Vegetation Structure Index (VSI): Retrieving Vegetation Structural Information from Multi-Angular Satellite Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and In Situ Data
2.2. Proposal of New Multi-Angular Indices
2.3. Processing of Satellite Data
3. Results
3.1. Performance of Existing Multi-Angular Indices
3.2. Performance of New Multi-Angular Indices
3.3. Effects of View Angles on Biomass
3.4. Interrelationships between Structural Indices
3.5. Effects of Seasonal Data on Biomass
3.6. Statistical Significance Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. Comprehensive Database of Diameter-Based Biomass Regressions for North American Tree Species; United States Department of Agriculture, Forest Service, Northeastern Research Station: Newtown Square, PA, USA, 2004; p. 319. [Google Scholar]
- Chave, J.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. Error Propagation and Scaling for Tropical Forest Biomass Estimates. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2004, 359, 409–420. [Google Scholar] [CrossRef]
- Kimes, D.S.; Newcomb, W.W.; Nelson, R.F.; Schutt, J.B. Directional Reflectance Distributions of a Hardwood and Pine Forest Canopy. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 281–293. [Google Scholar] [CrossRef]
- Li, X.; Strahler, A.H. Geometric-Optical Bidirectional Reflectance Modeling of the Discrete Crown Vegetation Canopy: Effect of Crown Shape and Mutual Shadowing. IEEE Trans. Geosci. Remote Sens. 1992, 30, 276–292. [Google Scholar] [CrossRef]
- Sandmeier, S.; Deering, D.W. Structure Analysis and Classification of Boreal Forests Using Airborne Hyperspectral BRDF Data from ASAS. Remote Sens. Environ. 1999, 69, 281–295. [Google Scholar] [CrossRef]
- Gerard, F.F.; North, P.R.J. Analyzing the Effect of Structural Variability and Canopy Gaps on Forest BRDF Using a Geometric-Optical Model. Remote Sens. Environ. 1997, 62, 46–62. [Google Scholar] [CrossRef]
- North, P.R.J. Three-Dimensional Forest Light Interaction Model Using a Monte Carlo Method. IEEE Trans. Geosci. Remote Sens. 1996, 34, 946–956. [Google Scholar] [CrossRef]
- Walthall, C. A Study of Reflectance Anisotropy and Canopy Structure Using a Simple Empirical Model. Remote Sens. Environ. 1997, 61, 118–128. [Google Scholar] [CrossRef]
- Liang, S.; Strahler, A. Retrieval of Surface BRDF from Multiangle Remotely Sensed Data. Remote Sens. Environ. 1994, 50, 18–30. [Google Scholar] [CrossRef]
- Li, X.; Strahler, A. Geometric-Optical Modeling of a Conifer Forest Canopy. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 705–721. [Google Scholar] [CrossRef] [Green Version]
- Jupp, D.L.B.; Strahler, A.H. A Hotspot Model for Leaf Canopies. Remote Sens. Environ. 1991, 38, 193–210. [Google Scholar] [CrossRef]
- Lavergne, T.; Kaminski, T.; Pinty, B.; Taberner, M.; Gobron, N.; Verstraete, M.M.; Vossbeck, M.; Widlowski, J.-L.; Giering, R. Application to MISR Land Products of an RPV Model Inversion Package Using Adjoint and Hessian Codes. Remote Sens. Environ. 2007, 107, 362–375. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Leroy, M.; Deschamps, P.-Y. A Bidirectional Reflectance Model of the Earth’s Surface for the Correction of Remote Sensing Data. J. Geophys. Res. 1992, 97, 20455. [Google Scholar] [CrossRef]
