Evaluation of 360° Image Projection Formats; Comparing Format Conversion Distortion Using Objective Quality Metrics
Abstract
:1. Introduction
- A framework that measures the distortion between different projection formats is proposed without bias toward any projection format.
- The most recent projection formats are included in the evaluation.
- Both conventional and advanced metrics are used for a quality assessment.
- The evaluation focuses on finding the highest-ranked projection format and comparing the projection formats with the ERP and with each other based on three frequently used image sizes.
2. Proposed Method
- (1)
- Generate the original 360° image (Projection–X) by down-sampling the high-fidelity test image.
- (2)
- Convert the image (Projection–X) into another format, denoted by Projection–A, excluding the original format of Projection–X.
- (3)
- Convert the image (Projection–A) back into the format of the original Projection–X.
- (4)
- Calculate the distortion between the original (Projection–X) and the reconverted images (Projection–X’) using the objective quality assessment.
- (5)
- Repeat steps 1 through 4 by changing the format of Projection–A for all formats under evaluation except Projection–X itself for each Projection–X. A format showing the least distortion is found when a given format (Projection–X) is converted into another format (Projection–A) and reconverted into the given format.
- (6)
- Repeat step 5 by changing the format of Projection–X for all formats under evaluation and calculating the average distortion for each Projection–A.
- (7)
- The projection format showing the least average distortion is proposed based on the results of 6.
3. Experimental Results
3.1. Experimental Setup
3.2. Experimental Results and Discussion
- (1)
- When focusing on the final decision on the highest-ranking projection format, it can be concluded that the dependency of the evaluation results on the quality metric used and on the size of the image is almost negligible.
- (2)
- For most cases, ACP and EAC, which are modified versions of CMP, showed compatible results.
- (3)
- It should also be noted that no significant difference was found when 8K CMP or ERP is employed as the source image.
- (4)
- From the overall evaluation, HEC is recommended as a common projection format when the format conversion distortion measured by the objective metrics is considered.
4. Conclusions and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosseini, M.; Swaminathan, V. Adaptive 360 VR video streaming: Divide and conquer. In Proceedings of the 2016 IEEE International Symposium on Multimedia (ISM), San Jose, CA, USA, 11–13 December 2016; pp. 107–110. [Google Scholar]
- TaghaviNasrabadi, A.; Mahzari, A.; Beshay, J.D.; Prakash, R. Adaptive 360-degree video streaming using layered video coding. In Proceedings of the 2017 IEEE Virtual Reality (VR), Los Angeles, CA, USA, 18–22 March 2017; pp. 347–348. [Google Scholar]
- Timmerer, C.; Graf, M.; Mueller, C. Adaptive streaming of vr/360-degree immersive media services with high qoe. In Proceedings of the 2017 NAB Broadcast Engineering and IT Conference (BEITC), Las Vegas, NV, USA, 22–27 April 2017. [Google Scholar]
- Ochi, D.; Kunita, Y.; Kameda, A.; Kojima, A.; Iwaki, S. Live streaming system for omnidirectional video. In Proceedings of the 2015 IEEE Virtual Reality (VR), Arles, France, 23–27 March 2015; pp. 349–350. [Google Scholar]
- Yang, Y.; Jenny, B.; Dwyer, T.; Marriott, K.; Chen, H.; Cordeil, M. Maps and globes in virtual reality. Comput. Graph. Forum 2018, 37, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Zhao, J.; Jiang, T.; Rahim, J.W.T.; Zhang, B.; Xu, Z.; Fei, Z. An objective assessment method based on multi-level factors for panoramic videos. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), Saint Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar]
- Li, L.; Li, Z.; Budagavi, M.; Li, H. Projection based advanced motion model for cubic mapping for 360-degree video. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 1427–1431. [Google Scholar]
- He, G.; Hu, J.; Jiang, H.; Li, Y. Scalable video coding based on user’s view for real-time virtual reality applications. IEEE Commun. Lett. 2017, 22, 25–28. [Google Scholar] [CrossRef]
- Duanmu, F.; Mao, Y.; Liu, S.; Srinivasan, S.; Wang, Y. A subjective study of viewer navigation behaviors when watching 360-degree videos on computers. In Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July 2018; pp. 1–6. [Google Scholar]
- Huang, W.; Ding, L.; Zhai, G.; Min, X.; Hwang, J.-N.; Xu, Y.; Zhang, W. Utility-oriented resource allocation for 360-degree video transmission over heterogeneous networks. Digit. Signal Process. 2019, 84, 1–14. [Google Scholar] [CrossRef]
- Sullivan, G.J.; Ohm, J.-R.; Han, W.-J.; Wiegand, T. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668. [Google Scholar] [CrossRef]
- Joint Video Exploration Team (JVET). Available online: http://wftp3.itu.int/av-arch/jvet-site/jvet-info.htm (accessed on 25 November 2020).
