Yellow Pigment Powders Based on Lead and Antimony: Particle Size and Colour Hue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples’ Description and Image Acquisition
2.2. Colour Measurements
2.3. Stereomicroscopic Investigation
2.4. Data Processing
- Area (Area): effective number of pixels in the region, returned as scalar.
- Centroid (Circ.): mass centre of the region, returned as a 1-by-Q vector. The first centroid element is the horizontal (or x coordinate) of the mass centre. The second element is the vertical coordinate (or y coordinate). The other elements of the centroid are ordered by size.
- Eccentricity (Ecc.): eccentricity is the ratio between the distance of the ellipse fires and the length of its major axis. The value ranges between 0 and 1.
- Major axis length (M axis): length (in pixels) of the major axis of the ellipse that has the same second normalised central moments of the region, returned as scalar.
- Minor axis length (m axis): length (in pixels) of the minor axis of the ellipse that has the same second normalised central moments of the region, returned as scalar.
- Equivalent diameter (Eq. diameter): Diameter of a circle with the same area of the region, returned as scalar. Calculated as sqrt (4*Area/pi).
- Perimeter (Perim.): the distance around the boundary of the returned region as a scalar. The system calculates the perimeter by measuring the distance between each pair of adjacent pixels around the edge of the region.
- Hausdorff Fractal (F. Haus.): returns the Hausdorff fractal dimension of an object represented by a binary image.
- Fractal “Box-Counting” (F. boxc.): counts the number N of D-dimensional boxes of size R necessary to cover the % of the non-zero elements of the identified object.
2.5. Principal Component Analysis (PCA)
3. Results and Discussion
3.1. Image Analysis
3.2. Colorimetric Analysis
3.3. Comparison of Colour and Particle Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charvillat, V.; Tonazzini, A.; Van Gool, L.; Nikolaidis, N. Image and video processing for cultural heritage. EURASIP J. Image Video. Process. 2010, 2009, 163064. [Google Scholar] [CrossRef] [Green Version]
- Amura, A.; Aldini, A.; Pagnotta, S.; Salerno, E.; Tonazzini, A.; Triolo, P. Analysis of Diagnostic Images of Artworks and Feature Extraction: Design of a Methodology. J. Imaging 2021, 7, 53. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Pelosi, C.; Serranti, S. Hyperspectral imaging as powerful technique for investigating the stability of painting samples. J. Imaging 2019, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Ogier, J.M.; Tombre, K. Madonne: Document image analysis techniques for cultural heritage documents. In Proceedings of the International Conference on Digital Cultural Heritage, Vienna, Austria, 27–30 August 2006; pp. 1–8. [Google Scholar]
- Capobianco, G.; Sferragatta, A.; Lanteri, L.; Agresti, G.; Bonifazi, G.; Serranti, S.; Pelosi, C. μXRF Mapping as a Powerful Technique for Investigating Metal Objects from the Archaeological Site of Ferento (Central Italy). J. Imaging 2020, 6, 59. [Google Scholar] [CrossRef]
- France, F.G.; Christens-Barry, W.; Toth, M.B.; Boydston, K. Advanced image analysis for the preservation of cultural heritage. In Proceedings of the IS&T/SPIE Electronic Imaging, San Jose, CA, USA, 17–21 January 2010; p. 75310E. [Google Scholar]
- Stanco, F.; Battiato, S.; Gallo, G. Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Whan, A.P.; Smith, A.B.; Cavanagh, C.R.; Ral, J.P.F.; Shaw, L.M.; Howitt, C.A.; Bischof, L. GrainScan: A low cost, fast method for grain size and colour measurements. Plant Methods 2014, 10, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, R.; Blattmann, T.M.; McIntyre, C.; Zhao, M.; Eglinton, T.I. Relationships between grain size and organic carbon 14C heterogeneity in continental margin sediments. Earth Planet. Sci. Lett. 2019, 505, 76–85. [Google Scholar] [CrossRef]