- Asner, G.P. Contributions of Multi-view Angle Remote Sensing to Land-surface and Biogeochemical Research. Remote Sens. Rev. 2000, 18, 137–162. [Google Scholar] [CrossRef]
- Chopping, M.; Schaaf, C.B.; Zhao, F.; Wang, Z.; Nolin, A.W.; Moisen, G.G.; Martonchik, J.V.; Bull, M. Forest Structure and Aboveground Biomass in the Southwestern United States from MODIS and MISR. Remote Sens. Environ. 2011, 115, 2943–2953. [Google Scholar] [CrossRef] [Green Version]
- Bacour, C.; Bréon, F.-M. Variability of Biome Reflectance Directional Signatures as Seen by POLDER. Remote Sens. Environ. 2005, 98, 80–95. [Google Scholar] [CrossRef]
- Rautiainen, M.; Lang, M.; Mõttus, M.; Kuusk, A.; Nilson, T.; Kuusk, J.; Lükk, T. Multi-Angular Reflectance Properties of a Hemiboreal Forest: An Analysis Using CHRIS PROBA Data. Remote Sens. Environ. 2008, 112, 2627–2642. [Google Scholar] [CrossRef]
- Román, M.O.; Gatebe, C.K.; Schaaf, C.B.; Poudyal, R.; Wang, Z.; King, M.D. Variability in Surface BRDF at Different Spatial Scales (30 m–500 m) over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements. Remote Sens. Environ. 2011, 115, 2184–2203. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Hara, K. Characterization of Vegetation Physiognomic Types Using Bidirectional Reflectance Data. Geosciences 2018, 8, 394. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Feng, W.; He, L.; Xu, D.; Zhang, H.-Y.; Li, X.; Wang, Z.-J.; Coburn, C.A.; Wang, C.-Y.; Guo, T.-C. Examining View Angle Effects on Leaf N Estimation in Wheat Using Field Reflectance Spectroscopy. ISPRS J. Photogramm. Remote Sens. 2016, 122, 57–67. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L. Influence of the Canopy BRDF Characteristics and Illumination Conditions on the Retrieval of Solar-Induced Chlorophyll Fluorescence. Int. J. Remote Sens. 2018, 39, 1782–1799. [Google Scholar] [CrossRef]
- Jackson, R.D.; Teillet, P.M.; Slater, P.N.; Fedosejevs, G.; Jasinski, M.F.; Aase, J.K.; Moran, M.S. Bidirectional Measurements of Surface Reflectance for View Angle Corrections of Oblique Imagery. Remote Sens. Environ. 1990, 32, 189–202. [Google Scholar] [CrossRef]
- Leroy, M.; Roujean, J.-L. Sun and View Angle Corrections on Reflectances Derived from NOAA/AVHRR Data. IEEE Trans. Geosci. Remote Sens. 1994, 32, 684–697. [Google Scholar] [CrossRef]
- Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubühler, M. Angular Sensitivity Analysis of Vegetation Indices Derived from CHRIS/PROBA Data. Remote Sens. Environ. 2008, 112, 2341–2353. [Google Scholar] [CrossRef]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An Algorithm for the Retrieval of Albedo from Space Using Semiempirical BRDF Models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Z.; Hill, M.J.; Schaaf, C.B.; Zhang, H.; Wang, Z.; Li, X. An Anisotropic Flat Index (AFX) to Derive BRDF Archetypes from MODIS. Remote Sens. Environ. 2014, 141, 168–187. [Google Scholar] [CrossRef]
- Gao, F. Detecting Vegetation Structure Using a Kernel-Based BRDF Model. Remote Sens. Environ. 2003, 86, 198–205. [Google Scholar] [CrossRef]
- Schull, M.A.; Knyazikhin, Y.; Xu, L.; Samanta, A.; Carmona, P.L.; Lepine, L.; Jenkins, J.P.; Ganguly, S.; Myneni, R.B. Canopy Spectral Invariants, Part 2: Application to Classification of Forest Types from Hyperspectral Data. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 736–750. [Google Scholar] [CrossRef] [Green Version]