- Zelnik-Manor, L.; Peters, G.; Perona, P. Squaring the circle in panoramas. In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), Beijing, China, 17–21 October 2005; Volume 1, pp. 1292–1299. [Google Scholar]
- Dimitrijević, A.M.; Lambers, M.; Rančić, D. Comparison of spherical cube map projections used in planet-sized terrain rendering. Facta Univ. Ser. Math. Inform. 2016, 31, 259–297. [Google Scholar]
- Omnidirectional Media Format. Available online: https://mpeg.chiariglione.org/standards/mpeg-i/omnidirectional-media-format (accessed on 25 November 2020).
- Snyder, J.P. Flattening the Earth: Two Thousand Years of Map Projections; University of Chicago Press: Chicago, IL, USA, 1997. [Google Scholar]
- Ye, Y. JVET-F1003-v1: Algorithm Descriptions of Projection Format Conversion and Video Quality Metrics in 360Lib; Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11; ITU: Geneva, Switzerland, 2017. [Google Scholar]
- Ye, Y.; Alshina, E.; Boyce, J. JVET-H1004: Algorithm Descriptions of Projection Format Conversion and Video Quality Metrics in 360Lib (Version 5); Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11; ITU: Geneva, Switzerland, 2017. [Google Scholar]
- Zhou, M. AHG8: A Study on Quality Impact of Line Re-Sampling Rate in EAP; Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11; ITU: Geneva, Switzerland, 2017. [Google Scholar]
- Transform360. Available online: https://github.com/facebook/transform360 (accessed on 25 November 2020).
- Greene, N. Environment mapping and other applications of world projections. IEEE Comput. Graph. Appl. 1986, 6, 21–29. [Google Scholar] [CrossRef]
- Ye, Y.; Alshina, E.; Boyce, J. JVET-G1003: Algorithm Description of Projection Format Conversion and Video Quality Metrics in 360lib Version 4; Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11; ITU: Geneva, Switzerland, 2017. [Google Scholar]
- Coban, M.; Van der Auwera, G.; Karczewicz, M. AHG8: Adjusted Cubemap Projection for 360-Degree Video; Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11; ITU: Geneva, Switzerland, 2017. [Google Scholar]
- Brown, C. Bringing Pixels Front and Center in VR Video. Available online: https://blog.google/products/google-ar-vr/bringing-pixels-front-and-center-vr-video/ (accessed on 25 November 2020).
- Zhou, M. AHG8: A Study on Equi-Angular Cubemap Projection (EAC); Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11; ITU: Geneva, Switzerland, 2017; pp. 13–21. [Google Scholar]
- Duanmu, F.; He, Y.; Xiu, X.; Hanhart, P.; Ye, Y.; Wang, Y. Hybrid cubemap projection format for 360-degree video coding. In Proceedings of the 2018 Data Compression Conference, Snowbird, UT, USA, 27–30 March 2018; p. 404. [Google Scholar]
- Lee, Y.; Lin, J.; Chang, S.; Ju, C. CE13: Modified Cubemap Projection in JVET-J0019 (Test 5); Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JVET-K0131; ITU: Geneva, Switzerland, 2018. [Google Scholar]
- Van der Auwera, G.; Karczewicz, M. AHG8: Equatorial Cylindrical Projection for 360-Degree Video; Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11; ITU: Geneva, Switzerland, 2017. [Google Scholar]
- Kuzyakov, E.; Pio, D. Next-Generation Video Encoding Techniques for 360 Video and VR. Available online: https://engineering.fb.com/2016/01/21/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/ (accessed on 25 November 2020).
