A Benchmark Evaluation of Adaptive Image Compression for Multi Picture Object Stereoscopic Images
Abstract
:1. Introduction
2. Motivations
- Experiments on 60 stereopairs of the Middlebury-scenes datasets including versions between 2001 and 2014;
- Images which resolution variates from 375 × 450 to 2016 × 2960;
- A total of 16 different evaluation settings, by combining different feature detection and geometry estimation;
- Comparative evaluation with other five methods published more recently, taking into account both bitrate saving and reconstruction quality, on the same publicly available dataset;
- Subjective assessment conducted with high number of tests and high participant population variability confirmed that the reconstructed image is indistinguishable from the high quality one.
3. Evaluated Pipeline
3.1. Encoding Pipeline: Asymmetric Compression
3.2. NCC-Based Decoding Approach
Matching Approach
- The block of which is is located at the same position of ;
- The block of obtained by computing the Normalized Cross Correlation (NCC) [22] between all the sub-images of and considering the sub-image with the highest NCC value.
3.3. Geometry-Based Decoding Approach
3.3.1. Epipolar Geometry
3.3.2. Image Blocking
3.3.3. Matching Approach
3.3.4. Range Reduction
- The y coordinate of the searched point is given by the y values of the epipolar line;
- The x coordinate of the searched point is close to the x of the correspondent point on the right view;
- Equation (2) must be satisfied by any pair of corresponding points.
- The threshold value is set to ;
- If the point with the same x as is not included by the range obtained after the thresholding, according to the previous considerations, the threshold is augmented until this point is included in the search range;
- If the search range is empty, the threshold is augmented iteratively by until the range is not empty.
3.3.5. Block Matching
3.3.6. Partial Matching
3.4. Image Enhancing
3.5. Computational Complexity
3.6. NCC-Based Complexity
3.7. Geometry-Based Complexity
4. Experiments
4.1. Comparative Evaluation
4.2. Subjective Assessment
5. Conclusions and Future Works
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Multi-Picture Format—White Paper DC-X007-2009. Available online: https://www.cipa.jp/std/documents/e/DC-X007-KEY_E.pdf (accessed on 22 August 2021).
- Wallace, G.K. The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 1992, 38, 18–34. [Google Scholar] [CrossRef]
- Hudson, G.; Léger, A.; Niss, B.; Sebestyén, I.; Vaaben, J. JPEG-1 standard 25 years: Past, present, and future reasons for a success. J. Electron. Imaging 2018, 27, 040901. [Google Scholar] [CrossRef]
- Battiato, S.; Mancuso, M.; Bosco, A.; Guarnera, M. Psychovisual and statistical optimization of quantization tables for DCT compression engines. In Proceedings of the 11th International Conference on Image Analysis and Processing, Palermo, Italy, 26–28 September 2001; pp. 602–606. [Google Scholar]
- Christopoulos, C.; Skodras, A.; Ebrahimi, T. The JPEG2000 still image coding system: An overview. IEEE Trans. Consum. Electron. 2000, 46, 1103–1127. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yu, M.; Jiang, G.; Choi, T.Y.; Kim, Y.D. Approaches to H. 264-based stereoscopic video coding. In Proceedings of the Third International Conference on Image and Graphics (ICIG’04), Hong Kong, China, 18–20 December 2004; pp. 365–368. [Google Scholar]
- Woo, W.; Ortega, A. Stereo image compression with disparity compensation using the MRF model. In Proceedings of the Visual Communications and Image Processing’96. International Society for Optics and Photonics, Orlando, FL, USA, 17–20 March 1996; Volume 2727, pp. 28–42. [Google Scholar]
- Ahlvers, U.; Zoelzer, U.; Rechmeier, S. FFT-based disparity estimation for stereo image coding. In Proceedings of the 2003 International Conference on Image Processing (Cat. No. 03CH37429), Barcelona, Spain, 14–17 September 2003; Volume 1, pp. 1–761. [Google Scholar]
