To Grasp the World at a Glance: The Role of Attention in Visual and Semantic Associative Processing
Abstract
:1. Introduction
2. Processing Scene–Object Associative Relations
3. Processing Associative Relations among Individual Objects
4. A Possible Account for Prior Contradictive Findings: Lack of Control over Spatial Attention?
5. The Necessity of Spatial Attention to Processing Contextual Relations among Everyday Objects
6. Is Spatial Attention Necessary for the Processing of Categorical Relations?
7. Feature-Based Attention: The Unique Status of Prioritized (Task-Relevant) Stimuli
8. Summary and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Broadbent, D.E. Perception and Communication; Pergamon Press: Elmsford, NY, USA, 1958. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, J.A.; Deutsch, D. Attention: Some theoretical considerations. Psychol. Rev. 1963, 70, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Pashler, H.E. (Ed.) Attention; Psychology Press: Hove, UK, 1998. [Google Scholar]
- Treisman, A. Contextual cues in selective listening. Q. J. Exp. Psychol. 1960, 12, 242–248. [Google Scholar] [CrossRef]
- Posner, M.I. Orienting of attention. Q. J. Exp. Psychol. 1980, 32, 3–25. [Google Scholar] [CrossRef]
- Treisman, A.M.; Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 1980, 12, 97–136. [Google Scholar] [CrossRef]
- Kahneman, D.; Treisman, A.; Gibbs, B.J. The reviewing of object files: Object-specific integration of information. Cogn. Psychol. 1992, 24, 175–219. [Google Scholar] [CrossRef]
- Wolfe, J.M.; Cave, K.R. The psychophysical evidence for a binding problem in human vision. Neuron 1999, 24, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Evans, K.K.; Treisman, A. Perception of objects in natural scenes: Is it really attention free? J. Exp. Psychol. Hum. Percept. Perform. 2005, 31, 1476–1492. [Google Scholar] [CrossRef] [Green Version]
- Rensink, R.A.; O’Regan, J.K.; Clark, J.J. To see or not to see: The need for attention to perceive changes in scenes. Psychol. Sci. 1997, 8, 368–373. [Google Scholar] [CrossRef]
- Mack, A.; Rock, I. Inattentional Blindness; The MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Simons, D.J.; Levin, D.T. Change blindness. Trends Cogn. Sci. 1997, 1, 261–267. [Google Scholar] [CrossRef]
- Li, F.-F.; Van Rullen, R.; Koch, C.; Perona, P. Rapid natural scene categorization in the near absence of attention. Proc. Natl. Acad. Sci. USA 2002, 99, 9596–9601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei-Fei, L.; VanRullen, R.; Koch, C.; Perona, P. Why does natural scene categorization require little attention? exploring attentional requirements for natural and synthetic stimuli. Vis. Cogn. 2005, 12, 893–924. [Google Scholar] [CrossRef]
- Poncet, M.; Reddy, L.; Fabre-Thorpe, M. A need for more information uptake but not focused attention to access basic-level representations. J. Vis. 2012, 12. [Google Scholar] [CrossRef] [PubMed]
- Reddy, L.; Reddy, L.; Koch, C. Face identification in the near-absence of focal attention. Vis. Res. 2006, 46, 2336–2343. [Google Scholar] [CrossRef] [Green Version]
- Reddy, L.; Wilken, P.; Koch, C. Face-gender discrimination is possible in the near-absence of attention. J. Vis. 2004, 4, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Van Rullen, R.; Reddy, L.; Fei-Fei, L. Binding is a local problem for natural objects and scenes. Vis. Res. 2005, 45, 3133–3144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, M.A.; Alvarez, G.A.; Nakayama, K. Natural-scene perception requires attention. Psychol. Sci. 2011, 22, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Mack, A.; Clarke, J. Gist perception requires attention. Vis. Cogn. 2012, 20, 300–327. [Google Scholar] [CrossRef]