- Alshina, E.; Boyce, J.; Abbas, A.; Ye, Y. JVET Common Test Conditions and Evaluation Procedures for 360 Degree Video. In Proceedings of the JVET Document, JVET-G1030; Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 7th Meeting, Torino, Italy, 13–21 July 2017. [Google Scholar]
- Chen, Z.; Li, Y.; Zhang, Y. Recent advances in omnidirectional video coding for virtual reality: Projection and evaluation. Signal Process. 2018, 146, 66–78. [Google Scholar] [CrossRef]
- Upenik, E.; Rerabek, M.; Ebrahimi, T. On the performance of objective metrics for omnidirectional visual content. In Proceedings of the 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), Erfurt, Germany, 31 May–2 June 2017; pp. 1–6. [Google Scholar]
- Xiu, X.; He, Y.; Ye, Y.; Vishwanath, B. An evaluation framework for 360-degree video compression. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), Saint Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar]
- Fu, C.-W.; Wan, L.; Wong, T.-T.; Leung, C.-S. The rhombic dodecahedron map: An efficient scheme for encoding panoramic video. IEEE Trans. Multimed. 2009, 11, 634–644. [Google Scholar]
- Li, J.; Wen, Z.; Li, S.; Zhao, Y.; Guo, B.; Wen, J. Novel tile segmentation scheme for omnidirectional video. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 370–374. [Google Scholar]
- Park, G.-H. Method and Apparatus for Encoding and Decoding an Icosahedron Panorama Image. U.S. Patent No. 7,483,588, 27 January 2009. [Google Scholar]
- Yu, M.; Lakshman, H.; Girod, B. Content adaptive representations of omnidirectional videos for cinematic virtual reality. In Proceedings of the 3rd International Workshop on Immersive Media Experiences, Brisbane, Australia, 26–30 October 2015; pp. 1–6. [Google Scholar]
- Kim, H.-H.; Yoon, Y.-U.; Kim, J.-G. An efficient frame packing method for icosahedral projection in 360 video coding. IEIE Trans. Smart Process. Comput. 2018, 7, 195–200. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Ma, X.; Yang, H.; Li, H. Advanced spherical motion model and local padding for 360° video compression. IEEE Trans. Image Process. 2018, 28, 2342–2356. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.; Chen, Z. Spherical domain rate-distortion optimization for omnidirectional video coding. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 1767–1780. [Google Scholar] [CrossRef]
- Hanhart, P.; Boyce, J.; Choi, K.; Lin, J. JVET Common Test Conditions and Evaluation Procedures for 360 Video; Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11; ITU: Geneva, Switzerland, 2018. [Google Scholar]
- 360Lib. Available online: https://jvet.hhi.fraunhofer.de/svn/svn_360Lib/tags/360Lib-8.0 (accessed on 4 August 2021).
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, H.R.; Bovik, A.C. A visual information fidelity approach to video quality assessment. In Proceedings of the First International Workshop on Video Processing and Quality Metrics for Consumer Electronics, Scottsdale, AZ, USA, 23–25 January 2005; p. 2. [Google Scholar]
- Tran, H.T.; Pham, C.T.; Ngoc, N.P.; Pham, A.T.; Thang, T.C. A study on quality metrics for 360 video communications. IEICE Trans. Inf. Syst. 2018, 101, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Lu, A.; Yu, L. JVET-D0040, AHG8: WS-PSNR for 360 video objective quality evaluation. In Proceedings of the Document Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 4th Meeting, Chengdu, China, 15–21 October 2016. [Google Scholar]
- Sun, Y.; Lu, A.; Yu, L. Weighted-to-spherically-uniform quality evaluation for omnidirectional video. IEEE Signal Process. Lett. 2017, 24, 1408–1412. [Google Scholar] [CrossRef]
- Yu, M.; Lakshman, H.; Girod, B. A framework to evaluate omnidirectional video coding schemes. In Proceedings of the 2015 IEEE International Symposium on Mixed and Augmented Reality, Fukuoka, Japan, 29 September–3 October 2015; pp. 31–36. [Google Scholar]
- Zakharchenko, V.; Choi, K.P.; Park, J.H. Quality metric for spherical panoramic video. In Proceedings of the Optics and Photonics for Information Processing X, San Diego, CA, USA, 29–30 August 2016; p. 99700C. [Google Scholar]
- Asbun, E.; He, Y.; He, Y.; Ye, Y. AHG8: InterDigital Test Sequences for Virtual Reality Video Coding; Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11; ITU: Geneva, Switzerland, 2016. [Google Scholar]
- Easypano the Virtual Tour Way. Available online: http://www.easypano.com/panorama-software.html (accessed on 25 November 2020).