- Schenkel, M.B.; Luo, C.; Frossard, P.; Wu, F. Joint decoding of stereo JPEG image Pairs. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; pp. 2633–2636. [Google Scholar]
- Kadaikar, A.; Dauphin, G.; Mokraoui, A. Joint disparity and variable size-block optimization algorithm for stereoscopic image compression. Signal Process. Image Commun. 2018, 61, 1–8. [Google Scholar] [CrossRef]
- Poolakkachalil, T.; Chandran, S. Stereoscopic image compression using curvelet. J. Theor. Appl. Inf. Technol. 2019, 97, 1146–1154. [Google Scholar]
- Kumari, P.D.; Panigrahi, S.K.; Narayana, M. Image Compression Algorithm Based on Curvelet Transforms and Comparative Analysis with JPEG and JPEG 2000; International Journal of Electronics Engineering Research; Research India Publications: Delhi, India, 2017; Volume 9, pp. 1373–1387. [Google Scholar]
- Poolakkachalil, T.K.; Chandran, S. Summative Stereoscopic Image Compression using Arithmetic Coding. Indones. J. Electr. Eng. Informatics IJEEI 2019, 7, 564–576. [Google Scholar]
- Poolakkachalil, T.K.; Chandran, S. Analysis of Stereoscopic Image Compression Using Arithmetic Coding and Huffman Coding. In Proceedings of the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July 2018; pp. 214–220. [Google Scholar]
- Deng, X.; Yang, W.; Yang, R.; Xu, M.; Liu, E.; Feng, Q.; Timofte, R. Deep Homography for Efficient Stereo Image Compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual Conference, 19–25 June 2021; pp. 1492–1501. [Google Scholar]
- Bao, W.; Wang, W.; Xu, Y.; Guo, Y.; Hong, S.; Zhang, X. InStereo2K: A large real dataset for stereo matching in indoor scenes. Sci. China Inf. Sci. 2020, 63, 1–11. [Google Scholar] [CrossRef]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Kadri, I.; Dauphin, G.; Mokraoui, A.; Lachiri, Z. Stereoscopic image coding using a global disparity estimation algorithm optimizing the compensation scheme impact. In Proceedings of the 2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 23–25 September 2020; pp. 69–74. [Google Scholar]
- Ortis, A.; Rundo, F.; Di Giore, G.; Battiato, S. Adaptive Compression of Stereoscopic Images. In Image Analysis and Processing—ICIAP 2013; Petrosino, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 391–399. [Google Scholar]
- Ortis, A.; Battiato, S. A new fast matching method for adaptive compression of stereoscopic images. Three-Dimensional Image Processing, Measurement (3DIPM), and Applications 2015. Int. Soc. Opt. Photonics 2015, 9393, 93930K. [Google Scholar]
- O’Mahony, N.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Hernandez, G.V.; Krpalkova, L.; Riordan, D.; Walsh, J. Deep learning vs. traditional computer vision. In Science and Information Conference; Springer: Las Vegas, NV, USA, 2019; pp. 128–144. [Google Scholar]
- Briechle, K.; Hanebeck, U.D. Template matching using fast normalized cross correlation. Optical Pattern Recognition XII. Int. Soc. Opt. Photonics 2001, 4387, 95–102. [Google Scholar]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Scharstein, D.; Szeliski, R. High-accuracy stereo depth maps using structured light. In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003; Volume 1, p. 1. [Google Scholar]
- Longuet-Higgins, H.C. A computer algorithm for reconstructing a scene from two projections. Nature 1981, 293, 133. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Harris, C.G.; Stephens, M. A combined corner and edge detector. In Alvey Vision Conference; Citeseer: Manchester, UK, 1988; Volume 15, pp. 10–5244. [Google Scholar]
- Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. [Google Scholar] [CrossRef]
- 3DMedia—3D Technology and Software. 2013. Available online: http://www.3dmedia.com/gallery (accessed on 2 July 2021).