- Scharff, A.; Palmer, J.; Moore, C.M. Evidence of fixed capacity in visual object categorization. Psychon. Bull. Rev. 2011, 18, 713–721. [Google Scholar] [CrossRef]
- Walker, S.; Stafford, P.; Davis, G. Ultra-rapid categorization requires visual attention: Scenes with multiple foreground objects. J. Vis. 2008, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Biederman, I. Perceiving real-world scenes. Science 1972, 177, 77–80. [Google Scholar] [CrossRef]
- Fabre-Thorpe, M. The characteristics and limits of rapid visual categorization. Front. Psychol. 2011, 2, 243. [Google Scholar] [CrossRef] [Green Version]
- Li, F.-F.; Iyer, A.; Koch, C.; Perona, P. What do we perceive in a glance of a real-world scene? J. Vis. 2007, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Greene, M.R.; Oliva, A. The briefest of glances: The time course of natural scene understanding. Psychol. Sci. 2009, 20, 464–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potter, M.C. Short-term conceptual memory for pictures. J. Exp. Psychol. Hum. Learn. Mem. 1976, 2, 509–522. [Google Scholar] [CrossRef]
- Rousselet, G.A.; Joubert, O.R.; Fabre-Thorpe, M. How long to get to the “gist” of real-world natural scenes? Vis. Cogn. 2005, 12, 852–877. [Google Scholar] [CrossRef]
- Schyns, P.G.; Oliva, A. From blobs to boundary edges: Evidence for time- and spatial-scale-dependent scene recognition. Psychol. Sci. 1994, 5, 195–200. [Google Scholar] [CrossRef]
- Oliva, A.; Torralba, A. Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis. 2001, 42, 145–175. [Google Scholar] [CrossRef]
- Cohen, M.A.; Ostrand, C.; Frontero, N.; Pham, P.-N. Characterizing a Snapshot of Perceptual Experience. J. Exp. Psychol. Gen. 2021. Advance online publication. [Google Scholar] [CrossRef] [PubMed]
- Hayes, T.R.; Henderson, J.M. Scene semantics involuntarily guide attention during visual search. Psychon. Bull. Rev. 2019, 26, 1683–1689. [Google Scholar] [CrossRef]
- Henderson, J.M.; Hayes, T.R. Meaning-based guidance of attention in scenes as revealed by meaning maps. Nat. Hum. Behav. 2017, 1, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Antes, J.R.; Penland, J.G.; Metzger, R.L. Processing global information in briefly presented pictures. Psychol. Res. 1981, 43, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Bar, M. Visual objects in context. Nat. Rev. Neurosci. 2004, 5, 617–629. [Google Scholar] [CrossRef]
- Biederman, I.; Mezzanotte, R.J.; Rabinowitz, J.C. Scene perception: Detecting and judging objects undergoing relational violations. Cogn. Psychol. 1982, 14, 143–177. [Google Scholar] [CrossRef]
- Boyce, S.J.; Pollatsek, A.; Rayner, K. Effect of background information on object identification. J. Exp. Psychol. Hum. Percept. Perform. 1989, 15, 556–566. [Google Scholar] [CrossRef]
- Friedman, A. Framing Pictures: The Role of Knowledge in Automatized Encoding and Memory for Gist. J. Exp. Psychol. Gen. 1979, 108, 316–355. [Google Scholar] [CrossRef]
- Palmer, S.E. The effects of contextual scenes on the identification of objects. Mem. Cogn. 1975, 3, 519–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyck, M.; Brodeur, M.B. ERP evidence for the influence of scene context on the recognition of ambiguous and unambiguous objects. Neuropsychologia 2015, 72, 43–51. [Google Scholar] [CrossRef]