- Cohen, E.; Yitzhaky, Y. No-reference assessment of blur and noise impacts on image quality. Signal Image Video Process. 2010, 4, 289–302. [Google Scholar] [CrossRef]
- Hasler, D.; Suesstrunk, S.E. Measuring colorfulness in natural images. In Proceedings of the Human Vision and Electronic Imaging VIII, Santa Clara, CA, USA, 21–24 January 2003; pp. 87–95. [Google Scholar]
- Narwaria, M.; Da Silva, M.P.; Le Callet, P.; Pepion, R. Tone mapping based HDR compression: Does it affect visual experience? Signal Process. Image Commun. 2014, 29, 257–273. [Google Scholar] [CrossRef]
- Panetta, K.; Gao, C.; Agaian, S. No reference color image contrast and quality measures. IEEE Trans. Consum. Electron. 2013, 59, 643–651. [Google Scholar] [CrossRef]
- Soundararajan, R.; Bovik, A.C. Survey of information theory in visual quality assessment. Signal Image Video Process. 2013, 7, 391–401. [Google Scholar] [CrossRef]
- Yeganeh, H.; Wang, Z. Objective quality assessment of tone-mapped images. IEEE Trans. Image Process. 2012, 22, 657–667. [Google Scholar] [CrossRef]
- Zhang, J.; Le, T.M. A new no-reference quality metric for JPEG2000 images. IEEE Trans. Consum. Electron. 2010, 56, 743–750. [Google Scholar] [CrossRef]
- Choi, S.; Kwon, O.-J.; Lee, J. A method for fast multi-exposure image fusion. IEEE Access 2017, 5, 7371–7380. [Google Scholar] [CrossRef]
- Hussain, I.; Kwon, O.-J.; Choi, S. Evaluating the coding performance of 360° image projection formats using objective quality metrics. Symmetry 2021, 13, 80. [Google Scholar] [CrossRef]
Projection–X | Projection–A | ||||||
---|---|---|---|---|---|---|---|
ACP | AEP | CMP | EAC | ECP | ERP | HEC | |
ACP | 45.19650 | 46.08579 | 48.55320 | 47.50620 | 44.72290 | 49.25448 | |
AEP | 47.89280 | 45.68754 | 47.79910 | 47.41540 | 48.76410 | 48.52101 | |
CMP | 48.11457 | 45.28200 | 48.08930 | 47.30470 | 44.78660 | 48.92551 | |
EAC | 48.56022 | 45.18870 | 46.08233 | 47.81450 | 44.74710 | 49.58164 | |
ECP | 47.83781 | 45.27810 | 45.82864 | 48.14880 | 44.72550 | 49.30380 | |
ERP | 47.91150 | 48.80798 | 45.38214 | 47.86570 | 47.20290 | 48.68465 | |
HEC | 49.49098 | 46.22400 | 47.04229 | 49.81030 | 49.16740 | 45.74050 | |
Overall | 48.30131 | 45.99621 | 46.01812 | 48.37780 | 47.73520 | 45.58110 | 49.04518 |
Projection–X | Projection–A | ||||||
---|---|---|---|---|---|---|---|
ACP | AEP | CMP | EAC | ECP | ERP | HEC | |
ACP | 0.990515 | 0.991396 | 0.994684 | 0.99319 | 0.98860 | 0.995205 | |
AEP | 0.99379 | 0.990420 | 0.993699 | 0.99300 | 0.99542 | 0.994191 | |
CMP | 0.99360 | 0.989145 | 0.993543 | 0.99219 | 0.98781 | 0.994070 | |
EAC | 0.99483 | 0.989877 | 0.991686 | 0.99356 | 0.98873 | 0.995437 | |
