EffUnet-SpaGen: An Efficient and Spatial Generative Approach to Glaucoma Detection
Abstract
:1. Introduction
1.1. Background
1.1.1. Existing Segmentation Methods
1.1.2. Generative Spatial Generative Model
2. Materials and Methods
2.1. Our Framework
2.2. Segmentation of Cup and Disc via EffUnet
2.3. Classification of Images via SpaGen
2.4. Experiments
3. Results
3.1. Segmentation Model: Computational Complexity and Accuracy
3.2. Segmentation Model: Reliability of Vertical CDR
3.3. EffUnet-SpaGen: Reliability of RDS
3.4. EffUnet-SpaGen: Internal Validation for Glaucoma Detection in ORIGA and DRISHTI Datasets
3.5. Comparison Results of Our Method for ORIGA Dataset
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossetti, L.; Digiuni, M.; Giovanni, M.; Centofanti, M.; Fea, A.M.; Iester, M.; Frezzotti, P.; Figus, M.; Ferreras, A.; Oddone, F. Blindness and glaucoma: A multicenter data review from 7 academic eye clinics. PLoS ONE 2015, 10, e0136632. [Google Scholar] [CrossRef] [PubMed]
- Balyen, L.; Peto, T. Promising artificial intelligence-machine learning-deep learning algorithms in ophthalmology. Asia Pac. J. Ophthalmol. 2019, 8, 264–272. [Google Scholar]
- Li, Z.; He, Y.; Keel, S.; Meng, W.; Chang, R.T.; He, M. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 2018, 125, 1199–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Xu, M.; Liu, H.; Li, Y.; Wang, X.; Jiang, L.; Wang, Z.; Fan, X.; Wang, N. A large-scale database and a CNN model for attention-based glaucoma detection. IEEE Trans. Med. Imaging 2019, 39, 413–424. [Google Scholar] [CrossRef]
- MacCormick, I.J.; Williams, B.M.; Zheng, Y.; Li, K.; Al-Bander, B.; Czanner, S.; Cheeseman, R.; Willoughby, C.E.; Brown, E.N.; Spaeth, G.L. Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile. PLoS ONE 2019, 14, e0209409. [Google Scholar]
- Schmidt-Erfurth, U.; Sadeghipour, A.; Gerendas, B.S.; Waldstein, S.M.; Bogunović, H. Artificial intelligence in retina. Prog. Retin. Eye Res. 2018, 67, 1–29. [Google Scholar] [CrossRef]
- Yu, S.; Xiao, D.; Frost, S.; Kanagasingam, Y. Robust optic disc and cup segmentation with deep learning for glaucoma detection. Comput. Med. Imaging Graph. 2019, 74, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Almazroa, A.; Burman, R.; Raahemifar, K.; Lakshminarayanan, V. Optic disc and optic cup segmentation methodologies for glaucoma image detection: A survey. J. Ophthalmol. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Haleem, M.S.; Han, L.; Van Hemert, J.; Li, B. Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review. Comput. Med. Imaging Graph. 2013, 37, 581–596. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, F.; Imtiaz, R.; Madni, H.A.; Khan, H.A.; Khan, T.M.; Khan, M.A.; Naqvi, S.S. A review on glaucoma disease detection using computerized techniques. IEEE Access 2021, 9, 37311–37333. [Google Scholar] [CrossRef]
- Ting, D.S.; Peng, L.; Varadarajan, A.V.; Keane, P.A.; Burlina, P.M.; Chiang, M.F.; Schmetterer, L.; Pasquale, L.R.; Bressler, N.M.; Webster, D.R. Deep learning in ophthalmology: The technical and clinical considerations. Prog. Retin. Eye Res. 2019, 72, 100759. [Google Scholar] [CrossRef]
- De Fauw, J.; Ledsam, J.R.; Romera-Paredes, B.; Nikolov, S.; Tomasev, N.; Blackwell, S.; Askham, H.; Glorot, X.; O’Donoghue, B.; Visentin, D. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 2018, 24, 1342–1350. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Fu, H.; Cheng, J.; Xu, Y.; Wong, D.W.K.; Liu, J.; Cao, X. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging 2018, 37, 1597–1605. [Google Scholar] [CrossRef] [Green Version]