- Truman, A.; Mudrik, L. Are incongruent objects harder to identify? The functional significance of the N300 component. Neuropsychologia 2018, 117, 222–232. [Google Scholar] [CrossRef]
- Leroy, A.; Faure, S.; Spotorno, S. Reciprocal semantic predictions drive categorization of scene contexts and objects even when they are separate. Sci. Rep. 2020, 10, 8447. [Google Scholar]
- Demiral, Ş.B.; Malcolm, G.L.; Henderson, J.M. ERP correlates of spatially incongruent object identification during scene viewing: Contextual expectancy versus simultaneous processing. Neuropsychologia 2012, 50, 1271–1285. [Google Scholar] [CrossRef] [PubMed]
- Ganis, G.; Kutas, M. An electrophysiological study of scene effects on object identification. Cogn. Brain Res. 2003, 16, 123–144. [Google Scholar] [CrossRef]
- Hollingworth, A.; Henderson, J.M. Does consistent scene context facilitate object perception? J. Exp. Psychol. Gen. 1998, 127, 398–415. [Google Scholar] [CrossRef] [PubMed]
- Greene, M.R.; Botros, A.P.; Beck, D.M.; Fei-Fei, L. What you see is what you expect: Rapid scene understanding benefits from prior experience. Atten. Percept. Psychophys. 2015, 77, 1239–1251. [Google Scholar] [CrossRef] [Green Version]
- Firestone, C.; Scholl, B.J. “Top-down” effects where none should be found: The El Greco fallacy in perception research. Psychol. Sci. 2014, 25, 38–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firestone, C.; Scholl, B.J. Cognition does not affect perception: Evaluating the evidence for “top-down” effects. Behav. Brain Sci. 2016, 39, 77. [Google Scholar] [CrossRef] [PubMed]
- Davenport, J.L.; Potter, M.C. Scene consistency in object and background perception. Psychol. Sci. 2004, 15, 559–564. [Google Scholar] [CrossRef]
- Joubert, O.R.; Fize, D.; Rousselet, G.A.; Fabre-Thorpe, M. Early interference of context congruence on object processing in rapid visual categorization of natural scenes. J. Vis. 2008, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Underwood, G.; Templeman, E.; Lamming, L.; Foulsham, T. Is attention necessary for object identification? Evidence from eye movements during the inspection of real-world scenes. Conscious. Cogn. 2008, 17, 159–170. [Google Scholar] [CrossRef]
- Munneke, J.; Brentari, V.; Peelen, M.V. The influence of scene context on object recognition is independent of attentional focus. Front. Psychol. 2013, 4, 552. [Google Scholar] [CrossRef] [Green Version]
- Loftus, G.R.; Mackworth, N.H. Cognitive determinants of fixation location during picture viewing. J. Exp. Psychol. Hum. Percept. Perform. 1978, 4, 565–572. [Google Scholar] [CrossRef]
- Underwood, G.; Foulsham, T. Visual saliency and semantic incongruency influence eye movements when inspecting pictures. Q. J. Exp. Psychol. 2006, 59, 1931–1949. [Google Scholar] [CrossRef] [Green Version]
- Gordon, R.D. Attentional allocation during the perception of scenes. J. Exp. Psychol. Hum. Percept. Perform. 2004, 30, 760. [Google Scholar] [CrossRef] [PubMed]
- Hollingworth, A.; Henderson, J.M. Semantic informativeness mediates the detection of changes in natural scenes. Vis. Cogn. 2000, 7, 213–235. [Google Scholar] [CrossRef] [Green Version]
- LaPointe, M.R.P.; Milliken, B. Semantically incongruent objects attract eye gaze when viewing scenes for change. Vis. Cogn. 2016, 24, 63–77. [Google Scholar] [CrossRef]
- Mack, A.; Clarke, J.; Erol, M.; Bert, J. Scene incongruity and attention. Conscious. Cogn. 2017, 48, 87–103. [Google Scholar] [CrossRef]
