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Abstract: This paper presents an assessment of the bidirectional reflectance features for the classification
and characterization of vegetation physiognomic types at a national scale. The bidirectional reflectance
data at multiple illumination and viewing geometries were generated by simulating the Moderate
Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF)
model parameters with Ross-Thick Li-Sparse-Reciprocal (RT-LSR) kernel weights. This research
dealt with the classification and characterization of six vegetation physiognomic types—evergreen
coniferous forest, evergreen broadleaf forest, deciduous coniferous forest, deciduous broadleaf forest,
shrubs, and herbaceous—which are distributed all over the country. The supervised classification
approach was used by employing four machine learning classifiers—k-Nearest Neighbors (KNN),
Random Forests (RF), Support Vector Machines (SVM), and Multilayer Perceptron Neural Networks
(NN)—with the support of ground truth data. The confusion matrix, overall accuracy, and kappa
coefficient were calculated through a 10-fold cross-validation approach, and were also used as the
metrics for quantitative evaluation. Among the classifiers tested, the accuracy metrics did not vary
much with the classifiers; however, the Random Forests (RF; Overall accuracy = 0.76, Kappa coefficient
= 0.72) and Support Vector Machines (SVM; Overall accuracy = 0.76, Kappa coefficient = 0.71)
classifiers performed slightly better than other classifiers. The bidirectional reflectance spectra did not
only vary with the vegetation physiognomic types, it also showed a pronounced difference between
the backward and forward scattering directions. Thus, the bidirectional reflectance data provides
additional features for improving the classification and characterization of vegetation physiognomic
types at the broad scale.
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1. Introduction

Vegetation has been threatened by changes in species composition and the shifting of zones under
the influence of climate change worldwide [1–3]. The mapping and characterization of vegetation
physiognomic types (growth forms: tree, shrub, herbaceous; leaf characteristics: needle-leaved or
broadleaved; and phenology: evergreen or deciduous [4]) is useful for a better understanding of
vegetation dynamics.

The supervised classification of remotely sensed data is a common technique for identifying
vegetation characteristics and monitoring changes on a timely basis. A number of supervised
classifiers, such as maximum likelihood [5], decision trees [6,7], Support Vector Machines (SVM) [8],
Random Forest (RF) [9–11], and Multilayer Perceptron Neural Networks (NN) [12–14], have been
employed for this purpose.

The Ross-Thick Li-Sparse-Reciprocal (RT-LSR) model is a common Bidirectional Reflectance
Distribution Function (BRDF) algorithm that combines the radiative transfer and geometric optical
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model in a semi-empirical fashion [15–20]. In the RT-LSR model, the bidirectional reflectance (R)
for a given sun zenith angle (SZA), view zenith angle (VZA), and relative azimuth angle (RAA) is
described by Equation (1):

R(θ, ϑ, ∆φ) = fiso + fvol × Kvol (θ, ϑ, ∆φ) + fgeo × Kgeo

(
θ, ϑ, ∆φ,

h
b

,
b
r

)
(1)

In Equation (1), Kvol and Kgeo are the kernels for volumetric scattering and geometric scattering,
respectively. The Kvol and Kgeo are trigonometric functions of SZA (θ), VZA (ϑ), and RAA (∆φ).

Crown relative height
(

h
b

)
and relative shape

(
b
r

)
parameters are also included in the Kgeo. The fiso is

a constant called isotropic scattering, which describes the reflectance under nadir solar illumination
and nadir viewing condition; whereas the fvol and fgeo are the kernel weights for volumetric
and geometric scatterings, respectively. The Moderate Resolution Imaging Spectroradiometer
(MODIS) BRDF/Albedo Model Parameters product (MCD43A1) delivers the BRDF parameters
( fiso, fvol , and fgeo) in seven spectral bands at 500-m spatial resolution on an eight-day cycle by
fitting daily atmospherically corrected surface reflectance data with the RT-LSR model [20]. Using the
BRDF parameters ( fiso, fvol , and fgeo) and associated RT-LSR model kernel (Kvol and Kgeo) weights,
bidirectional reflectance (R) at any illumination and viewing geometry can be generated. The MODIS
BRDF/Albedo products provide high quality BRDF parameters [21–25].

