G.; Garcia, N.M.; Flórez-Revuelta, F.; Ponciano, V.; Oniani, S. A Research on the Classification and Applicability of the Mobile Health Applications. J. Pers. Med. 2020, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Villasana, M.V.; Pires, I.M.; Sá, J.; Garcia, N.M.; Zdravevski, E.; Chorbev, I.; Lameski, P.; Flórez-Revuelta, F. Promotion of Healthy Nutrition and Physical Activity Lifestyles for Teenagers: A Systematic Literature Review of The Current Methodologies. J. Pers. Med. 2020, 10, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, I.M.; Garcia, N.M.; Pombo, N.; Flórez-Revuelta, F. Framework for the Recognition of Activities of Daily Living and Their Environments in the Development of a Personal Digital Life Coach. In Proceedings of the DATA, Porto, Portugal, 26–28 July 2018; pp. 163–170. [Google Scholar]
- Ferreira, F.; Pires, I.M.; Costa, M.; Ponciano, V.; Garcia, N.M.; Zdravevski, E.; Chorbev, I.; Mihajlov, M. A Systematic Investigation of Models for Color Image Processing in Wound Size Estimation. Computers 2021, 10, 43. [Google Scholar] [CrossRef]
- Ponciano, V.; Pires, I.M.; Ribeiro, F.R.; Garcia, N.M.; Pombo, N.; Spinsante, S.; Crisóstomo, R. Smartphone-Based Automatic Measurement of the Results of the Timed-Up and Go Test. In Proceedings of the 5th EAI International Conference on Smart Objects and Technologies for Social Good, Valencia, Spain, 25–27 September 2019; pp. 239–242. [Google Scholar]
- Silva, A.R.; Farias, M.C.Q. Perceptual Quality Assessment of 3D Videos with Stereoscopic Degradations. Multimed. Tools Appl. 2020, 79, 1603–1623. [Google Scholar] [CrossRef]
- Gargeya, R.; Leng, T. Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology 2017, 124, 962–969. [Google Scholar] [CrossRef]
- Krupinski, E.A. Current Perspectives in Medical Image Perception. Atten. Percept. Psychophys. 2010, 72, 1205–1217. [Google Scholar] [CrossRef] [Green Version]
- González-Márquez, F.; Luque-Romero, L.; Ruiz-Romero, M.V.; Castillón-Torre, L.; Hernández-Martínez, F.J.; Olea-Pabón, L.; Moro-Muñoz, S.; García-Díaz, R. del M.; García-Garmendia, J.L. Remote Ophthalmology with a Smartphone Adapter Handled by Nurses for the Diagnosis of Eye Posterior Pole Pathologies during the COVID-19 Pandemic. J. Telemed. Telecare 2021, 1357633X2199401. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.D.; Blachley, T.S.; Musch, D.C. Identification of Persons With Incident Ocular Diseases Using Health Care Claims Databases. Am. J. Ophthalmol. 2013, 156, 1169–1175. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.M.; Liu, X.; Nath, S.; Korot, E.; Faes, L.; Wagner, S.K.; Keane, P.A.; Sebire, N.J.; Burton, M.J.; Denniston, A.K. A Global Review of Publicly Available Datasets for Ophthalmological Imaging: Barriers to Access, Usability, and Generalisability. Lancet Digit. Health 2021, 3, e51–e66. [Google Scholar] [CrossRef]
- Fumero, F.; Alayon, S.; Sanchez, J.L.; Sigut, J.; Gonzalez-Hernandez, M. RIM-ONE: An Open Retinal Image Database for Optic Nerve Evaluation. In Proceedings of the 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), Bristol, UK, 27–30 June 2011; pp. 1–6. [Google Scholar]
- Medical Image Analysis Group. Available online: https://medimrg.webs.ull.es/ (accessed on 7 December 2021).
- Zhou, W.; Yi, Y.; Bao, J.; Wang, W. Adaptive Weighted Locality-Constrained Sparse Coding for Glaucoma Diagnosis. Med. Biol. Eng. Comput. 2019, 57, 2055–2067. [Google Scholar] [CrossRef]
- Fumero Batista, F.J.; Diaz-Aleman, T.; Sigut, J.; Alayon, S.; Arnay, R.; Angel-Pereira, D. RIM-ONE DL: A Unified Retinal Image Database for Assessing Glaucoma Using Deep Learning. Image Anal. Stereol 2020, 39, 161–167. [Google Scholar] [CrossRef]
- Drishti-GS Dataset Webpage. Available online: http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php (accessed on 7 December 2021).
- Sivaswamy, J.; Krishnadas, S.R.; Datt Joshi, G.; Jain, M.; Syed Tabish, A.U. Drishti-GS: Retinal Image Dataset for Optic Nerve Head(ONH) Segmentation. In Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, China, 29 April–2 May 2014; pp. 53–56. [Google Scholar]
- DRIONS-DB: RETINAL IMAGE DATABASE. Available online: http://www.ia.uned.es/~ejcarmona/DRIONS-DB.html (accessed on 7 December 2021).