- Iglovikov, V.; Shvets, A. Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation. arXiv 2018, arXiv:180105746. [Google Scholar]
- Chaurasia, A.; Culurciello, E. Linknet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar]
- Kumar, E.S.; Bindu, C.S. Two-stage framework for optic disc segmentation and estimation of cup-to-disc ratio using deep learning technique. J. Ambient Intell. Humaniz. Comput. 2021, 1–13. [Google Scholar] [CrossRef]
- Khan, M.K.; Anwar, S.M. M-Net with Bidirectional ConvLSTM for Cup and Disc Segmentation in Fundus Images. In Proceedings of the 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Langkawi Island, Malaysia, 1–3 March 2021; pp. 472–476. [Google Scholar]
- Imtiaz, R.; Khan, T.M.; Naqvi, S.S.; Arsalan, M.; Nawaz, S.J. Screening of Glaucoma disease from retinal vessel images using semantic segmentation. Comput. Electr. Eng. 2021, 91, 107036. [Google Scholar] [CrossRef]
- Tabassum, M.; Khan, T.M.; Arsalan, M.; Naqvi, S.S.; Ahmed, M.; Madni, H.A.; Mirza, J. CDED-Net: Joint segmentation of optic disc and optic cup for glaucoma screening. IEEE Access 2020, 8, 102733–102747. [Google Scholar] [CrossRef]
- Morrell, C.H.; Brant, L.J.; Sheng, S.; Metter, E.J. Screening for prostate cancer using multivariate mixed-effects models. J. Appl. Stat. 2012, 39, 1151–1175. [Google Scholar] [CrossRef]
- Hughes, D.M.; Komárek, A.; Czanner, G.; Garcia-Finana, M. Dynamic longitudinal discriminant analysis using multiple longitudinal markers of different types. Stat. Methods Med. Res. 2018, 27, 2060–2080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, D.; Lehrach, W.; Kansky, K.; Lázaro-Gredilla, M.; Laan, C.; Marthi, B.; Lou, X.; Meng, Z.; Liu, Y.; Wang, H. A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs. Science 2017, 358, 6368. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.; Le QV, E. Rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946. Available online: https://arxiv.org/abs/1905.11946 (accessed on 30 May 2021).
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Wollstein, G.; Garway-Heath, D.F.; Hitchings, R.A. Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology 1998, 105, 1557–1563. [Google Scholar] [CrossRef]
- Mahalanobis, P.C. Analysis of race-mixture in Bengal. J. Asiat. Soc. (India) 1925, 23, 301310. [Google Scholar]
- Zhang, Z.; Yin, F.S.; Liu, J.; Wong, W.K.; Tan, N.M.; Lee, B.H.; Cheng, J.; Wong, T.Y. Origa-light: An online retinal fundus image database for glaucoma analysis and research. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 3065–3068. [Google Scholar]
- Yu, H.; Barriga, E.S.; Agurto, C.; Echegaray, S.; Pattichis, M.S.; Bauman, W.; Soliz, P. Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Noor, N.M.; Khalid, N.E.A.; Ariff, N.M. Optic cup and disc color channel multi-thresholding segmentation. In Proceedings of the 2013 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 29 November–1 December 2013; pp. 530–534. [Google Scholar]