ECP | 0.99397 | 0.990192 | 0.991206 | 0.994261 | 0.98867 | 0.994927 | |
ERP | 0.99315 | 0.993720 | 0.988772 | 0.993053 | 0.99179 | 0.99356 | |
HEC | 0.99573 | 0.991551 | 0.992935 | 0.995948 | 0.99485 | 0.99037 | |
Overall | 0.99418 | 0.990833 | 0.991069 | 0.994198 | 0.99309 | 0.98994 | 0.99456 |
Projection–X | Projection–A | ||||||
---|---|---|---|---|---|---|---|
ACP | AEP | CMP | EAC | ECP | ERP | HEC | |
ACP | 0.96641 | 0.97541 | 0.99309 | 0.98665 | 0.96391 | 0.99439 | |
AEP | 0.97543 | 0.95389 | 0.97419 | 0.97082 | 0.98649 | 0.97726 | |
CMP | 0.98245 | 0.95643 | 0.98175 | 0.97462 | 0.95069 | 0.98440 | |
EAC | 0.99317 | 0.96642 | 0.97679 | 0.98720 | 0.96438 | 0.99483 | |
ECP | 0.98572 | 0.96565 | 0.97271 | 0.98596 | 0.96071 | 0.98794 | |
ERP | 0.96924 | 0.97536 | 0.94447 | 0.96771 | 0.96033 | 0.97162 | |
HEC | 0.99486 | 0.97189 | 0.99026 | 0.99505 | 0.98974 | 0.96993 | |
Overall | 0.98348 | 0.96703 | 0.96892 | 0.98296 | 0.97823 | 0.96602 | 0.98507 |
Projection–X | Projection–A | ||||||
---|---|---|---|---|---|---|---|
ACP | AEP | CMP | EAC | ECP | ERP | HEC | |
ACP | 51.58774 | 52.10874 | 54.55395 | 53.27640 | 51.1952 | 53.35633 | |
AEP | 53.95220 | 52.25159 | 53.95116 | 53.92140 | 53.6263 | 53.83587 | |
CMP | 53.76260 | 51.65417 | 53.81399 | 53.14770 | 51.2239 | 53.63988 | |
EAC | 54.45870 | 51.53064 | 52.07229 | 53.51250 | 51.1536 | 54.29657 | |
ECP | 53.44990 | 51.55605 | 51.91927 | 53.68819 | 51.0428 | 53.96543 | |
ERP | 54.39310 | 56.48944 | 52.65166 | 54.34450 | 54.09750 | 54.31771 | |
HEC | 52.02060 | 48.26435 | 50.52969 | 52.48458 | 50.26680 | 47.5490 | |
Overall | 53.67280 | 51.84706 | 51.92221 | 53.80606 | 53.03710 | 50.9651 | 53.90196 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, I.; Kwon, O.-J. Evaluation of 360° Image Projection Formats; Comparing Format Conversion Distortion Using Objective Quality Metrics. J. Imaging 2021, 7, 137. https://doi.org/10.3390/jimaging7080137
Hussain I, Kwon O-J. Evaluation of 360° Image Projection Formats; Comparing Format Conversion Distortion Using Objective Quality Metrics. Journal of Imaging. 2021; 7(8):137. https://doi.org/10.3390/jimaging7080137
Chicago/Turabian StyleHussain, Ikram, and Oh-Jin Kwon. 2021. "Evaluation of 360° Image Projection Formats; Comparing Format Conversion Distortion Using Objective Quality Metrics" Journal of Imaging 7, no. 8: 137. https://doi.org/10.3390/jimaging7080137
APA StyleHussain, I., & Kwon, O. -J. (2021). Evaluation of 360° Image Projection Formats; Comparing Format Conversion Distortion Using Objective Quality Metrics. Journal of Imaging, 7(8), 137. https://doi.org/10.3390/jimaging7080137