- Patil, D.D.; Manza, R.R.; Bedke, G.C.; Rathod, D.D. Development of Primary Glaucoma Classification Technique Using Optic Cup & Disc Ratio. In Proceedings of the 2015 International Conference on Pervasive Computing (ICPC), Pune, India, 8–10 January 2015; pp. 1–5. [Google Scholar]
- MAFFRE, G.P. Messidor-2. Available online: https://www.adcis.net/en/third-party/messidor2/ (accessed on 7 December 2021).
- Decencière, E.; Zhang, X.; Cazuguel, G.; Lay, B.; Cochener, B.; Trone, C.; Gain, P.; Ordonez, R.; Massin, P.; Erginay, A.; et al. Feedback on a publicly distributed image database: The messidor database. Image Anal. Stereol 2014, 33, 231. [Google Scholar] [CrossRef] [Green Version]
- Odstrcilik, J.; Kolar, R.; Budai, A.; Hornegger, J.; Jan, J.; Gazarek, J.; Kubena, T.; Cernosek, P.; Svoboda, O.; Angelopoulou, E. Retinal Vessel Segmentation by Improved Matched Filtering: Evaluation on a New High-resolution Fundus Image Database. IET Image Processing 2013, 7, 373–383. [Google Scholar] [CrossRef]
- Lowell, J.; Hunter, A.; Steel, D.; Basu, A.; Ryder, R.; Fletcher, E.; Kennedy, L. Optic Nerve Head Segmentation. IEEE Trans. Med. Imaging 2004, 23, 256–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz-Pinto, A.; Morales, S.; Naranjo, V.; Köhler, T.; Mossi, J.M.; Navea, A. CNNs for Automatic Glaucoma Assessment Using Fundus Images: An Extensive Validation. BioMed. Eng. OnLine 2019, 18, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- REFUGE-Grand Challenge. Available online: https://refuge.grand-challenge.org/ (accessed on 7 December 2021).
- Zhang, Z.; Yin, F.S.; Liu, J.; Wong, W.K.; Tan, N.M.; Lee, B.H.; Cheng, J.; Wong, T.Y. ORIGA: An Online Retinal Fundus Image Database for Glaucoma Analysis and Research. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 3065–3068. [Google Scholar]
- Abbas, Q. Glaucoma-Deep: Detection of Glaucoma Eye Disease on Retinal Fundus Images Using Deep Learning. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Cheng, J.; Xu, Y.; Zhang, C.; Wong, D.W.K.; Liu, J.; Cao, X. Disc-Aware Ensemble Network for Glaucoma Screening From Fundus Image. IEEE Trans. Med. Imaging 2018, 37, 2493–2501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Srivastava, R.; Liu, H.; Chen, X.; Duan, L.; Kee Wong, D.W.; Kwoh, C.K.; Wong, T.Y.; Liu, J. A Survey on Computer Aided Diagnosis for Ocular Diseases. BMC Med. Inform. Decis. Mak. 2014, 14, 1–29. [Google Scholar] [CrossRef]
- Chima Ambrose Dibia; Ezenwa, N.S. Automated detection of glaucoma from retinal. Int. J. Adv. Sci. Eng. Technol. 2018, 2, 13–18. [Google Scholar]
- Phasuk, S.; Poopresert, P.; Yaemsuk, A.; Suvannachart, P.; Itthipanichpong, R.; Chansangpetch, S.; Manassakorn, A.; Tantisevi, V.; Rojanapongpun, P.; Tantibundhit, C. Automated Glaucoma Screening from Retinal Fundus Image Using Deep Learning. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 904–907. [Google Scholar]
- Sreng, S.; Maneerat, N.; Hamamoto, K.; Win, K.Y. Deep Learning for Optic Disc Segmentation and Glaucoma Diagnosis on Retinal Images. Appl. Sci. 2020, 10, 4916. [Google Scholar] [CrossRef]
- Maadi, F.; Faraji, N.; Bibalan, M.H. A Robust Glaucoma Screening Method for Fundus Images Using Deep Learning Technique. In Proceedings of the 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 26–27 November 2020; pp. 289–293. [Google Scholar]
- Zhao, R.; Chen, X.; Liu, X.; Chen, Z.; Guo, F.; Li, S. Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-Supervised Learning. IEEE J. Biomed. Health Inform. 2020, 24, 1104–1113. [Google Scholar] [CrossRef]
- Ali, R.; Sheng, B.; Li, P.; Chen, Y.; Li, H.; Yang, P.; Jung, Y.; Kim, J.; Chen, C.L.P. Optic Disk and Cup Segmentation Through Fuzzy Broad Learning System for Glaucoma Screening. IEEE Trans. Ind. Inf. 2021, 17, 2476–2487. [Google Scholar] [CrossRef]
- Wang, M.; Yu, K.; Zhu, W.; Shi, F.; Chen, X. Multi-Strategy Deep Learning Method for Glaucoma Screening on Fundus Image. Investig. Ophthalmol. Vis. Sci. 2019, 60, 6148. [Google Scholar]