- Scharstein, D.; Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 2002, 47, 7–42. [Google Scholar] [CrossRef]
- Scharstein, D.; Pal, C. Learning conditional random fields for stereo. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Hirschmuller, H.; Scharstein, D. Evaluation of Cost Functions for Stereo Matching. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Scharstein, D.; Hirschmüller, H.; Kitajima, Y.; Krathwohl, G.; Nešić, N.; Wang, X.; Westling, P. High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth; Lecture Notes in Computer Science; Springer International Publishing: Munster, Germany, 2014; pp. 31–42. [Google Scholar]
- Moorthy, A.K.; Su, C.C.; Mittal, A.; Bovik, A.C. Subjective evaluation of stereoscopic image quality. Signal Process. Image Commun. 2013, 28, 870–883. [Google Scholar] [CrossRef]
- Banitalebi-Dehkordi, A.; Pourazad, M.T.; Nasiopoulos, P. A human visual system-based 3D video quality metric. In Proceedings of the 2012 International Conference on 3D Imaging (IC3D), Liege, Belgium, 3–5 December 2012; pp. 1–5. [Google Scholar]
- Duarte, J.; Cassin, R.; Huijts, J.; Iwan, B.; Fortuna, F.; Delbecq, L.; Chapman, H.; Fajardo, M.; Kovacev, M.; Boutu, W.; et al. Computed stereo lensless X-ray imaging. Nat. Photonics 2019, 13, 449–453. [Google Scholar] [CrossRef] [Green Version]
Low Quality 65 | Low Quality 70 | ||||
---|---|---|---|---|---|
MPO Image | N × M | Lossy (dB) | Bit-Rate Saving | Lossy (dB) | Bit-Rate Saving |
Flowers1 | 360 × 360 | 2.17 | 40.70% | 1.65 | 34.60% |
Flowers2 | 360 × 481 | 2 | 40.60% | 1.32 | 34.50% |
Flowers3 | 360 × 481 | 2.76 | 48.70% | 2.76 | 41.70% |
Castle | 360 × 481 | 2.62 | 38.30% | 2.18 | 32.50% |
Dorm | 360 × 360 | 2.73 | 37.10% | 2.64 | 31.10% |
Pelion | 360 × 481 | 2.34 | 37.60% | 2.34 | 31.80% |
Hallway | 360 × 482 | 2.33 | 37.60% | 2.33 | 32.10% |
Statue | 360 × 483 | 2.59 | 41.90% | 2.6 | 35.70% |
Library | 360 × 270 | 1.98 | 38.70% | 1.71 | 32.70% |
Hall | 360 × 360 | 1.66 | 41.10% | 1.4 | 34.90% |
Garden Bridge | 360 × 360 | 2.11 | 39.50% | 1.82 | 33.50% |
Autumn1 | 360 × 361 | 2.73 | 35.30% | 2.53 | 29.80% |
Autumn2 | 360 × 361 | 2.6 | 36.40% | 2.4 | 30.60% |
Autumn3 | 360 × 361 | 2.38 | 37.00% | 2.15 | 31.20% |
Autumn4 | 360 × 361 | 2.65 | 36.10% | 2.44 | 30.40% |
Animals1 | 360 × 240 | 2.16 | 38.80% | 2.16 | 32.80% |
Animals2 | 360 × 240 | 2.47 | 37.00% | 2.18 | 31.30% |
Cube | 360 × 360 | 2.33 | 39.30% | 2 | 33.30% |