- Ortiz-Tudela, J.; Martín-Arévalo, E.; Chica, A.B.; Lupiáñez, J. Semantic incongruity attracts attention at a pre-conscious level: Evidence from a TMS study. Cortex 2017, 102, 96–106. [Google Scholar] [CrossRef]
- LaPointe, M.R.P.; Lupianez, J.; Milliken, B. Context congruency effects in change detection: Opposing effects on detection and identification. Vis. Cogn. 2013, 21, 99–122. [Google Scholar] [CrossRef]
- Becker, M.W.; Pashler, H.; Lubin, J. Object-intrinsic oddities draw early saccades. J. Exp. Psychol. Hum. Percept. Perform. 2007, 33, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Bonitz, V.S.; Gordon, R.D. Attention to smoking-related and incongruous objects during scene viewing. Acta Psychol. 2008, 129, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, T.H.; Võ, M.L.H. Stuck on semantics: Processing of irrelevant object-scene inconsistencies modulates ongoing gaze behavior. Atten. Percept. Psychophys. 2017, 79, 154–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brockmole, J.R.; Henderson, J.M. Prioritizing new objects for eye fixation in real-world scenes: Effects of object–scene consistency. Vis. Cogn. 2008, 16, 375–390. [Google Scholar] [CrossRef] [Green Version]
- Belopolsky, A.V.; Theeuwes, J. When are attention and saccade preparation dissociated? Psychol. Sci. 2009, 20, 1340–1347. [Google Scholar] [CrossRef]
- Hoffman, J.E.; Subramaniam, B. The role of visual attention in saccadic eye movements. Percept. Psychophys. 1995, 57, 787–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theeuwes, J.; Kramer, A.F.; Hahn, S.; Irwin, D.E. Our eyes do not always go where we want them to go: Capture of the eyes by new objects. Psychol. Sci. 1998, 9, 379–385. [Google Scholar] [CrossRef]
- De Graef, P.; Christiaens, D.; d’Ydewalle, G. Perceptual effects of scene context on object identification. Psychol. Res. 1990, 52, 317–329. [Google Scholar] [CrossRef]
- Gareze, L.; Findlay, J.M. Absence of Scene Context Effects in Object Detection and Eye Gaze Capture; van Gompel, R.P.G., Fischer, M.H., Murray, W.S., Hill, R.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 617–637. [Google Scholar]
- Henderson, J.M.; Weeks, P.A., Jr.; Hollingworth, A. The Effects of Semantic Consistency on Eye Movements during Complex Scene Viewing. J. Exp. Psychol. 1999, 25, 210–228. [Google Scholar] [CrossRef]
- Rayner, K.; Castelhano, M.S.; Yang, J. Eye Movements when Looking at Unusual/Weird Scenes: Are There Cultural Differences? J. Exp. Psychol. Learn. Mem. Cogn. 2009, 35, 254–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Võ, M.L.H.; Henderson, J.M. Does gravity matter? Effects of semantic and syntactic inconsistencies on the allocation of attention during scene perception. J. Vis. 2009, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Võ, M.L.H.; Henderson, J.M. Object–scene inconsistencies do not capture gaze: Evidence from the flash-preview moving-window paradigm. Atten. Percept. Psychophys. 2011, 73, 1742–1753. [Google Scholar] [CrossRef]
- Furtak, M.; Doradzińska, Ł.; Ptashynska, A.; Mudrik, L.; Nowicka, A.; Bola, M. Automatic attention capture by threatening, but not by semantically incongruent natural scene images. Cereb. Cortex 2020, 30, 4158–4168. [Google Scholar] [CrossRef]
- Cohen, M.A.; Cavanagh, P.; Chun, M.M.; Nakayama, K. The attentional requirements of consciousness. Trends Cogn. Sci. 2012, 16, 411–417. [Google Scholar] [CrossRef]
- Posner, M.I. Attention: The mechanisms of consciousness. Proc. Natl. Acad. Sci. USA 1994, 91, 7398–7403. [Google Scholar] [CrossRef] [Green Version]
- Koch, C.; Tsuchiya, N. Attention and consciousness: Two distinct brain processes. Trends Cogn. Sci. 2007, 11, 16–22. [Google Scholar] [CrossRef]