- Rao Parthasarathy, D.; Hsu, C.-K.; Eldeeb, M.; Jinapriya, D.; Shroff, S.; Shruthi, S.; Pradhan, Z.; Deshmukh, S.; Savoy, F.M. Development and Performance of a Novel ‘Offline’ Deep Learning (DL)-Based Glaucoma Screening Tool Integrated on a Portable Smartphone-Based Fundus Camera. Investig. Ophthalmol. Vis. Sci. 2021, 62, 1002. [Google Scholar]
- Zaleska-Żmijewska, A.; Szaflik, J.P.; Borowiecki, P.; Pohnke, K.; Romaniuk, U.; Szopa, I.; Pniewski, J.; Szaflik, J. A New Platform Designed for Glaucoma Screening: Identifying the Risk of Glaucomatous Optic Neuropathy Using Fundus Photography with Deep Learning Architecture Together with Intraocular Pressure Measurements. Klin. Ocz. 2020, 2020, 1–6. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.; Song, H.; Lee, C. Development of an End-to-End Deep Learning System for Glaucoma Screening Using Color Fundus Images. JAMA Ophthalmol. 2019, 137, 1353–1360. [Google Scholar]
- Chakrabarty, N.; Chatterjee, S. A Novel Approach to Glaucoma Screening Using Computer Vision. In Proceedings of the 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 27–29 November 2019; pp. 881–884. [Google Scholar]
- Panda, R.; Puhan, N.B.; Mandal, B.; Panda, G. GlaucoNet: Patch-Based Residual Deep Learning Network for Optic Disc and Cup Segmentation Towards Glaucoma Assessment. SN COMPUT. SCI. 2021, 2, 99. [Google Scholar] [CrossRef]
- Liu, Y.; Yip, L.W.L.; Zheng, Y.; Wang, L. Glaucoma Screening Using an Attention-Guided Stereo Ensemble Network. Methods. 2021. Available online: https://doi.org/10.1016/j.ymeth.2021.06.010 (accessed on 19 June 2021).
- Alghamdi, H.S.; Tang, H.L.; Waheeb, S.A.; Peto, T. Automatic Optic Disc Abnormality Detection in Fundus Images: A Deep Learning Approach; University of Iowa: Iowa City, IA, USA, 2016; pp. 17–24. [Google Scholar]
- Maninis, K.-K.; Pont-Tuset, J.; Arbeláez, P.; Van Gool, L. Deep Retinal Image Understanding. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2016; Volume 9901 LNCS, pp. 140–148. ISBN 978-3-319-46722-1. [Google Scholar]
- Sevastopolsky, A. Optic Disc and Cup Segmentation Methods for Glaucoma Detection with Modification of U-Net Convolutional Neural Network. Pattern Recognit. Image Anal. 2017, 27, 618–624. [Google Scholar] [CrossRef] [Green Version]
- Priyanka, R.; Shoba, S.J.G.; Therese, A.B. Segmentation of Optic Disc in Fundus Images Using Convolutional Neural Networks for Detection of Glaucoma. Int. J. Adv. Eng. Res. Sci. 2017, 4, 170–179. [Google Scholar] [CrossRef]
- Tan, J.H.; Acharya, U.R.; Bhandary, S.V.; Chua, K.C.; Sivaprasad, S. Segmentation of Optic Disc, Fovea and Retinal Vasculature Using a Single Convolutional Neural Network. J. Comput. Sci. 2017, 20, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Xu, Y.; Zhao, W.; You, T.; Liu, J. Optic Disc Segmentation from Retinal Fundus Images via Deep Object Detection Networks. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 5954–5957. [Google Scholar]
- Singh, V.K.; Rashwan, H.; Akram, F.; Pandey, N.; Sarker, M.M.K.; Saleh, A.; Abdulwahab, S.; Maaroof, N.; Romani, S.; Puig, D. Retinal Optic Disc Segmentation Using Conditional Generative Adversarial Network. Front. Artif. Intell. Appl. 2018, 308, 373–380. [Google Scholar] [CrossRef]
- Diaz-Pinto, A.; Colomer, A.; Naranjo, V.; Morales, S.; Xu, Y.; Frangi, A.F. Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma Assessment. IEEE Trans. Med. Imaging 2019, 38, 2211–2218. [Google Scholar] [CrossRef]
- Gonzalez-Hernandez, M.; Gonzalez-Hernandez, D.; Perez-Barbudo, D.; Rodriguez-Esteve, P.; Betancor-Caro, N.; Gonzalez de la Rosa, M. Fully Automated Colorimetric Analysis of the Optic Nerve Aided by Deep Learning and Its Association with Perimetry and OCT for the Study of Glaucoma. JCM 2021, 10, 3231. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, X.; Wei, Y.; Fang, Y.; Tian, T.; Kang, L.; Li, M.; Cai, Y.; Pan, Y. Diagnostic Capability of Different Morphological Parameters for Primary Open-angle Glaucoma in the Chinese Population. BMC Ophthalmol. 2021, 21, 151. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, Y.; Yan, S.; Wong, D.W.K.; Wong, T.Y.; Liu, J. Automatic Feature Learning for Glaucoma Detection Based on Deep Learning. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 669–677. [Google Scholar]