Covered | 360 × 360 | 1.88 | 39.20% | 1.73 | 33.40% |
Garden | 360 × 360 | 2.41 | 38.50% | 2.15 | 32.50% |
Snow | 360 × 481 | 2.62 | 36.80% | 2.45 | 31.20% |
Tree | 360 × 360 | 2.69 | 37.40% | 2.52 | 31.40% |
Zoo | 360 × 240 | 2.67 | 36.90% | 2.33 | 31.10% |
Stereopair | Size | # of Blocks | Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low Quality 65 | ||||||||||||
Bitrate Saving (%) | LmedS | Norm8Points | ||||||||||
Harris | SIFT | Harris | SIFT | |||||||||
ID | Lossy (dB) | Time (s) | Lossy (dB) | Time (s) | Lossy (dB) | Time (s) | Lossy (dB) | Time (s) | ||||
1 | Adirondack-perfect | 1988 × 2880 | 3.479 | 43 | 0.58 | 933 | 0.58 | 252 | < | 304 | 1.59 | 352 |
2 | Backpack-perfect | 2016 × 2940 | 3.600 | 39 | 1.32 | 846 | < | 684 | 1.32 | 239 | 1.33 | 339 |
3 | Bicycle1-perfect | 2008 × 2988 | 3.577 | 37 | 1.59 | 137 | 1.59 | 622 | 1.59 | 395 | 1.59 | 164 |
4 | Cable-perfect | 1984 × 2796 | 3.381 | 41 | 1.59 | 519 | 1.59 | 372 | 1.59 | 121 | 2.18 | 1.070 |
5 | Classroom1-perfect | 1920 × 3000 | 3.478 | 42 | 1.00 | 174 | 1.00 | 190 | 1.00 | 124 | 1.00 | 535 |
6 | Couch-perfect | 1992 × 2300 | 2.793 | 42 | 1.59 | 266 | 2.00 | 339 | 2.59 | 1.068 | 2.01 | 356 |
7 | Flowers-perfect | 1980 × 2880 | 3.479 | 38 | 2.17 | 306 | 2.17 | 378 | 2.59 | 1.197 | 2.59 | 1.503 |
8 | Jadeplant-perfect | 1988 × 2632 | 3.185 | 40 | 1.74 | 346 | 2.32 | 632 | 2.91 | 924 | 2.92 | 1.040 |
9 | Mask-perfect | 2008 × 2792 | 3.381 | 40 | 2.74 | 140 | 1.41 | 600 | 1.83 | 377 | 2.75 | 1.813 |
10 | Motorcycle-perfect | 2000 × 2964 | 3.577 | 38 | 1.74 | 218 | 1.74 | 525 | 1.74 | 303 | 2.07 | 605 |
11 | Piano-perfect | 1920 × 2820 | 3.243 | 40 | 1.74 | 170 | 1.74 | 304 | 2.06 | 178 | 2.07 | 347 |
12 | Pipes-perfect | 1924 × 2960 | 3.431 | 38 | 2.00 | 752 | 2.91 | 800 | 2.00 | 156 | 2.01 | 246 |
13 | Playroom-perfect | 1908 × 2800 | 3.243 | 38 | 2.32 | 349 | 2.33 | 687 | 2.32 | 265 | 2.32 | 478 |
14 | Playtable-perfect | 1848 × 2724 | 3.082 | 38 | 2.00 | 133 | 0.68 | 369 | 1.81 | 325 | 0.68 | 240 |
15 | Recycle-perfect | 1924 × 2864 | 3.290 | 42 | < | 154 | < | 230 | < | 92 | < | 151 |
16 | Shelves-perfect | 2000 × 2952 | 3.577 | 41 | 1.41 | 880 | 1.00 | 480 | 2.00 | 1.298 | 1.00 | 386 |
17 | Shopvac-perfect | 1996 × 2356 | 2.842 | 42 | < | 241 | < | 365 | < | 396 | < | 375 |
18 | Sticks-perfect | 2008 × 2864 | 3.430 | 38 | 2.42 | 164 | 1.26 | 351 | 2.23 | 778 | 1.49 | 253 |
20 | Sword1-perfect | 2020 × 2912 | 3.600 | 39 | 1.49 | 978 | 0.58 | 572 | 1.49 | 208 | 1.49 | 677 |