- Khalid, N.E.A.; Noor, N.M.; Ariff, N.M. Fuzzy c-means (FCM) for optic cup and disc segmentation with morphological operation. Procedia Comput. Sci. 2014, 42, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Al-Bander, B.; Williams, B.M.; Al-Nuaimy, W.; Al-Taee, M.A.; Pratt, H.; Zheng, Y. Dense fully convolutional segmentation of the optic disc and cup in colour fundus for glaucoma diagnosis. Symmetry 2018, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Wong, D.W.K.; Liu, J.; Tan, N.M.; Yin, F.; Lee, B.-H.; Wong, T.Y. Learning-based approach for the automatic detection of the optic disc in digital retinal fundus photographs. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 5355–5358. [Google Scholar]
- Mookiah, M.R.K.; Acharya, U.R.; Chua, C.K.; Min, L.C.; Ng, E.Y.K.; Mushrif, M.M.; Laude, A. Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation. Proc. Inst. Mech. Eng. H 2013, 227, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Giachetti, A.; Ballerini, L.; Trucco, E. Accurate and reliable segmentation of the optic disc in digital fundus images. J. Med. Imaging 2014, 1, 024001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dashtbozorg, B.; Mendonça, A.M.; Campilho, A. Optic disc segmentation using the sliding band filter. Comput. Biol. Med. 2015, 56, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Basit, A.; Fraz, M.M. Optic disc detection and boundary extraction in retinal images. Appl. Opt. 2015, 54, 3440–3447. [Google Scholar] [CrossRef]
- Wang, C.; Kaba, D. Level set segmentation of optic discs from retinal images. J. Med. Bioeng 2015, 4, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Hamednejad, G.; Pourghassem, H. Retinal optic disk segmentation and analysis in fundus images using DBSCAN clustering algorithm. In Proceedings of the 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 24–25 November 2016; pp. 122–127. [Google Scholar]
- Roychowdhury, S.; Koozekanani, D.D.; Kuchinka, S.N.; Parhi, K.K. Optic disc boundary and vessel origin segmentation of fundus images. IEEE J. Biomed. Health Inform. 2015, 20, 1562–1574. [Google Scholar] [CrossRef]
- Girard, F.; Kavalec, C.; Grenier, S.; Tahar, H.B.; Cheriet, F. Simultaneous macula detection and optic disc boundary segmentation in retinal fundus images. Int. Soc. Opt. Photonics 2016, 9784, 97841F. [Google Scholar]
- Akyol, K.; Şen, B.; Bayır, Ş. Automatic detection of optic disc in retinal image by using keypoint detection, texture analysis, and visual dictionary techniques. Comput. Math. Methods Med. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.; Fraz, M.M.; Barman, S.A. Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm. PeerJ 2016, 4, e2003. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.H.; Acharya, U.R.; Bhandary, S.V.; Chua, K.C.; Sivaprasad, S. Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J. Comput. Sci. 2017, 20, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Zahoor, M.N.; Fraz, M.M. Fast optic disc segmentation in retina using polar transform. IEEE Access 2017, 5, 12293–12300. [Google Scholar] [CrossRef]
- Sigut, J.; Nunez, O.; Fumero, F.; Gonzalez, M.; Arnay, R. Contrast based circular approximation for accurate and robust optic disc segmentation in retinal images. PeerJ 2017, 5, e3763. [Google Scholar] [CrossRef] [Green Version]
- Yin, F.; Liu, J.; Wong, D.W.K.; Tan, N.M.; Cheung, C.; Baskaran, M.; Aung, T.; Wong, T.Y. Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In Proceedings of the 2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS), Rome, Italy, 20–22 June 2012; pp. 1–6. [Google Scholar]