- Colonna, A.; Scarpa, F.; Ruggeri, A. Segmentation of Corneal Nerves Using a U-Net-Based Convolutional Neural Network. In Computational Pathology and Ophthalmic Medical Image Analysis; Stoyanov, D., Taylor, Z., Ciompi, F., Xu, Y., Martel, A., Maier-Hein, L., Rajpoot, N., van der Laak, J., Veta, M., McKenna, S., et al., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11039, pp. 185–192. ISBN 978-3-030-00948-9. [Google Scholar]
- Edupuganti, V.G.; Chawla, A.; Kale, A. Automatic Optic Disk and Cup Segmentation of Fundus Images Using Deep Learning. In Proceedings of the 25th IEEE International Conference on Image Processing, Athens, Greece, 7–10 October 2018; pp. 2227–2231. [Google Scholar]
- Benzebouchi, N.; Azizi, N.; Bouziane, S. Glaucoma Diagnosis Using Cooperative Convolutional Neural Networks. Int. J. Adv. Electron. Comput. Sci. 2018, 5, 31–36. [Google Scholar]
- Ahn, J.M.; Kim, S.; Ahn, K.-S.; Cho, S.-H.; Lee, K.B.; Kim, U.S. A Deep Learning Model for the Detection of Both Advanced and Early Glaucoma Using Fundus Photography. PLoS ONE 2018, 13, e0207982. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; He, Y.; Keel, S.; Meng, W.; Chang, R.T.; He, M. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology 2018, 125, 1199–1206. [Google Scholar] [CrossRef] [Green Version]
- Al-Bander, B.; Al-Nuaimy, W.; Williams, B.M.; Zheng, Y. Multiscale Sequential Convolutional Neural Networks for Simultaneous Detection of Fovea and Optic Disc. Biomed. Signal Processing Control 2018, 40, 91–101. [Google Scholar] [CrossRef]
- Sevastopolsky, A.; Drapak, S.; Kiselev, K.; Snyder, B.M.; Keenan, J.D.; Georgievskaya, A. Stack-U-Net: Refinement Network for Improved Optic Disc and Cup Image Segmentation.; Angelini, E.D., Landman, B.A., Eds.; SPIE Medical Imaging: San Diego, CA, USA, 2019; p. 78. [Google Scholar]
- Xu, Y.; Hu, M.; Liu, H.; Yang, H.; Wang, H.; Lu, S.; Liang, T.; Li, X.; Xu, M.; Li, L.; et al. A Hierarchical Deep Learning Approach with Transparency and Interpretability Based on Small Samples for Glaucoma Diagnosis. Npj Digit. Med. 2021, 4, 48. [Google Scholar] [CrossRef]
- Hemelings, R.; Elen, B.; Barbosa-Breda, J.; Blaschko, M.B.; De Boever, P.; Stalmans, I. Deep Learning on Fundus Images Detects Glaucoma beyond the Optic Disc. Sci. Rep. 2021, 11, 20313. [Google Scholar] [CrossRef]
- Kim, M.; Han, J.C.; Hyun, S.H.; Janssens, O.; Van Hoecke, S.; Kee, C.; De Neve, W. Medinoid: Computer-Aided Diagnosis and Localization of Glaucoma Using Deep Learning †. Appl. Sci. 2019, 9, 3064. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Xiao, D.; Frost, S.; Kanagasingam, Y. Robust Optic Disc and Cup Segmentation with Deep Learning for Glaucoma Detection. Comput. Med. Imaging Graph. 2019, 74, 61–71. [Google Scholar] [CrossRef]
- Flores-Rodríguez, P.; Gili, P.; Martín-Ríos, M.D. Ophthalmic Features of Optic Disc Drusen. Ophthalmologica 2012, 228, 59–66. [Google Scholar] [CrossRef]
- Say, E.A.T.; Ferenczy, S.; Magrath, G.N.; Samara, W.A.; Khoo, C.T.L.; Shields, C.L. Image quality and artifacts on optical coherence tomography angiography: Comparison of Pathologic and Paired Fellow Eyes in 65 Patients With Unilateral Choroidal Melanoma Treated With Plaque Radiotherapy. Retina 2017, 37, 1660–1673. [Google Scholar] [CrossRef] [PubMed]
- Princy, S.B.; Duraisamy, S. Analysis of Retinal Images Using Detection of the Blood Vessels by Optic Disc and Optic Cup Segmentation Method. Int. Sci. J. Sci. Eng. Technol. 2016, 3, 33–40. [Google Scholar]