- Tsuchiya, N.; Block, N.; Koch, C. Top-down attention and consciousness: Comment on Cohen et al. Trends Cogn. Sci. 2012, 16, 527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, D.; Stein, T.; Peelen, M.V. Real-world spatial regularities affect visual working memory for objects. Psychon. Bull. Rev. 2015, 22, 1784–1790. [Google Scholar] [CrossRef]
- Mudrik, L.; Breska, A.; Lamy, D.; Deouell, L.Y. Integration without awareness expanding the limits of unconscious processing. Psychol. Sci. 2011, 22, 764–770. [Google Scholar] [CrossRef] [Green Version]
- Mudrik, L.; Deouell, L.Y.; Lamy, D. Scene congruency biases binocular rivalry. Conscious. Cogn. 2011, 20, 756–767. [Google Scholar] [CrossRef] [PubMed]
- Mudrik, L.; Faivre, N.; Koch, C. Information integration without awareness. Trends Cogn. Sci. 2014, 18, 488–496. [Google Scholar] [CrossRef]
- Biderman, N.; Mudrik, L. Evidence for Implicit—But Not Unconscious—Processing of Object-Scene Relations. Psychol. Sci. 2017, 29, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Hirschhorn, R.; Kahane, O.; Gur-Arie, I.; Faivre, N.; Mudrik, L. Windows of Integration Hypothesis Revisited. Front. Hum. Neurosci. 2021, 14, 617187. [Google Scholar] [CrossRef]
- Moors, P.; Boelens, D.; van Overwalle, J.; Wagemans, J. Scene integration without awareness: No conclusive evidence for processing scene congruency during continuous flash suppression. Psychol. Sci. 2016, 27, 945–956. [Google Scholar] [CrossRef] [Green Version]
- Moors, P.; Hesselmann, G.; Wagemans, J.; van Ee, R. Continuous flash suppression: Stimulus fractionation rather than integration. Trends Cogn. Sci. 2017, 21, 719–721. [Google Scholar] [CrossRef]
- Oliva, A.; Schyns, P.G. Diagnostic colors mediate scene recognition. Cogn. Psychol. 2000, 41, 176–210. [Google Scholar] [CrossRef] [Green Version]
- Auckland, M.E.; Cave, K.R.; Donnelly, N. Nontarget object can influence perceptual processes during object recognition. Psychon. Bull. Rev. 2007, 14, 332–337. [Google Scholar] [CrossRef] [Green Version]
- Davenport, J.L. Consistency effects between objects in scenes. Mem. Cogn. 2007, 35, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Dobel, C.; Gumnior, H.; Bölte, J.; Zwitserlood, P. Describing scenes hardly seen. Acta Psychol. 2007, 125, 129–143. [Google Scholar] [CrossRef]
- Green, C.; Hummel, J.E. Familiar interacting object pairs are perceptually grouped. J. Exp. Psychol. Hum. Percept. Perform. 2006, 32, 1107–1119. [Google Scholar] [CrossRef] [Green Version]
- Henderson, J.M.; Pollatsek, A.; Rayner, K. Effects of foveal priming and extrafoveal preview on object identification. J. Exp. Psychol. Hum. Percept. Perform. 1987, 13, 449–463. [Google Scholar] [CrossRef]
- Roberts, K.L.; Humphreys, G.W. Action relations facilitate the identification of briefly-presented objects. Atten. Percept. Psychophys. 2011, 73, 597–612. [Google Scholar] [CrossRef] [PubMed]
- Oppermann, F.; Hassler, U.; Jescheniak, J.; Gruber, T. The rapid extraction of gist—Early neural correlates of high-level visual processing. J. Cogn. Neurosci. 2012, 24, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Bar, M.; Ullman, S. Spatial context in recognition. Perception 1996, 25, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Gronau, N.; Shachar, M. Contextual Integration of Visual Objects Necessitates Attention. Atten. Percept. Psychophys. 2014, 76, 695–714. [Google Scholar] [CrossRef] [PubMed]