- Hatanaka, Y.; Nagahata, Y.; Muramatsu, C.; Okumura, S.; Ogohara, K.; Sawada, A.; Ishida, K.; Yamamoto, T.; Fujita, H. Improved automated optic cup segmentation based on detection of blood vessel bends in retinal fundus images. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 126–129. [Google Scholar]
- Almazroa, A.; Alodhayb, S.; Raahemifar, K.; Lakshminarayanan, V. Optic cup segmentation: Type-II fuzzy thresholding approach and blood vessel extraction. Clin. Ophthalmol. Auckl. NZ 2017, 11, 841. [Google Scholar] [CrossRef] [Green Version]
- Yin, F.; Liu, J.; Wong, D.W.; Tan, N.M.; Cheng, J.; Cheng, C.-Y.; Tham, Y.C.; Wong, T.Y. Sector-based optic cup segmentation with intensity and blood vessel priors. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 1454–1457. [Google Scholar]
- Xu, Y.; Duan, L.; Lin, S.; Chen, X.; Wong, D.W.K.; Wong, T.Y.; Liu, J. Optic Cup Segmentation for Glaucoma Detection Using Low-Rank Superpixel Representation; Springer: Berlin/Heidelberg, Germany, 2014; pp. 788–795. [Google Scholar]
- Tan, N.-M.; Xu, Y.; Goh, W.B.; Liu, J. Robust multi-scale superpixel classification for optic cup localization. Comput. Med. Imaging Graph. 2015, 40, 182–193. [Google Scholar] [CrossRef]
- Sevastopolsky, A. Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recognit. Image Anal. 2017, 27, 618–624. [Google Scholar] [CrossRef] [Green Version]
- Zilly, J.; Buhmann, J.M.; Mahapatra, D. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput. Med. Imaging Graph. 2017, 55, 28–41. [Google Scholar] [CrossRef]
- Acharya, U.R.; Ng, E.Y.K.; Eugene, L.W.J.; Noronha, K.P.; Min, L.C.; Nayak, K.P.; Bhandary, S.V. Decision support system for the glaucoma using Gabor transformation. Biomed. Signal. Process. Control. 2015, 15, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Dua, S.; Acharya, U.R.; Chowriappa, P.; Sree, S.V. Wavelet-based energy features for glaucomatous image classification. IEEE Trans. Inf. Technol. Biomed. 2011, 16, 80–87. [Google Scholar] [CrossRef]
- Bock, R.; Meier, J.; Nyúl, L.G.; Hornegger, J.; Michelson, G. Glaucoma risk index: Automated glaucoma detection from color fundus images. Med. Image Anal. 2010, 14, 471–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.; Liu, J.; Xu, Y.; Yin, F.; Wong, D.W.K.; Tan, N.-M.; Tao, D.; Cheng, C.-Y.; Aung, T.; Wong, T.Y. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans. Med. Imaging 2013, 32, 1019–1032. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, Y.; Wong, D.W.K.; Wong, T.Y.; Liu, J. Glaucoma detection based on deep convolutional neural network. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 715–718. [Google Scholar]
- Zhao, R.; Chen, Z.; Duan, X. Automatic detection of glaucoma based on aggregated multi-channel features. J. Comput-Aided Comput Graph. 2017, 29, 998–1006. [Google Scholar]
- Liao, W.; Zou, B.; Zhao, R.; Chen, Y.; He, Z.; Zhou, M. Clinical interpretable deep learning model for glaucoma diagnosis. IEEE J. Biomed. Health Inform. 2019, 24, 1405–1412. [Google Scholar] [CrossRef]
- Liu, H.; Li, L.; Wormstone, I.M.; Qiao, C.; Zhang, C.; Liu, P.; Li, S.; Wang, H.; Mou, D.; Pang, R. Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs. JAMA Ophthalmol. 2019, 137, 1353–1360. [Google Scholar] [CrossRef]
- Li, L.; Xu, M.; Wang, X.; Jiang, L.; Liu, H. Attention based glaucoma detection: A large-scale database and cnn model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10571–10580. [Google Scholar]