- Lewis, P.; Disney, M. Spectral Invariants and Scattering across Multiple Scales from Within-Leaf to Canopy. Remote Sens. Environ. 2007, 109, 196–206. [Google Scholar] [CrossRef]
- d’Entremont, R.P.; Schaaf, C.B.; Lucht, W.; Strahler, A.H. Retrieval of Red Spectral Albedo and Bidirectional Reflectance Using AVHRR HRPT and GOES Satellite Observations of the New England Region. J. Geophys. Res. Atmos. 1999, 104, 6229–6239. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Muller, J.-P.; Schaaf, C.; Strahler, A.H. Feng Gao Mapping Urban Landcover Using the Bidirectional Reflectance Distribution Function BRDF/Albedo Product from the Moderate Resolution Imaging Spectroradiometer (MODIS). In Proceedings of the IGARSS 2001. Scanning the Present and Resolving the Future. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, NSW, Australia, 9–3 July 2001; Volume 6, pp. 2680–2682. [Google Scholar]
- Wanner, W.; Li, X.; Strahler, A.H. On the Derivation of Kernels for Kernel-Driven Models of Bidirectional Reflectance. J. Geophys. Res. 1995, 100, 21077. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First Operational BRDF, Albedo Nadir Reflectance Products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Sandmeier, S.; Müller, C.; Hosgood, B.; Andreoli, G. Physical Mechanisms in Hyperspectral BRDF Data of Grass and Watercress. Remote Sens. Environ. 1998, 66, 222–233. [Google Scholar] [CrossRef]
- Lacaze, R. Retrieval of Vegetation Clumping Index Using Hot Spot Signatures Measured by POLDER Instrument. Remote Sens. Environ. 2002, 79, 84–95. [Google Scholar] [CrossRef]
- Chen, J.M.; Menges, C.H.; Leblanc, S.G. Global Mapping of Foliage Clumping Index Using Multi-Angular Satellite Data. Remote Sens. Environ. 2005, 97, 447–457. [Google Scholar] [CrossRef]
- Pocewicz, A.; Vierling, L.A.; Lentile, L.B.; Smith, R. View Angle Effects on Relationships between MISR Vegetation Indices and Leaf Area Index in a Recently Burned Ponderosa Pine Forest. Remote Sens. Environ. 2007, 107, 322–333. [Google Scholar] [CrossRef]
- Cook, B.; Dubayah, R.; Griffith, P.; Hall, F.G.; Nelson, R.; Ranson, J.; Simard, M.; Siqueira, P.; Strahler, A.H. NACP New England and Sierra National Forests Biophysical Measurements: 2008–2010. ORNL DAAC 2011. [Google Scholar] [CrossRef]
- Sharma, R.C.; Kajiwara, K.; Honda, Y. Automated Extraction of Canopy Shadow Fraction Using Unmanned Helicopter-Based Color Vegetation Indices. Trees 2013, 27, 675–684. [Google Scholar] [CrossRef]
- Sharma, R.C.; Kajiwara, K.; Honda, Y. Estimation of Forest Canopy Structural Parameters Using Kernel-Driven Bi-Directional Reflectance Model Based Multi-Angular Vegetation Indices. Isprs J. Photogramm. Remote Sens. 2013, 78, 50–57. [Google Scholar] [CrossRef]
- Fatehi, P.; Damm, A.; Schaepman, M.; Kneubühler, M. Estimation of Alpine Forest Structural Variables from Imaging Spectrometer Data. Remote Sens. 2015, 7, 16315–16338. [Google Scholar] [CrossRef] [Green Version]
- Huesca, M.; García, M.; Roth, K.L.; Casas, A.; Ustin, S.L. Canopy Structural Attributes Derived from AVIRIS Imaging Spectroscopy Data in a Mixed Broadleaf/Conifer Forest. Remote Sens. Environ. 2016, 182, 208–226. [Google Scholar] [CrossRef] [Green Version]