- Bock, R.; Meier, J.; Nyúl, L.G.; Hornegger, J.; Michelson, G. Glaucoma Risk Index:Automated Glaucoma Detection from Color Fundus Images. Med. Image Anal. 2010, 14, 471–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhartiya, S.; Clement, C.; Dorairaj, S.; Kong, G.Y.X.; Albis-Donado, O. Clinical Decision Making in Glaucoma; Jaypee Brothers Medical Publishers: Guwahati, Assam, 2019; ISBN 93-5270-524-6. [Google Scholar]
- Saeed, A.Q.; Abdullah, S.N.H.S.; Che-Hamzah, J.; Ghani, A.T.A. Accuracy of Using Generative Adversarial Networks for Glaucoma Detection: Systematic Review and Bibliometric Analysis. J. Med. Internet Res. 2021, 23, e27414. [Google Scholar] [CrossRef]
- Soomro, T.; Shah, N.; Niestrata-Ortiz, M.; Yap, T.; Normando, E.M.; Cordeiro, M.F. Recent Advances in Imaging Technologies for Assessment of Retinal Diseases. Expert Rev. Med. Devices 2020, 17, 1095–1108. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, N.A.; Zulkifley, M.A.; Zaki, W.M.D.W.; Hussain, A. An Automated Glaucoma Screening System Using Cup-to-Disc Ratio via Simple Linear Iterative Clustering Superpixel Approach. Biomed. Signal Processing Control 2019, 53, 101454. [Google Scholar] [CrossRef]
- Tan, O.; Liu, L.; You, Q.; Wang, J.; Jia, Y.; Huang, D. Focal Loss Analysis of Nerve Fiber Layer Reflectance for Glaucoma Diagnosis. Investig. Ophthalmol. Vis. Sci. 2020, 61, 5194. [Google Scholar] [CrossRef]
- MacIver, S.; MacDonald, D.; Prokopich, C.L. Screening, Diagnosis, and Management of Open Angle Glaucoma: An Evidence-Based Guideline for Canadian Optometrists. Can. J. Optom. 2017, 79, 5–71. [Google Scholar] [CrossRef]
- Claro, M.; Santos, L.; Silva, W.; Araújo, F.; Santana, A.D.A. Automatic Detection of Glaucoma Using Disc Optic Segmentation and Feature Extraction. In Proceedings of the 2015 41st Latin American Computing Conference, CLEI 2015, Arequipa, Peru, 19–23 October 2015. [Google Scholar] [CrossRef]
- Claro, D.L.; Melo, R.D.; Veras, S. Glaucoma Diagnosis Using Texture Attributes and Pre-Trained CNN’s. Rev. Inf. Te orica e Aplicada-RITA-ISSN 2018, 25, 82–89. [Google Scholar] [CrossRef]
- Mittapalli, P.S.; Kande, G.B. Segmentation of Optic Disk and Optic Cup from Digital Fundus Images for the Assessment of Glaucoma. Biomed. Signal Processing Control 2016, 24, 34–46. [Google Scholar] [CrossRef]
- Morales, S.; Naranjo, V.; Angulo, J.; Alcañiz, M. Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 2015, 32, 786–796. [Google Scholar]
- Pradhepa, K.; Karkuzhali, S.; Manimegalai, D. Segmentation and Localization of Optic Disc Using Feature Match and Medial Axis Detection in Retinal Images. Biomed. Pharmacol. J. 2015, 8, 391–397. [Google Scholar] [CrossRef]
- Lotankar, M.L.; Noronha, K.; Koti, J. Glaucoma Screening Using Digital Fundus Image through Optic Disc and Cup Segmentation. Int. J. Comput. Appl. 2015, 975, 8887. [Google Scholar]
- Choudhary, K.; Tiwari, S. ANN Glaucoma Detection Using Cup-to-Disk Ratio and Neuroretinal Rim. Int. J. Comput. Appl. 2015, 111, 8–14. [Google Scholar] [CrossRef]
- Müller, H.; González, F.A. Glaucoma Diagnosis from Eye Fundus Images Based on Deep Morphometric Feature Estimation. In Proceedings of the Computational Pathology and Ophthalmic Medical Image Analysis: First International Workshop, COMPAY 2018, and 5th International Workshop, OMIA 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 16–20 September 2018; Volume 11039, p. 319. [Google Scholar]
- Lima, A.; Maia, L.B.; dos Santos, P.T.C.; Junior, G.B.; de Almeida, J.D.; de Paiva, A.C. Evolving Convolutional Neural Networks for Glaucoma Diagnosis. In Proceedings of the Anais do XVIII Simpósio Brasileiro de Computação Aplicada à Saúde; SBC: Natal, Brazil, 2018. [Google Scholar]
- Almazroa, A.; Burman, R.; Raahemifar, K.; Lakshminarayanan, V. Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey. J. Ophthalmol. 2015, 2015, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Chakravarty, A.; Sivswamy, J. A Deep Learning Based Joint Segmentation and Classification Framework for Glaucoma Assesment in Retinal Color Fundus Images. arXiv 2018, arXiv:1808.01355. [Google Scholar]