- Sivaswamy, J.; Krishnadas, S.; Joshi, G.D.; Jain, M.; Tabish, A.U.S. Drishti-gs: Retinal image dataset for optic nerve head (onh) segmentation. In Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, China, 29 April–2 May 2014; pp. 53–56. [Google Scholar]
Methods | JC | DC | Acc | Number of Parameters | Ratio of Parameters | Training Time (Minutes) |
---|---|---|---|---|---|---|
ResNet34-Unet [7] | 0.845 | 0.910 | 0.9966 | 24,456,444 | 1.93 | 55 |
ResNet18-Unet | 0.846 | 0.911 | 0.9967 | 14,340,860 | 1.134 | 49 |
EffUnet (our method) | 0.854 | 0.916 | 0.9968 | 12,641,459 | 1 | 42 |
Author | Method | Optic Disc | Dataset | ||
---|---|---|---|---|---|
DC | JC | Acc | |||
Wong et al. [34] | Support vector machine-based classification mechanism | - | 0.940 | 0.990 | SiMES |
Yu et al. [30] | Directional matched filtering and level sets | - | 0.844 | - | MESSIDOR |
Mookiah et al. [35] | Attanassov intuitionistic fuzzy histon (A-IFSH) based method | 0.920 | - | 0.934 | Private |
Giachetti et al. [36] | Iteratively refined model based on contour search constrained by vessel density | - | 0.861 | - | MESSIDOR |
Dashtbozorg et al. [37] | Sliding band filter | - | 0.890 | - | MESSIDOR |
- | 0.850 | - | INSPIRE-AVR | ||
Basit and Fraz [38] | Morphological operations, smoothing filters, 3* and the marker controlled watershed transform | - | 0.710 | - | Shifa |
- | 0.456 | - | 3*CHASE-DB1 | ||
- | 0.547 | - | 3*DIARETDB1 | ||
- | 0.619 | - | DRIVE | ||
Wang et al. [39] | Level set method | - | 0.882 | - | DRIVE |
- | 0.882 | - | DIARETDB1 | ||
- | 0.891 | - | DIARETDB0 | ||
Hamednejad et al. [40] | DBSCAN clustering algorithm | - | - | 0.782 | DRIVE |
Roychowdhury et al. [41] | Region-based features and supervised classification | - | 0.807 | 0.991 | DRIVE |
- | 0.802 | 0.996 | DIARETDB1 | ||
- | 0.776 | 0.996 | DIARETDB0 | ||
- | 0.808 | 0.991 | CHASE-DB1 | ||
- | 0.837 | 0.996 | MESSIDOR | ||
- | 0.729 | 0.985 | STARE | ||
Girard et al. [42] | Local K-means clustering | - | 0.900 | - | MESSIDOR |
Akyol et al. [43] | Keypoint detection, texture analysis, and visual dictionary | - | - | 0.944 | DIARETDB1 |
- | - | 0.950 | DRIVE | ||
- | - | 0.900 | ROC | ||
Abdullah et al. [44] | Circular Hough transform and grow-cut algorithm | - | 0.786 | - | DRIVE |
- | 0.851 | - | DIARETDB1 | ||
- | 0.832 | - | CHASE-DB1 | ||
- | 0.879 | - | MESSIDOR | ||
- | 0.861 | - | Private | ||
Tan et al. [45] | 7-Layer CNN | - | - | - | DRIVE |
Zahoor et al. [46] | Polar transform | - | 0.874 | - | DIARETDB1 |
- | 0.844 | - | MESSIDOR | ||
- | 0.756 | - | DRIVE | ||
Sigut et al. [47] | Contrast based circular approximation | - | 0.890 | - | MESSIDOR |
Noor et al. [31] | Colour multi-thresholding segmentation | 0.590 | - | 0.709 | DRIVE |
Khalid et al. [32] | Fuzzy c-Means (FCM) and morphological operations | - | - | 0.937 | DRIVE |
Yin et al. [48] | Statistical model | - | 0.920 | - | ORIGA |
Fu et al. [14] | Multi-label deep learning and Polar transformation (DL) | - | 0.929 | - | ORIGA |
Al-Bander et al. [33] | Fully convolutional DenseNet | 0.965 | 0.933 | 0.999 | ORIGA |
Proposed method | EffUnet | 0.999 | 0.998 | 0.999 | ORIGA |
Author | Method | Optic Cup | Dataset | ||
---|---|---|---|---|---|
DC | JC | Acc | |||
Hatanaka et al. [49] | Detection of blood vessel bends and features determined from the density gradient | - | - | - | Private |