- Schlerf, M.; Atzberger, C. Inversion of a Forest Reflectance Model to Estimate Structural Canopy Variables from Hyperspectral Remote Sensing Data. Remote Sens. Environ. 2006, 100, 281–294. [Google Scholar] [CrossRef]
- Miraglio, T.; Adeline, K.; Huesca, M.; Ustin, S.; Briottet, X. Joint Use of PROSAIL and DART for Fast LUT Building: Application to Gap Fraction and Leaf Biochemistry Estimations over Sparse Oak Stands. Remote Sens. 2020, 12, 2925. [Google Scholar] [CrossRef]
- Schaepman, M.E.; Koetz, B.; Schaepman-Strub, G.; Itten, K.I. Spectrodirectional Remote Sensing for the Improved Estimation of Biophysical and -Chemical Variables: Two Case Studies. Int. J. Appl. Earth Obs. Geoinf. 2005, 6, 271–282. [Google Scholar] [CrossRef]
- Hilker, T.; Coops, N.C.; Coggins, S.B.; Wulder, M.A.; Brown, M.; Black, T.A.; Nesic, Z.; Lessard, D. Detection of Foliage Conditions and Disturbance from Multi-Angular High Spectral Resolution Remote Sensing. Remote Sens. Environ. 2009, 113, 421–434. [Google Scholar] [CrossRef]
- Fassnachta, F.; Koch, B. Review of Forestry Oriented Multi-Angular Remote Sensing Techniques. Int. Forest. Rev. 2012, 14, 285–298. [Google Scholar] [CrossRef]
- Pisek, J.; Chen, J.M.; Lacaze, R.; Sonnentag, O.; Alikas, K. Expanding Global Mapping of the Foliage Clumping Index with Multi-Angular POLDER Three Measurements: Evaluation and Topographic Compensation. ISPRS J. Photogramm. Remote Sens. 2010, 65, 341–346. [Google Scholar] [CrossRef]
- Hilker, T.; Gitelson, A.; Coops, N.C.; Hall, F.G.; Black, T.A. Tracking Plant Physiological Properties from Multi-Angular Tower-Based Remote Sensing. Oecologia 2011, 165, 865–876. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Chen, J.M.; Pisek, J.; Schaaf, C.B.; Strahler, A.H. Global Clumping Index Map Derived from the MODIS BRDF Product. Remote Sens. Environ. 2012, 119, 118–130. [Google Scholar] [CrossRef]
- Chen, J.M.; Liu, J.; Leblanc, S.G.; Lacaze, R.; Roujean, J.-L. Multi-Angular Optical Remote Sensing for Assessing Vegetation Structure and Carbon Absorption. Remote Sens. Environ. 2003, 84, 516–525. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Wang, J.; Gao, S.; Huang, W. Predicting Leaf Area Index in Wheat Using Angular Vegetation Indices Derived from in Situ Canopy Measurements. Can. J. Remote Sens. 2010, 36, 301–312. [Google Scholar] [CrossRef]
- Wang, Q.; Pang, Y.; Li, Z.; Sun, G.; Chen, E.; Ni-Meister, W. The Potential of Forest Biomass Inversion Based on Vegetation Indices Using Multi-Angle CHRIS/PROBA Data. Remote Sens. 2016, 8, 891. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Jiao, Z.; Dong, Y.; Sun, M.; Zhang, X.; Yin, S.; Ding, A.; Chang, Y.; Guo, J.; Xie, R. Estimating Forest Canopy Height Using MODIS BRDF Data Emphasizing Typical-Angle Reflectances. Remote Sens. 2019, 11, 2239. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Ni, X.; Shi, Y.; Ganguly, S.; Zhang, G.; Duong, H.; Lefsky, M.; Simard, M.; Saatchi, S.; Lee, S.; et al. Allometric Scaling and Resource Limitations Model of Tree Heights: Part 2. Site Based Testing of the Model. Remote Sens. 2013, 5, 202–223. [Google Scholar] [CrossRef] [Green Version]