- Gronau, N.; Neta, M.; Bar, M. Integrated contextual representation for objects identities and their locations. J. Cogn. Neurosci. 2008, 20, 371–388. [Google Scholar] [CrossRef]
- Roberts, K.L.; Humphreys, G.W. Action relationships concatenate representations of separate objects in the ventral visual system. NeuroImage 2010, 52, 1541–1548. [Google Scholar] [CrossRef]
- Kim, J.G.; Biederman, I. Where do objects become scenes? Cereb. Cortex 2010, 21, 1738–1746. [Google Scholar] [CrossRef]
- Malcolm, G.L.; Rattinger, M.; Shomstein, S. Intrusive effects of semantic information on visual selective attention. Atten. Percept. Psychophys. 2016, 78, 2066–2078. [Google Scholar] [CrossRef] [Green Version]
- Treisman, A. How the deployment of attention determines what we see. Vis. Cogn. 2006, 14, 411–443. [Google Scholar] [CrossRef] [PubMed]
- Gaspelin, N.; Ruthruff, E.; Jung, K. Slippage theory and the flanker paradigm: An early-selection account of selective attention failures. J. Exp. Psychol. Hum. Percept. Perform. 2014, 40, 1257. [Google Scholar] [CrossRef] [PubMed]
- Lachter, J.; Forster, K.I.; Ruthruff, E. Forty-five years after Broadbent (1958): Still no identification without attention. Psychol. Rev. 2004, 111, 880–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaBerge, D. Spatial extent of attention to letters and words. J. Exp. Psychol. Hum. Percept. Perform. 1983, 9, 371–379. [Google Scholar] [CrossRef]
- Cutzu, F.; Tsotsos, J.K. The selective tuning model of attention: Psychophysical evidence for a suppressive annulus around an attended item. Vis. Res. 2003, 43, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Loftus, G.R.; Masson, M.E. Using confidence intervals in within-subject designs. Psychon. Bull. Rev. 1994, 1, 476–490. [Google Scholar] [CrossRef] [Green Version]
- Gronau, N. Vision at a glance: The role of attention in processing object-to-object categorical relations. Atten. Percept. Psychophys. 2020, 82, 671–688. [Google Scholar] [CrossRef]
- Bajo, M.T. Semantic facilitation with pictures and words. J. Exp. Psychol. Learn. Mem. Cogn. 1988, 14, 579. [Google Scholar] [CrossRef]
- Carr, T.H.; McCauley, C.; Sperber, R.D.; Parmelee, C.M. Words, pictures, and priming: On semantic activation, conscious identification, and the automaticity of information processing. J. Exp. Psychol. Hum. Percept. Perform. 1982, 8, 757. [Google Scholar] [CrossRef] [PubMed]
- Kroll, J.F.; Potter, M.C. Recognizing words, pictures, and concepts: A comparison of lexical, object, and reality decisions. J. Verbal Learn. Verbal Behav. 1984, 23, 39–66. [Google Scholar] [CrossRef]
- Sperber, R.D.; McCauley, C.; Ragain, R.D.; Weil, C.M. Semantic priming effects on picture and word processing. Mem. Cogn. 1979, 7, 339–345. [Google Scholar] [CrossRef]
- Gronau, N.; Izoutcheev, A. The necessity of visual attention to scene categorization: Dissociating” task-relevant” and” task-irrelevant” scene distractors. J. Exp. Psychol. Hum. Percept. Perform. 2017, 43, 954–970. [Google Scholar] [CrossRef] [PubMed]
- Hillyard, S.A.; Münte, T.F. Selective attention to color and location: An analysis with event-related brain potentials. Percept. Psychophys. 1984, 36, 185–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maunsell, J.H.; Treue, S. Feature-based attention in visual cortex. Trends Neurosci. 2006, 29, 317–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yantis, S. Goal-directed and stimulus-driven determinants of attentional control. Atten. Perform. 2000, 18, 73–103. [Google Scholar]