- Lim, G.; Cheng, Y.; Hsu, W.; Lee, M.L. Integrated Optic Disc and Cup Segmentation with Deep Learning. In Proceedings of the 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), Vietri sul Mare, Italy, 9–11 November 2015; pp. 162–169. [Google Scholar]
- Mitra, A.; Banerjee, P.S.; Roy, S.; Roy, S.; Setua, S.K. The Region of Interest Localization for Glaucoma Analysis from Retinal Fundus Image Using Deep Learning. Comput. Methods Programs Biomed. 2018, 165, 25–35. [Google Scholar] [CrossRef]
- Sengupta, S.; Singh, A.; Leopold, H.A.; Gulati, T.; Lakshminarayanan, V. Ophthalmic Diagnosis Using Deep Learning with Fundus Images—A Critical Review. Artif. Intell. Med. 2020, 102, 101758. [Google Scholar] [CrossRef]
- Shankaranarayana, S.M.; Ram, K.; Mitra, K.; Sivaprakasam, M. Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation. IEEE J. Biomed. Health Inform. 2019, 23, 1417–1426. [Google Scholar] [CrossRef]
- Gómez-Valverde, J.J.; Antón, A.; Fatti, G.; Liefers, B.; Herranz, A.; Santos, A.; Sánchez, C.I.; Ledesma-Carbayo, M.J. Automatic Glaucoma Classification Using Color Fundus Images Based on Convolutional Neural Networks and Transfer Learning. Biomed. Opt. Express 2019, 10, 892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabir, M.A. Retinal Blood Vessel Extraction Based on Adaptive Segmentation Algorithm. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 1576–1579. [Google Scholar]
- Martins, J.; Cardoso, J.S.; Soares, F. Offline Computer-Aided Diagnosis for Glaucoma Detection Using Fundus Images Targeted at Mobile Devices. Comput. Methods Programs Biomed. 2020, 192, 105341. [Google Scholar] [CrossRef]
- Bajwa, M.N.; Singh, G.A.P.; Neumeier, W.; Malik, M.I.; Dengel, A.; Ahmed, S. G1020: A Benchmark Retinal Fundus Image Dataset for Computer-Aided Glaucoma Detection. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–7. [Google Scholar]
- Krishnan, R.; Sekhar, V.; Sidharth, J.; Gautham, S.; Gopakumar, G. Glaucoma Detection from Retinal Fundus Images. In Proceedings of the 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 28–30 July 2020; pp. 0628–0631. [Google Scholar]
- Tabassum, M.; Khan, T.M.; Arsalan, M.; Naqvi, S.S.; Ahmed, M.; Madni, H.A.; Mirza, J. CDED-Net: Joint Segmentation of Optic Disc and Optic Cup for Glaucoma Screening. IEEE Access 2020, 8, 102733–102747. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, Q.; Li, H.; Yang, L.; Wu, S.; Sui, R. Mutations in Crystallin Genes Result in Congenital Cataract Associated with Other Ocular Abnormalities. Mol. Vis. 2017, 23, 977–986. [Google Scholar]
- Phene, S.; Dunn, R.C.; Hammel, N.; Liu, Y.; Krause, J.; Kitade, N.; Schaekermann, M.; Sayres, R.; Wu, D.J.; Bora, A.; et al. Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs. Ophthalmology 2019, 126, 1627–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ting, D.S.W.; Cheung, C.Y.L.; Lim, G.; Tan, G.S.W.; Quang, N.D.; Gan, A.; Hamzah, H.; Garcia-Franco, R.; Yeo, I.Y.S.; Lee, S.Y.; et al. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images from Multiethnic Populations with Diabetes. JAMA—J. Am. Med. Assoc. 2017, 318, 2211–2223. [Google Scholar] [CrossRef]
- Serener, A.; Serte, S. Transfer Learning for Early and Advanced Glaucoma Detection with Convolutional Neural Networks. In Proceedings of the 2019 Medical Technologies Congress (TIPTEKNO), Izmir, Turkey, 3–5 October 2019. [Google Scholar] [CrossRef]
- Norouzifard, M.; Nemati, A.; Gholamhosseini, H.; Klette, R.; Nouri-Mahdavi, K.; Yousefi, S. Automated Glaucoma Diagnosis Using Deep and Transfer Learning: Proposal of a System for Clinical Testing. In Proceedings of the 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), Auckland, New Zealand, 19–21 November 2018. [Google Scholar] [CrossRef]