21 | Sword2-perfect | 2000 × 2856 | 3.430 | 42 | 2.59 | 156 | 1.00 | 378 | 1.00 | 748 | 1.00 | 288 |
22 | Umbrella-perfect | 2016 × 2960 | 3.650 | 42 | < | 183 | < | 646 | < | 391 | 1.00 | 1.000 |
23 | Vintage-perfect | 1924 × 2912 | 3.384 | 36 | 2.17 | 201 | 2.17 | 189 | 2.59 | 257 | 2.59 | 887 |
Average | 40 | 1.55 | 375 | 1.28 | 453 | 1.58 | 461 | 1.62 | 596 | |||
St. Dev. | 2.02 | 0.81 | 296 | 0.86 | 179 | 0.91 | 367 | 0.82 | 446 |
Stereopair | Size | # of Blocks | Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low Quality 70 | ||||||||||||
Bitrate Saving (%) | LmedS | Norm8Points | ||||||||||
Harris | SIFT | Harris | SIFT | |||||||||
ID | Lossy (dB) | Time (s) | Lossy (dB) | Time (s) | Lossy (dB) | Time (s) | Lossy (dB) | Time (s) | ||||
1 | Adirondack-perfect | 1988 × 2880 | 3479 | 38 | < | 208 | < | 292 | < | 113 | 1.17 | 582 |
2 | Backpack-perfect | 2016 × 2940 | 3600 | 33 | 0.32 | 679 | < | 541 | 1.59 | 1.184 | 1.33 | 474 |
3 | Bicycle1-perfect | 2008 × 2988 | 3577 | 32 | 0.59 | 111 | 1.59 | 726 | 2.18 | 359 | 2.18 | 484 |
4 | Cable-perfect | 1984 × 2796 | 3381 | 36 | 2.18 | 882 | 2.18 | 674 | 0.59 | 183 | 0.59 | 201 |
5 | Classroom1-perfect | 1920 × 3000 | 3478 | 37 | 1.00 | 148 | 1.00 | 156 | 1.00 | 890 | 1.00 | 584 |
6 | Couch-perfect | 1992 × 2300 | 2793 | 36 | 0.59 | 181 | 0.59 | 279 | 2.01 | 473 | 2.01 | 350 |
7 | Flowers-perfect | 1980 × 2880 | 3479 | 33 | 1.17 | 851 | 1.17 | 395 | 1.17 | 444 | 1.17 | 385 |
8 | Jadeplant-perfect | 1988 × 2632 | 3185 | 34 | 1.74 | 441 | 1.74 | 848 | 2.01 | 489 | 2.92 | 1.414 |
9 | Mask-perfect | 2008 × 2792 | 3381 | 34 | 1.84 | 774 | 2.16 | 1.448 | 2.16 | 294 | 1.84 | 633 |
10 | Motorcycle-perfect | 2000 × 2964 | 3577 | 33 | 1.42 | 392 | 1.74 | 458 | 1.74 | 249 | 2.07 | 392 |
11 | Piano-perfect | 1920 × 2820 | 3243 | 35 | 1.74 | 222 | 2.07 | 708 | 1.74 | 210 | 2.07 | 240 |
12 | Pipes-perfect | 1924 × 2960 | 3431 | 33 | 2.01 | 671 | 2.33 | 1.346 | 2.01 | 255 | 2.01 | 268 |
13 | Playroom-perfect | 1908 × 2800 | 3243 | 33 | 2.07 | 543 | 2.07 | 772 | 2.07 | 138 | 2.33 | 413 |
14 | Playtable-perfect | 1848 × 2724 | 3082 | 32 | 0.90 | 966 | 0.68 | 168 | 0.68 | 207 | 0.90 | 340 |
15 | Recycle-perfect | 1924 × 2864 | 3290 | 37 | < | 184 | < | 191 | 1.00 | 95 | 1.00 | 446 |
16 | Shelves-perfect | 2000 × 2952 | 3577 | 36 | < | 289 | < | 307 | 0.59 | 525 | 2.01 | 1.088 |