The classification of vegetation physiognomic types using satellite remote sensing data over a large
region is a challenging field. For example, extant maps such as MODIS Land Cover Type Product
(MCD12Q1, [26]) and Global Land Cover by National Mapping Organizations (GLCNMO, [27]),
from which the vegetation physiognomic information can be obtained, have not correctly classified the
vegetation physiognomic types over a region as large and diverse as all of Japan [28,29]. With a focus
on ground truth data and mapping at the national scale, more accurate vegetation physiognomic maps
have been produced in Japan [28,29]. The importance of input features and the size of ground truth
data for the classification of vegetation physiognomic types have also been emphasized [30]. In our
previous research [29], nadir BRDF-adjusted reflectance indicated a slightly better classification of
vegetation physiognomic types than the conventional surface reflectance. The objective of this research
was to further assess the potential of bidirectional reflectance data at multiple illumination and viewing
geometries for improving the classification and characterization of vegetation physiognomic types at
moderate spatial resolution.

2. Materials and Methods

2.1. Processing of Satellite Data

The MODIS BRDF/Albedo parameters product (MCD43A1), available from the United States
Geological Survey (USGS) on an eight-day cycle at 500-m resolution, were processed for the year
2016. The BRDF model parameters ( fiso, fvol and fgeo) of six spectral bands (red, near-infrared,
blue, green, mid-infrared, and short-wave infrared) were utilized. Bidirectional reflectance data,
at different illumination and viewing geometries (Table 1), were derived by simulating the BRDF
model parameters with the RT-LSR kernel weights. Using all of the stacks of images available for
Japan, the bidirectional reflectance data for each spectral band were composited by calculating eleven
percentile values (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100) pixel by pixel following the methodology
described by Sharma et al. [30]. In this manner, a total of 264 bidirectional reflectance features were
prepared from the MCD43A1 product (Table 1).

For the purpose of comparing the bidirectional reflectance, the surface reflectance product
(MOD09A1/MOY09A1), which provides an estimate of the surface spectral reflectance as it would
be measured at the ground level in the absence of atmospheric scattering or absorption, was also
processed in a manner similar to the MCD43A1 product, and the annual minimum and maximum
value composites for each spectral bands were generated.
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Table 1. Description of the bidirectional reflectance features prepared in the research. RAA: relative
azimuth angle, SZA: sun zenith angle, VZA: view zenith angle.

Spectral Angular (SZA, VZA, RAA) Temporal

6
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Total features = 6 × 4 × 11 = 264

2.2. Preparation of Ground Truth Data

This research deals with the classification and characterization of six vegetation physiognomic
types: evergreen coniferous forest (ECF), evergreen broadleaf forest (EBF), deciduous coniferous
forest (DCF), deciduous broadleaf forest (DBF), shrubs (Sh), and herbaceous (Hb). Ground truth data
prepared in previous research studies [28–30] were further strengthened with reference to Google
Earth imagery and used for this research. This research utilizes a total of 410 ground truth points for
each class, which were located all over Japan.

2.3. Machine Learning and Cross-Validation

Four machine learning classifiers that were described for the classification of vegetation
physiognomic types in the previous research [30]: k-Nearest Neighbors (KNN), Random Forests (RF),
Support Vector Machines (SVM), and Multilayer Perceptron Neural Networks (NN), were employed
for the evaluation of bidirectional reflectance features in this research.

The performance was evaluated by a 10-fold cross-validation method, following the method
described by Sharma et al. [30]. In this method, given features were shuffled, and then grouped
into 10 folds. Machine learning was carried out only on nine folds, whereas the remaining fold
was used for validation. The features were standardized by removing the mean and scaling to unit
variance. Best scoring features were scored based on an analysis of variance test. Then, for each set
of best features, a machine learning model established with the learning folds was used to predict
the physiognomic classes with the validation fold. Predictions were collected from cross-validation
loops and the validation metrics—the confusion matrix, overall accuracy, and kappa coefficient—were
calculated for each set of best features. The hyperparameters of the classifier were tuned by repeated
hit and trial method with reference to the validation metrics. The optimum number of important
features that yielded the highest kappa coefficient with the lowest number of input features were
recorded. The same procedure was repeated for each machine learning classifier.