Almazroa et al. [50] | Thresholding using type-II Fuzzy method | - | - | 0.761 | BinRushed |
- | - | 0.724 | Magrabi | ||
- | - | 0.815 | MESSIDOR | ||
Noor et al. [31] | Colour multi-thresholding segmentation | 0.510 | - | 0.673 | DRIVE |
Khalid et al. [32] | Fuzzy c-Means (FCM) and morphological operations | - | - | 0.903 | DRIVE |
Yin et al. [51] | Sector-based and intensity with shape constraints | 0.830 | - | - | ORIGA |
Yin et al. [48] | Statistical model | 0.810 | - | - | ORIGA |
Xu et al. [52] | Low-rank superpixel representation | - | 0.744 | - | ORIGA |
Tan et al. [53] | Multi-scale superpixel classification | - | 0.752 | - | ORIGA |
Fu et al. [14] | Multi-label deep learning and Polar transformation | - | 0.770 | - | ORIGA |
Al-Bander et al. [33] | Fully convolutional DenseNet | 0.866 | 0.769 | 0.999 | ORIGA |
Proposed method | EffUnet | 0.870 | 0.782 | 0.998 | ORIGA |
Author | Optic Disc | Optic Cup | ||
---|---|---|---|---|
DC | JC | DC | JC | |
Sevastopolsky [54] | - | - | 0.850 | 0.750 |
Zilly et al. [55] | 0.973 | 0.914 | 0.871 | 0.850 |
Al-Bander et al. [33] | 0.949 | 0.904 | 0.828 | 0.711 |
Shuang et al. [7] | 0.974 | 0.949 | 0.888 | 0.804 |
Proposed method | 0.999 | 0.998 | 0.923 | 0.861 |
Segmentation Model | Generative Model (n of Parameters) | Results for ORIGA (Top), DRISHTI (Bottom) | ||||
---|---|---|---|---|---|---|
AUROC | Sen | Spe | PPV | NPV | ||
EffUnet | CDAR (2) | 0.844 | 0.847 | 0.726 | 0.882 | 0.663 |
0.856 | 0.737 | 0.923 | 0.966 | 0.545 | ||
EffUnet | CDR profile of 24values and 1 variance parameter (13) | 0.939 | 0.842 | 0.921 | 0.816 | 0.934 |
0.879 | 0.789 | 0.923 | 0.968 | 0.600 | ||
EffUnet | CDR profile of 24 values and 2 variance parameters (14) | 0.965 | 0.863 | 0.961 | 0.901 | 0.944 |
0.933 | 0.895 | 0.923 | 0.971 | 0.750 | ||
EffUnet | CDR profile of 24 values and 1 variance parameters and CDAR (14) | 0.994 | 0.979 | 0.961 | 0.912 | 0.991 |
0.923 | 0.842 | 0.923 | 0.970 | 0.667 | ||
EffUnet | CDR profile of 24 values and 2 variance parameters and CDAR (15) | 0.997 | 0.989 | 0.974 | 0.940 | 0.996 |
0.969 | 0.947 | 0.923 | 0.973 | 0.857 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishna Adithya, V.; Williams, B.M.; Czanner, S.; Kavitha, S.; Friedman, D.S.; Willoughby, C.E.; Venkatesh, R.; Czanner, G. EffUnet-SpaGen: An Efficient and Spatial Generative Approach to Glaucoma Detection. J. Imaging 2021, 7, 92. https://doi.org/10.3390/jimaging7060092
Krishna Adithya V, Williams BM, Czanner S, Kavitha S, Friedman DS, Willoughby CE, Venkatesh R, Czanner G. EffUnet-SpaGen: An Efficient and Spatial Generative Approach to Glaucoma Detection. Journal of Imaging. 2021; 7(6):92. https://doi.org/10.3390/jimaging7060092
Chicago/Turabian StyleKrishna Adithya, Venkatesh, Bryan M. Williams, Silvester Czanner, Srinivasan Kavitha, David S. Friedman, Colin E. Willoughby, Rengaraj Venkatesh, and Gabriela Czanner. 2021. "EffUnet-SpaGen: An Efficient and Spatial Generative Approach to Glaucoma Detection" Journal of Imaging 7, no. 6: 92. https://doi.org/10.3390/jimaging7060092
APA StyleKrishna Adithya, V., Williams, B. M., Czanner, S., Kavitha, S., Friedman, D. S., Willoughby, C. E., Venkatesh, R., & Czanner, G. (2021). EffUnet-SpaGen: An Efficient and Spatial Generative Approach to Glaucoma Detection. Journal of Imaging, 7(6), 92. https://doi.org/10.3390/jimaging7060092