- Park, T.; Kennedy, R.; Choi, S.; Wu, J.; Lefsky, M.; Bi, J.; Mantooth, J.; Myneni, R.; Knyazikhin, Y. Application of Physically-Based Slope Correction for Maximum Forest Canopy Height Estimation Using Waveform Lidar across Different Footprint Sizes and Locations: Tests on LVIS and GLAS. Remote Sens. 2014, 6, 6566–6586. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, G.; Ding, J.; Guo, Z.; Tang, S.; Wang, C.; Huang, Q.; Liu, R.; Chen, J.M. A Combined GLAS and MODIS Estimation of the Global Distribution of Mean Forest Canopy Height. Remote Sens. Environ. 2016, 174, 24–43. [Google Scholar] [CrossRef]
Multi-Angular Vegetation Indices | Formula | Reference | Target Areas |
---|---|---|---|
Nadir BRDF-adjusted NDVI () | Schaaf et al. [33] | Vegetation parameters | |
Anisotropy index () | Sandmeier et al. [34] | Land cover types | |
Anisotropy index () | Sandmeier et al. [34] | Land cover types | |
Hot-spot dark-spot index ( | Lacaze et al. [35] | Vegetation clumping | |
Normalized difference between hot-spot and dark-spot index () | Chen et al. [36] | Vegetation clumping | |
Hot-spot dark-spot NDVI () | Pocewicz et al. [37] | Leaf area index | |
Hot-spot-incorporated NDVI ( | ) | Pocewicz et al. [37] | Leaf area index |
Multi-Angular Vegetation Indices | R2 | RMSE |
---|---|---|
Anisotropy index () | 0.25 | 73.07 |
Anisotropy index () | 0.14 | 78.32 |
Hot-spot dark spot index ( | 0.25 | 73.07 |
Normalized difference between hot-spot and dark-spot index () | 0.17 | 77.34 |
Hot-spot dark-spot NDVI () | 0.23 | 74.24 |
Hot-spot incorporated NDVI ( | 0.57 | 55.52 |
Nadir BRDF-adjusted NDVI | 0.54 | 57.42 |
Multi-Angular Indices and Reflectances |
Spearman’s Rank Correlation p -Value |
Kendall’s Rank Correlation p -Value |
---|---|---|
Anisotropy index () | 0.005527 | 0.008450 |
Anisotropy index () | 0.015114 | 0.014109 |
Hot-spot dark spot index ( | 0.005527 | 0.008450 |
Normalized difference between hot-spot and dark-spot index () | 0.009190 | 0.008829 |
Hot-spot dark-spot NDVI () | 0.000148 | 0.001236 |
Hot-spot incorporated NDVI ( | 0.000000 | 0.000000 |
Nadir BRDF-adjusted NDVI | 0.000000 | 0.000000 |
Near infrared (Back-scattering) | 0.000000 | 0.000001 |
Near infrared (Nadir) | 0.000000 | 0.000000 |
Near infrared (Fore-scattering) | 0.000000 | 0.000000 |
Red (Back-scattering) | 0.000001 | 0.000006 |
Red (Nadir) | 0.000317 | 0.000333 |
Red (Fore-scattering) | 0.564852 | 0.692547 |
Fore-scattering Back-scattering NDVI () | 0.000000 | 0.000000 |
Vegetation Structure Index (VSI) | 0.000000 | 0.000000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, R.C. Vegetation Structure Index (VSI): Retrieving Vegetation Structural Information from Multi-Angular Satellite Remote Sensing. J. Imaging 2021, 7, 84. https://doi.org/10.3390/jimaging7050084
Sharma RC. Vegetation Structure Index (VSI): Retrieving Vegetation Structural Information from Multi-Angular Satellite Remote Sensing. Journal of Imaging. 2021; 7(5):84. https://doi.org/10.3390/jimaging7050084
Chicago/Turabian StyleSharma, Ram C. 2021. "Vegetation Structure Index (VSI): Retrieving Vegetation Structural Information from Multi-Angular Satellite Remote Sensing" Journal of Imaging 7, no. 5: 84. https://doi.org/10.3390/jimaging7050084
APA StyleSharma, R. C. (2021). Vegetation Structure Index (VSI): Retrieving Vegetation Structural Information from Multi-Angular Satellite Remote Sensing. Journal of Imaging, 7(5), 84. https://doi.org/10.3390/jimaging7050084