We also compared the spectral profiles of the vegetation physiognomic types regarding the surface
and bidirectional reflectance features. For this comparison, the spectral profiles were extracted from
both surface and bidirectional reflectance features using the median values of all of the ground truth
points that were prepared in the research.

3. Results and Discussion

3.1. Cross-Validation Results

The variation of the kappa coefficient by increasing the important number of features obtained
from the cross-validation method is shown in Figure 1. The kappa coefficients increased by increasing
the number of important features up to a point, after which they started to saturate for all of
the classifiers.

The confusion matrices that were computed are plotted in Figure 2. These matrices were computed
based on a 10-fold cross-validation method using the optimum set of features. Among the classifiers
used, the Random Forests (RF; Overall accuracy = 0.76, Kappa coefficient = 0.72) and Support Vector
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Machines (SVM; Overall accuracy = 0.76, Kappa coefficient = 0.71) performed slightly better than
others. Nevertheless, accuracy metrics obtained from the bidirectional reflectance did not vary much
with the classifiers, which was similar to the surface reflectance [30].
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3.2. Comparison of the Spectral Profiles

Figures 3 and 4 show the spectral profiles using annual minimum and maximum value composite
images, respectively. There is a substantial difference in the magnitude of the reflectance values in all of
the spectral regions between the surface and bidirectional reflectance products. The annual minimum
values of the surface reflectance are lower than the corresponding isotropic reflectance (Figure 3),
whereas the annual maximum values of the surface reflectance are higher than the corresponding
isotropic reflectance (Figure 4). The isotropic reflectance (SZA = 0◦, VZA = 0◦, RAA = 0◦) has indicated
a better discrimination of the vegetation physiognomic types in the near infrared and shortwave
infrared region than the surface reflectance. Therefore, the bidirectional reflectance features may be
more sensitive to the vegetation physiognomic types.
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Figure 5 shows the spectral profiles in the backward and forward scattering directions.
The herbs, shrubs, and deciduous conifer forests showed higher backward scattering in the red
region than the deciduous broadleaf, evergreen broadleaf, and evergreen conifer forests. It may be
because the exposure of ground surface is more pronounced in the case of short and deciduous
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vegetation (herbs, shrubs, and deciduous forests) while viewing from the off-nadir directions.
Moreover, the forward reflectance data are much lower than the backward reflectance, which was
possibly due to the presence of shadows in the forward direction. Thus, the analyses with the spectral
profiles indicated that bidirectional reflectance data provides additional features for improving the
classification and characterization of vegetation physiognomic types.
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Figure 5. Additional spectral profiles using bidirectional reflectance data: (a) annual maximum values
of the backward scattering (SZA = 45◦, VZA = 45◦, RAA = 0◦), (b) annual maximum values of the
forward scattering (SZA = 45◦, VZA = 45◦, RAA = 180◦).

The vegetation exhibits anisotropic reflectance, i.e., the reflectivity varies with respect to the
direction of observation [31,32]. Researchers have described the effects of viewing geometry and
illumination conditions on images [33] and vegetation indices [34]. The multi-angular remote
sensing has shown promises for characterization of forests [35] and biomes [36], as well as the
retrieval of canopy structural [37–40] and chemical characteristics [41,42]. Therefore, the mapping
and characterization of vegetation physiognomic types using the bidirectional reflectance data is an
interesting topic for research.

4. Conclusions

In this research, we analyzed the variation of the spectral profiles between the surface and
bidirectional reflectance data, and assessed the potential of bidirectional reflectance features at multiple
illumination and viewing geometries for improving the classification and characterization of vegetation
physiognomic types. The results of this research indicated that bidirectional reflectance provides
effective information for the classification and characterization of vegetation physiognomic types.
Our hope is that the mapping and monitoring of vegetation changes with bidirectional reflectance
data, especially at higher spatial resolution in the future, will contribute greatly to land planning,
nature conservation, and global biodiversity strategies. This research dealt with the physiognomic
characteristics of the vegetation only; however, exploring the effects of leaf and vegetation structure
(proportion of leaves/needles to woody parts, plant density, diversity, variation in plant height, edges,
etc.) on the bidirectional reflectance and classification of vegetation types is an important subject of
future research.
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