- Zilly, J.; Buhmann, J.M.; Mahapatra, D. Glaucoma Detection Using Entropy Sampling and Ensemble Learning for Automatic Optic Cup and Disc Segmentation. Comput. Med. Imaging Graph. 2017, 55, 28–41. [Google Scholar] [CrossRef]
- Panda, R.; Puhan, N.B.; Rao, A.; Padhy, D.; Panda, G. Recurrent Neural Network Based Retinal Nerve Fiber Layer Defect Detection in Early Glaucoma. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, Australia, 18–21 April 2017; pp. 692–695. [Google Scholar]
- Septiarini, A.; Harjoko, A.; Pulungan, R.; Ekantini, R. Automated Detection of Retinal Nerve Fiber Layer by Texture-Based Analysis for Glaucoma Evaluation. Healthc. Inform. Res. 2018, 24, 335. [Google Scholar] [CrossRef]
- Meng, Q.; Hashimoto, Y.; Satoh, S. How to Extract More Information With Less Burden: Fundus Image Classification and Retinal Disease Localization With Ophthalmologist Intervention. IEEE J. Biomed. Health Inform. 2020, 24, 3351–3361. [Google Scholar] [CrossRef]
- Li, F.; Song, D.; Chen, H.; Xiong, J.; Li, X.; Zhong, H.; Tang, G.; Fan, S.; Lam, D.S.C.; Pan, W.; et al. Development and Clinical Deployment of a Smartphone-Based Visual Field Deep Learning System for Glaucoma Detection. NPJ Digit. Med. 2020, 3, 123. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Geng, L.; Zhu, W.; Shi, F.; Chen, X. Automatic Angle-Closure Glaucoma Screening Based on the Localization of Scleral Spur in Anterior Segment OCT. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI); IEEE: Iowa City, IA, USA, April 2020; pp. 1387–1390. [Google Scholar]
- Gupta, K.; Thakur, A.; Goldbaum, M.; Yousefi, S. Glaucoma Precognition: Recognizing Preclinical Visual Functional Signs of Glaucoma. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); IEEE: Seattle, WA, USA, 14–19 June 2020; pp. 4393–4401. [Google Scholar]
- Teikari, P.; Najjar, R.P.; Schmetterer, L.; Milea, D. Embedded Deep Learning in Ophthalmology: Making Ophthalmic Imaging Smarter. Ophthalmol. Eye Dis. 2019, 11, 251584141982717. [Google Scholar] [CrossRef] [PubMed]
- Plötz, T.; Roth, S. Neural Nearest Neighbors Networks. arXiv 2018, arXiv:1810.12575. [Google Scholar]
- Anderson, R.L.; Ramos Cadena, M. de los A.; Schuman, J.S. Glaucoma Diagnosis. Ophthalmol. Glaucoma 2018, 1, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, G.W.; Trachimowicz, R.; Steele, G. Patient Literacy Levels within an Inner-City Optometry Clinic. Optom. -J. Am. Optom. Assoc. 2008, 79, 98–103. [Google Scholar] [CrossRef]
- Miller, S.E.; Thapa, S.; Robin, A.L.; Niziol, L.M.; Ramulu, P.Y.; Woodward, M.A.; Paudyal, I.; Pitha, I.; Kim, T.N.; Newman-Casey, P.A. Glaucoma Screening in Nepal: Cup-to-Disc Estimate With Standard Mydriatic Fundus Camera Compared to Portable Nonmydriatic Camera. Am. J. Ophthalmol. 2017, 182, 99–106. [Google Scholar] [CrossRef] [PubMed]
Database | Glaucoma/Normal | Optic Disc/Cup | Total |
---|---|---|---|
ACRIMA | 396/309 | No | 705 |
DRIONS-DB | - | No | 110 |
DRISHTI-GS | 70/31 | Both | 101 |
HRF | 27/18 | Both | 45 |
ONHSD | - | Optic disc only | 99 |
ORIGA | 168/482 | No | 650 |
REFUGE | 40/360 | Both | 400 |
RIM-One-r1 | 194/261 | Both | 455 |
RIM-One-r3 | 74/85 | Both | 159 |
Sjchoi86-HRF | 101/300 | No | 601 |
Study | Methods | Databases | Results |
---|---|---|---|
[75] | DNN | ORIGA | AUC: 0.94 |
RIM-One-r3 | |||
DRISHTI-GS | |||
[76] | DeepLabv3+ | RIM-ONE | Accuracy: 97.37% (RIM-ONE), 90.00% (ORIGA), 86.84% (DRISHTI-GS) and 99.53% (ACRIMA) |
ORIGA | |||
MobileNet | DRISHTI-GS | AUC: 100% (RIM-ONE), 92.06% (ORIGA), 91.67% (DRISHTI-GS), and 99.98% (ACRIMA) | |
ACRIMA | |||
[77] | U-Net | DRISHTI-GS | AUC: 94% |
REFUGE | |||
RIM-One-r3 | |||
[78] | MFPPNet | Direct-CSU | AUC: 90.5% |
ORIGA | |||
[79] | Fuzzy broad learning | RIM-One-r3 | AUC: 90.6% (RIM-One-r3) and 92.3% (SCRID) |
SCRID | |||
[80] | U-Net | N/D | DICE: 89.6% |
Precision: 95.12% | |||
[81] | DNN | 5716 images | AUC: 94% |
[82] | DNN | 933 healthy and 754 glaucoma images | Sensitivity: 73% |
Specificity: 83% | |||