17 | Shopvac-perfect | 1996 × 2356 | 2842 | 37 | < | 269 | < | 306 | < | 1003 | < | 315 |
18 | Sticks-perfect | 2008 × 2864 | 3430 | 32 | 0.26 | 226 | 0.68 | 333 | 1.27 | 253 | 1.27 | 409 |
20 | Sword1-perfect | 2020 × 2912 | 3600 | 33 | 0.91 | 1488 | 0.59 | 407 | 1.91 | 1.737 | 0.91 | 319 |
21 | Sword2-perfect | 2000 × 2856 | 3430 | 36 | 2.18 | 1696 | 1.00 | 546 | 1.00 | 1.196 | 1.00 | 855 |
22 | Umbrella-perfect | 2016 × 2960 | 3650 | 38 | 1.00 | 223 | 1.00 | 733 | 1.00 | 242 | 1.00 | 1.134 |
23 | Vintage-perfect | 1924 × 2912 | 3384 | 31 | 1.17 | 324 | 1.17 | 169 | 2.59 | 165 | 1.17 | 241 |
Average | 35 | 1.05 | 535 | 1.08 | 537 | 1.38 | 486 | 1.45 | 526 | |||
St. Dev. | 2.08 | 0.76 | 433 | 0.81 | 352 | 0.73 | 437 | 0.68 | 320 |
Stereopair | Size | # of Blocks | Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low Quality 65 | ||||||||||||
Bitrate Saving (%) | LmedS | Norm8Points | ||||||||||
Harris | SIFT | Harris | SIFT | |||||||||
ID | Lossy (dB) | Time (sec) | Lossy (dB) | Time (sec) | Lossy (dB) | Time (sec) | Lossy (dB) | Time (sec) | ||||
1 | Aloe | 555 × 641 | 224 | 37 | 1.58 | 6 | 2.01 | 11 | 1.83 | 4 | 2.01 | 11 |
2 | Baby1 | 555 × 620 | 224 | 40 | 0.87 | 4 | 1.24 | 6 | 1.65 | 26 | 1.24 | 6 |
3 | Baby2 | 555 × 620 | 224 | 39 | 1.02 | 12 | 1.02 | 9 | 1.35 | 18 | 1.02 | 9 |
4 | Baby3 | 555 × 656 | 238 | 40 | 1.61 | 36 | 1.35 | 13 | 1.02 | 6 | 1.35 | 13 |
5 | Bowling1 | 555 × 626 | 224 | 39 | 1.00 | 10 | 1.59 | 5 | 1.91 | 27 | 1.59 | 5 |
6 | Bowling2 | 555 × 665 | 238 | 39 | 1.81 | 9 | 2.27 | 15 | 1.81 | 13 | 2.27 | 15 |
7 | Cloth1 | 555 × 626 | 224 | 36 | 1.52 | 11 | 1.77 | 6 | 1.77 | 11 | 1.77 | 6 |
8 | Cloth2 | 555 × 650 | 224 | 38 | 1.75 | 22 | 1.65 | 9 | 1.85 | 20 | 1.65 | 9 |
9 | Cloth3 | 555 × 626 | 224 | 38 | 1.85 | 9 | 1.85 | 15 | 2.18 | 24 | 1.85 | 15 |
10 | Cloth4 | 555 × 650 | 224 | 37 | 2.18 | 27 | 1.84 | 8 | 1.91 | 10 | 1.84 | 8 |
11 | Flowerpots | 555 × 656 | 238 | 39 | 1.59 | 16 | 2.01 | 12 | 1.59 | 7 | 2.01 | 12 |
12 | Lampshade1 | 555 × 650 | 224 | 39 | 3.18 | 14 | 3.18 | 13 | 1.91 | 9 | 3.18 | 13 |
13 | Lampshade2 | 555 × 650 | 224 | 39 | 2.01 | 8 | 2.01 | 6 | 2.01 | 14 | 2.01 | 6 |
14 | Midd1 | 555 × 698 | 252 | 36 | 1.49 | 5 | 2.42 | 31 | 1.49 | 8 | 2.42 | 31 |
15 | Midd2 | 555 × 683 | 238 | 36 | 1.27 | 5 | 1.27 | 10 | 1.27 | 4 | 1.27 | 10 |
16 | Monopoly | 555 × 665 | 238 | 36 | 1.27 | 8 | 1.94 | 26 | 1.94 | 5 | 1.94 | 26 |
17 | Plastic | 555 × 635 | 224 | 34 | 0.42 | 9 | 0.42 | 13 | 0.42 | 7 | 0.42 | 13 |