- Karthick, S.; Maniraj, S. Different medical image registration techniques: A comparative analysis. Curr. Med. Imaging 2019, 15, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Gueli, A.M.; Bonfiglio, G.; Pasquale, S.; Troja, S.O. Effect of Particle Size on Pigments Colour. Color Res. Appl. 2017, 42, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Montanari, R.; Alberghina, M.F.; Casanova Municchia, A.; Massa, E.; Pelagotti, A.; Pelosi, C.; Schiavone, S.; Sodo, A. A polychrome Mukozuke (1624–1644) porcelain offers a new hypothesis on the introduction of European enameling technology in Japan. J. Cult. Herit. 2018, 32, 232–237. [Google Scholar] [CrossRef]
- Montanari, R.; Murakami, N.; Alberghina, M.A.; Pelosi, C.; Schiavone, S. The Origin of overglaze-blue enameling in Japan: New discoveries and a reassessment. J. Cult. Herit. 2019, 37, 94–102. [Google Scholar] [CrossRef]
- Pelosi, C.; Agresti, G.; Santamaria, U.; Mattei, E. Artificial yellow pigments: Production and characterization through spectroscopic method of analysis. e-Preserv. Sci. 2010, 7, 108–115. [Google Scholar]
- Capobianco, G.; Pelosi, C.; Agresti, G.; Bonifazi, G.; Santamaria, U.; Serranti, S. X-ray fluorescence investigation on yellow pigments based on lead, tin and antimony through the comparison between laboratory and portable instruments. J. Cult. Herit. 2018, 29, 19–29. [Google Scholar] [CrossRef]
- Agresti, G.; Baraldi, P.; Pelosi, C.; Santamaria, U. Yellow pigments based on lead, tin and antimony: Ancient recipes, synthesis, characterization and hue choice in artworks. Color Res. Appl. 2016, 41, 226–231. [Google Scholar] [CrossRef]
- Agresti, G. Lead, Tin and Antimony Yellows: Colour and Material of the Artwork. Ph.D. Thesis, University of Tuscia, Viterbo, Italy, 2013. [Google Scholar]
- Santamaria, U.; Agresti, G.; Pelosi, C. Memory and matter of cultural heritage: Lead, tin and antimony based yellow pigments. In Fatto d’Archimia; Kroustallis, S., del Egido, M., Eds.; Ministerio de Educatión, Cultura y Deporte: Madrid, Spain, 2012; pp. 145–156. [Google Scholar]
- Seccaroni, C. Giallorino. Storia dei Pigmenti Gialli di Natura Sintetica; De Luca Editore: Rome, Italy, 2006. [Google Scholar]
- Wainwright, I.M.; Taylor, J.M.; Harley, R.D. Lead antimonate yellow. In Artists’ Pigments, a Handbook of Their History and Characteristics; Feller, R.L., Ed.; Cambridge University Press: Cambridge, UK, 1986; Volume 1, pp. 219–254. [Google Scholar]
- Dik, J.; Hermens, E.; Peschar, R.; Schenk, H. Early production recipes for lead antimonate yellow in Italian art. Archaeometry 2005, 47, 593–607. [Google Scholar] [CrossRef]
- Marchetti, A.; Saniz, R.; Dileep, K.; Rabbachin, L.; Nuyts, G.; De Meyer, S.; Verbeeck, J.; Janssens, K.; Pelosi, C.; Lamoen, D.; et al. Unraveling the role of lattice substitutions on the stabilization of the intrinsically unstable Pb2Sb2O7 pyrochlore: Explaining the lightfastness of lead pyroantimonate artists’ pigments. Chem. Mater. 2020, 32, 2863–2873. [Google Scholar] [CrossRef]
- EN 15886. Conservation of Cultural Property—Test Methods—Colour Measurement of Surfaces; EN Standard: Brussels, Belgium, 2010. [Google Scholar]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Agresti, G.; Bonifazi, G.; Calienno, L.; Capobianco, G.; Lo Monaco, A.; Pelosi, C.; Picchio, R.; Serranti, S. Surface investigation of photo-degraded wood by colour monitoring, infrared spectroscopy, and hyperspectral imaging. J. Spectrosc. 2013, 1, 1–13. [Google Scholar] [CrossRef]
- Pelosi, C.; Capobianco, G.; Agresti, G.; Bonifazi, G.; Morresi, F.; Rossi, S.; Santamaria, U.; Serranti, S. A methodological approach to study the stability of selected watercolours for painting reintegration, through reflectance spectrophotometry, Fourier transform infrared spectroscopy and hyperspectral imaging. Spectrochim. Acta A 2018, 198, 92–106. [Google Scholar] [CrossRef] [PubMed]