- Memelink, J.; Hommel, B. Intentional weighting: A basic principle in cognitive control. Psychol. Res. 2013, 77, 249–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, H.J.; Heller, D.; Ziegler, J. Visual search for singleton feature targets within and across feature dimensions. Percept. Psychophys. 1995, 57, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Stevens, S.T.; Carrasco, M. Comparing the time course and efficacy of spatial and feature-based attention. Vis. Res. 2007, 47, 108–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saenz, M.; Buracas, G.T.; Boynton, G.M. Global effects of feature-based attention in human visual cortex. Nat. Neurosci. 2002, 5, 631–632. [Google Scholar] [CrossRef]
- Folk, C.L.; Remington, R.W.; Johnston, J.C. Involuntary covert orienting is contingent on attentional control settings. J. Exp. Psychol. Hum. Percept. Perform. 1992, 18, 1030–1044. [Google Scholar] [CrossRef]
- Folk, C.L.; Leber, A.B.; Egeth, H.E. Made you blink! Contingent attentional capture produces a spatial blink. Percept. Psychophys. 2002, 64, 741–753. [Google Scholar] [CrossRef] [Green Version]
- Wyble, B.; Folk, C.; Potter, M.C. Contingent attentional capture by conceptually relevant images. J. Exp. Psychol. Hum. Percept. Perform. 2013, 39, 861. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.; Ivry, R.B.; Rafal, R.D.; Kohn, C. Activating response codes by stimuli in the neglected visual field. Neuropsychology 1995, 9, 165. [Google Scholar] [CrossRef]
- Gronau, N.; Cohen, A.; Ben-Shakhar, G. Distractor interference in focused attention tasks is not mediated by attention capture. Q. J. Exp. Psychol. 2009, 62, 1685–1695. [Google Scholar] [CrossRef]
- Van der Heijden, A.H.C. Selective Attention in Vision; Routledge: New York, NY, USA, 1992. [Google Scholar]
- Peelen, M.V.; Fei-Fei, L.; Kastner, S. Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature 2009, 460, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Seidl-Rathkopf, K.N.; Turk-Browne, N.B.; Kastner, S. Automatic guidance of attention during real-world visual search. Atten. Percept. Psychophys. 2015, 77, 1881–1895. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, J.M.; Cave, K.R.; Franzel, S.L. Guided search: An alternative to the feature integration model for visual search. J. Exp. Psychol. Hum. Percept. Perform. 1989, 15, 419–433. [Google Scholar] [CrossRef] [PubMed]
- Chelazzi, L.; Miller, E.K.; Duncan, J.; Desimone, R. A neural basis for visual search in inferior temporal cortex. Nature 1993, 363, 345. [Google Scholar] [CrossRef]
- Desimone, R.; Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 1995, 18, 193–222. [Google Scholar] [CrossRef]
- Duncan, J. EPS Mid-Career award 2004: Brain mechanisms of attention. Q. J. Exp. Psychol. 2006, 59, 2–27. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gronau, N. To Grasp the World at a Glance: The Role of Attention in Visual and Semantic Associative Processing. J. Imaging 2021, 7, 191. https://doi.org/10.3390/jimaging7090191
Gronau N. To Grasp the World at a Glance: The Role of Attention in Visual and Semantic Associative Processing. Journal of Imaging. 2021; 7(9):191. https://doi.org/10.3390/jimaging7090191
Chicago/Turabian StyleGronau, Nurit. 2021. "To Grasp the World at a Glance: The Role of Attention in Visual and Semantic Associative Processing" Journal of Imaging 7, no. 9: 191. https://doi.org/10.3390/jimaging7090191
APA StyleGronau, N. (2021). To Grasp the World at a Glance: The Role of Attention in Visual and Semantic Associative Processing. Journal of Imaging, 7(9), 191. https://doi.org/10.3390/jimaging7090191