[83] | M-Net | REFUGE | DICE: 94.26% (optic disc) and 85.65% (optic cup) |
AUC: 96.37% | |||
Sensitivity: 90% | |||
[84] | DL-ML Hybrid Model | HRF | Accuracy: 100% |
Sensitivity: 100% | |||
[85] | GlaucoNet | DRISHTI-GS | Overlapping score: |
RIM-ONE | - Optic disc segmentation: 91.06% (DRISHTI-GS), 89.72% (RIM-ONE), and 88.35% (ORIGA) | ||
ORIGA | - Optic cup segmentation: 82.29% (DRISHTI-GS), 74.01% (RIM-ONE), and 81.06% (ORIGA) | ||
[86] | CNN | 282 images with 70 glaucoma cases and 212 normal cases | Sensitivity: 95.48% |
Study | Architecture | Databases | Results |
---|---|---|---|
[87] | CNN | HAPIEE | Accuracy: 86.5% (HAPIEE), and 97.8% (PAMPI) |
PAMDI | |||
[88] | CNN | DRIONS-DB | Accuracy: 97.1% (DRIONS-DB) and 95.9% (RIM-ONE) |
RIM-ONE | |||
[90] | CNN | N/A | Accuracy: 95.6% |
[91] | CNN | N/A | Accuracy: 92.7% |
[92] | Faster R-CNN | ORIGA | Accuracy: 93.1% |
[72] | ResNet | SCES | AUC: 91.8% (SECS) and 81.8% (SINDI) |
SINDI | |||
[93] | U-Net | DRIONS-DB DRISHTI-GS RIM-ONE | IoU: 96.0% |
DICE: 98.0% | |||
[94] | GANs | 86926 images | AUC: 90.17% |
[95] | DNN | 477 normal eyes, 235 confirmed, and 98 suspected glaucoma cases | AUC: 99.5% (GDF) and 93.5% (TCV) |
[96] | DNN | 200 eyes of 77 healthy and 123 primary open-angle glaucoma | AUC: 94.6% (BMO-MRW) and 92.1% (BMO-MRA) |
Study | Architecture | Databases | Results |
---|---|---|---|
[97] | CNN with six layers | ORIGA | AUC: 83.1% (ORIGA) and 88.7% (SCES) |
SCES | |||
[89] | U-Net | DRIONS-DB | IoU: 89% (DRIONS-DB), 89% (RIM-ONE-r3), and 75% (DRISHT-GS1) DICE: 94% (DRIONS-DB), 95% (RIM-ONE-r3), and 85% (DRISHT-GS1) |
RIM-ONE-r3 | |||
DRISHT-GS | |||
[34] | GoogleNet | HRF | Accuracy: 90% (HRF), 94.2% (RIM-ONE-r1), 86.2% (RIM-ONE-r2), and 86.4% (RIM-ONE-r3) |
RIM-ONE-r1 | |||
RIM-ONE-r2 | |||
RIM-ONE-r3 | |||
[98] | U-Net | REFUGE | Accuracy: 93.4% |
[99] | CNN with one layer (CNN1) CNN with two layers (CNN2) | RIM-ONE | Accuracy: 95.6% (CNN1) and 96.9% (CNN2) |
AUC: 98% (CNN1) and 97.8% (CNN2) | |||
[100] | Transfer Learning GoogleNet Inception-V3 | 1542 images | Accuracy: 84.5% |
AUC: 93% | |||
[101] | CNN with nineteen layers | 48,116 images | Accuracy: 95.6% |
AUC: 98.6% | |||
[102] | CNN with eighteen layers | 1426 images | Accuracy: 98.1% |
[32] | CNN with nineteen layers | ORIGA | Accuracy: 99.8% DICE: 87.2% |
DRIONS-DB | |||
ONHSD | |||
RIM-ONE | |||
[103] | Stack-U-Net | RIM-ONE-r3 | IoU: 92% |
DICE: 96% | |||
[104] | DC-GAN | MESSIDOR | AUC: 90.2% |
ONHSD | |||
DRIVE | |||
STARE | |||
CHASE-DB | |||
DRIONS-DB | |||
SASTRA | |||
[105] | HDLS | 1791 fundus photographs | Accuracy: 53% (optic cup), 12% (optic disc), and 16% (retinal nerve fiber layer defects) |
[106] | DNN | 2643 images | AUC: 94% |
[107] | CNN Grad-CAM | SMC | Accuracy: 96% |
Sensitivity: 96% | |||
Specificity: 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camara, J.; Neto, A.; Pires, I.M.; Villasana, M.V.; Zdravevski, E.; Cunha, A. Literature Review on Artificial Intelligence Methods for Glaucoma Screening, Segmentation, and Classification. J. Imaging 2022, 8, 19. https://doi.org/10.3390/jimaging8020019
Camara J, Neto A, Pires IM, Villasana MV, Zdravevski E, Cunha A. Literature Review on Artificial Intelligence Methods for Glaucoma Screening, Segmentation, and Classification. Journal of Imaging. 2022; 8(2):19. https://doi.org/10.3390/jimaging8020019
Chicago/Turabian StyleCamara, José, Alexandre Neto, Ivan Miguel Pires, María Vanessa Villasana, Eftim Zdravevski, and António Cunha. 2022. "Literature Review on Artificial Intelligence Methods for Glaucoma Screening, Segmentation, and Classification" Journal of Imaging 8, no. 2: 19. https://doi.org/10.3390/jimaging8020019
APA StyleCamara, J., Neto, A., Pires, I. M., Villasana, M. V., Zdravevski, E., & Cunha, A. (2022). Literature Review on Artificial Intelligence Methods for Glaucoma Screening, Segmentation, and Classification. Journal of Imaging, 8(2), 19. https://doi.org/10.3390/jimaging8020019