- Kock, L.D.; De Waal, D. Raman analysis of ancient pigments on a tile from the Citadel of Algiers. Spectrochim. Acta A 2008, 71, 1348–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Abbreviation | Reagents | Reagent Weight (g) | Experimental Conditions | Historical Recipe |
---|---|---|---|---|
APB1 | PbO, Sb2O3, NaCl | 1.42, 0.85, 0.57 | t = 900 °C for 5 h porcelain crucible | Trattato di Valerio Mariani da Pesaro (1620), Giallo dei vasari [21] |
APB2 | PbO, Sb2O3, NaCl | 1.42, 0.85, 0.57 | t = 950 °C for 5 h porcelain crucible | Trattato di Valerio Mariani da Pesaro (1620), Giallo dei vasari [21] |
APB3 | PbO, Sb2O3, NaCl | 1.42, 0.85, 0.57 | t = 1050 °C for 5 h porcelain crucible | Trattato di Valerio Mariani da Pesaro (1620), Giallo dei vasari [21] |
PSAPPB1 | Sb2O3, PbO, C4H5KO6 | 1.30, 1.90, 0.30 | t = 800 °C for 5 h on a terracotta tile | Cipriano Piccolpasso, I Tre Libri dell’Arte del Vasaio, f. 29v8 (1559) and Giambattista Passeri, Istoria delle Pitture in Majolica fatte in Pesaro (1758) [17,19] |
PSAPPB2 | PSAPPB1 | 1.00 | t = 800 °C for 5 h on a terracotta tile | Cipriano Piccolpasso, I Tre Libri dell’Arte del Vasaio, f. 29v8 (1559) and Giambattista Passeri, Istoria delle Pitture in Majolica fatte in Pesaro (1758) [17,19] |
Sample | Circ. | Area | Ecc. | M Axis | m Axis | Eq. diameter | Perim. | F. Haus. | F. boxc. |
---|---|---|---|---|---|---|---|---|---|
PSAPPB1 | 0.94 | 63.00 | 0.82 | 12.07 | 6.90 | 8.96 | 29.07 | 1.09 | 1.16 |
max PSAPP1 | 1.00 | 73871.00 | 0.99 | 574.04 | 279.11 | 306.68 | 2182.01 | 1.30 | 1.33 |
min PSAPPB1 | 0.11 | 5.00 | 0.15 | 4.94 | 1.15 | 2.52 | 8.00 | 0.92 | 1.00 |
PSAPPB2 | 0.78 | 1422.29 | 0.71 | 40.49 | 24.90 | 29.95 | 120.80 | 1.01 | 1.08 |
max PSAPPB2 | 1.00 | 165626 | 0.98 | 694.43 | 426.77 | 459.22 | 2660.88 | 1.20 | 1.25 |
min PSAPPB2 | 0.14 | 5.00 | 0.21 | 5.63 | 1.15 | 2.52 | 8.00 | 0.92 | 1.00 |
APB1 | 0.77 | 1714.82 | 0.71 | 45.97 | 28.57 | 33.96 | 140.18 | 1.01 | 1.08 |
max APB1 | 1.00 | 47063.00 | 0.98 | 433.91 | 199.67 | 244.79 | 1658.16 | 1.20 | 1.25 |
min APB1 | 0.13 | 6.00 | 0.10 | 5.21 | 2.11 | 2.76 | 8.83 | 0.92 | 1.00 |
APB2 | 0.82 | 1388.81 | 0.70 | 40.94 | 25.85 | 31.15 | 118.32 | 1.02 | 1.08 |
max APB2 | 1.00 | 29496.00 | 0.98 | 408.31 | 184.30 | 193.79 | 1142.87 | 1.20 | 1.25 |
min APB2 | 0.27 | 8.00 | 0.10 | 6.22 | 2.02 | 3.19 | 10.83 | 0.92 | 1.00 |
APB3 | 0.76 | 1626.80 | 0.73 | 46.48 | 27.51 | 32.64 | 146.76 | 1.01 | 1.08 |
max APB3 | 1.00 | 71160.00 | 0.99 | 506.89 | 383.18 | 301.00 | 3611.16 | 1.20 | 1.25 |
min APB3 | 0.07 | 6.00 | 0.05 | 5.26 | 1.89 | 2.76 | 10.24 | 0.92 | 1.00 |
Sample | L* | a* | b* |
---|---|---|---|
APB1 | 82.5 ± 0.91 | 7.41 ± 0.58 | 67.2 ± 0.46 |
APB2 | 80.9 ± 0.73 | 9.60 ± 0.47 | 73.6 ± 0.50 |
APB3 | 77.0 ± 0.69 | 15.5 ± 0.60 | 75.7 ± 0.67 |
PSAPPB1 | 74.9 ± 0.80 | 12.5 ± 0.39 | 48.1 ± 0.23 |
PSAPPB2 | 78.4 ± 0.40 | 11.3 ± 0.33 | 48.7 ± 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capobianco, G.; Agresti, G.; Bonifazi, G.; Serranti, S.; Pelosi, C. Yellow Pigment Powders Based on Lead and Antimony: Particle Size and Colour Hue. J. Imaging 2021, 7, 127. https://doi.org/10.3390/jimaging7080127
Capobianco G, Agresti G, Bonifazi G, Serranti S, Pelosi C. Yellow Pigment Powders Based on Lead and Antimony: Particle Size and Colour Hue. Journal of Imaging. 2021; 7(8):127. https://doi.org/10.3390/jimaging7080127
Chicago/Turabian StyleCapobianco, Giuseppe, Giorgia Agresti, Giuseppe Bonifazi, Silvia Serranti, and Claudia Pelosi. 2021. "Yellow Pigment Powders Based on Lead and Antimony: Particle Size and Colour Hue" Journal of Imaging 7, no. 8: 127. https://doi.org/10.3390/jimaging7080127
APA StyleCapobianco, G., Agresti, G., Bonifazi, G., Serranti, S., & Pelosi, C. (2021). Yellow Pigment Powders Based on Lead and Antimony: Particle Size and Colour Hue. Journal of Imaging, 7(8), 127. https://doi.org/10.3390/jimaging7080127