18 | Rocks1 | 555 × 638 | 224 | 38 | 1.65 | 8 | 2.40 | 13 | 1.65 | 15 | 2.40 | 13 |
19 | Rocks2 | 555 × 638 | 224 | 38 | 1.65 | 9 | 2.05 | 8 | 2.05 | 5 | 2.05 | 8 |
20 | Wood1 | 555 × 686 | 238 | 42 | 0.59 | 15 | 0.59 | 6 | 1.33 | 29 | 0.59 | 6 |
21 | Wood2 | 555 × 653 | 224 | 40 | 1.42 | 31 | 0.42 | 8 | < | 6 | 0.42 | 8 |
Average | 38 | 1.53 | 13 | 1.68 | 12 | 1.57 | 13 | 1.68 | 12 | |||
St. Dev. | 1.68 | 0.59 | 8.73 | 0.69 | 6.50 | 0.54 | 8.11 | 0.69 | 6.50 |
Stereopair | Size | # of Blocks | Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low Quality 70 | ||||||||||||
Bitrate Saving (%) | LmedS | Norm8Points | ||||||||||
Harris | SIFT | Harris | SIFT | |||||||||
ID | Lossy (dB) | Time (s) | Lossy (dB) | Time (s) | Lossy (dB) | Time (s) | Lossy (dB) | Time (s) | ||||
1 | Aloe | 555 × 641 | 224 | 32 | 1.26 | 9 | 1.45 | 18 | 1.52 | 8 | 1.52 | 8 |
2 | Baby1 | 555 × 620 | 224 | 34 | 0.66 | 4 | 1.32 | 34 | 1.32 | 28 | 0.87 | 7 |
3 | Baby2 | 555 × 620 | 224 | 33 | 1.61 | 18 | 1.61 | 32 | 1.61 | 9 | 1.02 | 10 |
4 | Baby3 | 555 × 656 | 238 | 34 | 0.91 | 6 | 1.17 | 40 | 0.91 | 16 | 0.91 | 11 |
5 | Bowling1 | 555 × 626 | 224 | 33 | 1.00 | 10 | 1.00 | 26 | 1.91 | 16 | 1.00 | 5 |
6 | Bowling2 | 555 × 665 | 238 | 33 | 2.27 | 30 | 1.40 | 14 | 1.40 | 7 | 2.08 | 8 |
7 | Cloth1 | 555 × 626 | 224 | 31 | 1.83 | 28 | 1.47 | 29 | 1.47 | 9 | 1.71 | 13 |
8 | Cloth2 | 555 × 650 | 224 | 32 | 1.32 | 13 | 1.21 | 15 | 1.75 | 10 | 1.65 | 7 |
9 | Cloth3 | 555 × 626 | 224 | 32 | 1.50 | 10 | 1.50 | 16 | 1.69 | 6 | 1.50 | 10 |
10 | Cloth4 | 555 × 650 | 224 | 31 | 2.05 | 25 | 1.49 | 13 | 1.49 | 10 | 1.78 | 8 |
11 | Flowerpots | 555 × 656 | 238 | 34 | 1.59 | 9 | 1.59 | 22 | 2.01 | 16 | 2.42 | 19 |
12 | Lampshade1 | 555 × 650 | 224 | 33 | 2.33 | 11 | 2.33 | 14 | 2.59 | 26 | 2.33 | 8 |
13 | Lampshade2 | 555 × 650 | 224 | 34 | 2.01 | 8 | 2.01 | 8 | 2.01 | 8 | 2.33 | 30 |
14 | Midd1 | 555 × 698 | 252 | 31 | 1.27 | 11 | 1.27 | 11 | 1.27 | 8 | 1.49 | 9 |
15 | Midd2 | 555 × 683 | 238 | 31 | 0.68 | 4 | 0.68 | 14 | 0.68 | 4 | 1.49 | 29 |
16 | Monopoly | 555 × 665 | 238 | 30 | 1.10 | 5 | 1.94 | 29 | 1.27 | 15 | 1.94 | 20 |
17 | Plastic | 555 × 635 | 224 | 29 | 1.42 | 22 | 0.42 | 6 | 0.42 | 18 | 0.42 | 8 |
18 | Rocks1 | 555 × 638 | 224 | 32 | 2.27 | 33 | 1.33 | 9 | 2.40 | 37 | 1.65 | 7 |
19 | Rocks2 | 555 × 638 | 224 | 32 | 1.50 | 9 | 0.91 | 6 | 1.65 | 9 | 1.65 | 6 |
20 | Wood1 | 555 × 686 | 238 | 35 | 0.56 | 16 | < | 12 | 1.33 | 29 | < | 8 |
21 | Wood2 | 555 × 653 | 224 | 33 | 1.42 | 25 | 0.42 | 10 | < | 6 | 1.42 | 22 |
Average | 32 | 1.47 | 15 | 1.26 | 18 | 1.46 | 14 | 1.48 | 12 | |||
St. Dev. | 1.45 | 0.53 | 8.98 | 0.55 | 9.89 | 0.61 | 9.09 | 0.62 | 7.40 |
Lossy (dB) | Bitrate Saving | Time (s) | CR | PSNR Right | |
---|---|---|---|---|---|
LmedSHarris70 | 1.4893 | 34.1709 | 2.0620 | 14.1925 | 36.6341 |
LmedSIFT70 | 1.4690 | 34.1709 | 1.6780 | 14.1925 | 36.6544 |
Norm8PointsHarris70 | 1.6734 | 34.1709 | 3.9440 | 14.1925 | 36.4500 |
Norm8PointSIFT70 | 1.4604 | 34.1709 | 1.5960 | 14.1925 | 36.6631 |
LmedSHarris65 | 1.6804 | 40.3686 | 1.1460 | 14.7500 | 36.4430 |
LmedSIFT65 | 1.6025 | 40.3686 | 4.3960 | 14.7500 | 36.5209 |
Norm8PointsHarris65 | 1.7414 | 40.3686 | 3.4940 | 14.7500 | 36.3820 |
Norm8PointSIFT65 | 1.6379 | 40.3686 | 1.0060 | 14.7500 | 36.4856 |
Method | CR | PSNR |
---|---|---|
Adaptive [20] | 14.4713 | 37.4583 |
Standard MPO | 11.6094 | 38.2526 |
Lossy SICCAC [11] | 8.6400 | 41.5831 |
Lossy S2ICAC [13] | 6.3600 | 33.9400 |
SICHC [14] | 4.4271 | 49.1446 |
Lossless SICCAC [11] | 4.1488 | 41.7359 |
Lossless S2ICAC [13] | 3.6100 | 34.885 |
Hit | Miss | |
---|---|---|
Female | 0.537931 | 0.462069 |
Male | 0.593620 | 0.406380 |
Without Glasses | 0.594990 | 0.405010 |
With Glasses | 0.562030 | 0.437970 |
Age 18–29 | 0.613269 | 0.386731 |
Age 30–39 | 0.514563 | 0.485437 |
Age 40–49 | 0.581818 | 0.418182 |
Age > 50 | 0.482759 | 0.517241 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortis, A.; Grisanti, M.; Rundo, F.; Battiato, S. A Benchmark Evaluation of Adaptive Image Compression for Multi Picture Object Stereoscopic Images. J. Imaging 2021, 7, 160. https://doi.org/10.3390/jimaging7080160
Ortis A, Grisanti M, Rundo F, Battiato S. A Benchmark Evaluation of Adaptive Image Compression for Multi Picture Object Stereoscopic Images. Journal of Imaging. 2021; 7(8):160. https://doi.org/10.3390/jimaging7080160
Chicago/Turabian StyleOrtis, Alessandro, Marco Grisanti, Francesco Rundo, and Sebastiano Battiato. 2021. "A Benchmark Evaluation of Adaptive Image Compression for Multi Picture Object Stereoscopic Images" Journal of Imaging 7, no. 8: 160. https://doi.org/10.3390/jimaging7080160
APA StyleOrtis, A., Grisanti, M., Rundo, F., & Battiato, S. (2021). A Benchmark Evaluation of Adaptive Image Compression for Multi Picture Object Stereoscopic Images. Journal of Imaging, 7(8), 160. https://doi.org/10.3390/jimaging7080160