An Ontological Framework to Facilitate Early Detection of ‘Radicalization’ (OFEDR)—A Three World Perspective
Abstract
:1. Introduction
1.1. Terror Management and Terrorism
1.2. Ontology and Popper’s Three Worlds
1.3. Terror Management—Three World Ontology
1.4. Ontology Definition
1.5. State of the Art
1.6. Literature Search
1.7. Hypothesis and Idea of Present Work
- Knowledge about the IBBBs and the CPs can be combined into a consistent, coherent system that can identify subjects based on certain patterns.
- SPARQL queries identify subjects in the condition of EA by separating those individuals from a control group.
- Results from SPARQL queries can be used to visualize a gap between early detection of radicalization and the probability of terrorism.
- The ontology can be reasoned to have a philosophical existence in the real world.
2. Materials and Methods
2.1. Sample
2.2. Data
2.2.1. Model Choice and Organization of Data on Protégé
2.2.2. Test Sample(s)
2.3. Instruments
- 24 sample: Gaze data were recorded using an SMI iView XTM Hi-Speed 1000 (SensoMotoric Instruments, Teltow, Germany) eye tracker with sampling binocular gaze data at 500 Hz. The experiment was performed, and the initial data analyses were performed using SMI Experimental Suite 3.5. The data were further analyzed using IBM SPSS Statistics 23 (IBM, Armonk, NY, USA). For this sample, IBM SPSS Statistics 23 was used to aggregate the data.
- 80 sample: Gaze data were recorded using an SMI (iView X™) Red 250 system (SensoMotoric Instruments, Teltow, Germany) eye tracker with sampling binocular gaze data at 250 Hz. The experiment was performed, and the initial data analyses were performed using SMI Experimental Suite 3.6. The data were further analyzed using IBM SPSS Statistics 25 (aggregation) and 26 (analysis) (IBM, Armonk, NY, USA). For this sample IBM SPSS Statistics 25 was used to aggregate the data.
2.4. Study Registration
3. Results
3.1. Top Hierarchy of Ontology
3.2. The Five Main Classes IBBB-CP
3.2.1. Biochemistry
3.2.2. Behavior
3.2.3. Brain
3.2.4. Individual Characteristics
3.2.5. Crime Profiles
3.2.6. Extreme Behavior
3.2.7. The Relationships between the IBBB and the CPs
3.3. SPARQL Queries
3.4. Ontology Metrics
4. Discussion
4.1. A Three World Framework
4.2. Detection a Rare Occurrence
4.3. The ’Problem’ of Distribution
4.4. Generalizability
4.5. Prohibition, Screening and NOT Decision
4.6. ’From Individuals to the Level of State’
4.7. Assumptions
4.8. Limitations
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
CDF | Cumulative Distribution Function |
CP(s) | Criminal Profile(s) |
EA | Existential Anxiety |
FFM | Five Factor Model |
GABA | Gamma Aminobutyric Acid |
GTD | Global Terrorism Database |
IBBB(s) | Individual characteristics, Behavior, Brain Processing, Biochemistry |
LEA | Low Enforcement Agencies |
LoC | Locus of Control |
NBO | Neurobehavior Ontology |
NSD | Norwegian Center for Research Data |
NTNU | Norwegian University of Science and Technology |
OFC | Orbitofrontal Cortex |
OFEDR | Ontology Framework to Facilitate Early Detection of ’Radicalization’ |
OWL | Web Ontology Language |
P | Poisson Probability |
Probability Density Dunction | |
RDF | Resource Description Framework |
SMO | Sequential Minimal Optimization |
SNOMED | Standards for Health Terms in Patient Journals |
SPARQL | Protocol and RDF Query Language |
START | Consortium for the Study of Terrorism and Responses to Terrorism |
TMT | Terror Management Theory |
UX | User Experience |
VLPC | Ventrolateral Prefrontal Cortex |
VR | Virtual Environment |
WEKA | Waikato Environment for Knowledge Analysis |
W3C | World Wide Web Consortium’s |
References
- Bærum Mosque Shooting. Available online: https://en.wikipedia.org/wiki/B%C3%A6rum_mosque_shooting#Suspect (accessed on 13 July 2020).
- Monahan, J. The Individual Risk Assessment of Terrorism. Psychol. Public Policy Law. 2012, 18, 167–205. [Google Scholar] [CrossRef]
- Pyszczynski, T.; Abdollahi, A.; Solomon, S.; Greenberg, J.; Cohen, F.; Weise, D. Mortality Salience, Martyrdom, and Military Might: The Great Satan versus the Axis of Evil. Pers. Soc. Psychol. Bull. 2006, 32, 525–537. [Google Scholar] [CrossRef]
- Burke, B.L.; Kosloff, S.; Landau, M.J. Death Goes to the Polls: A Meta-Analysis of Mortality Salience Effects on Political Attitudes. Political Psychol. 2013, 34, 183–200. [Google Scholar] [CrossRef]
- Weise, D.R.; Arciszewski, T.; Verlhiac, J.-F.; Pyszczynski, T.; Greenberg, J. Terror Management and Attitudes toward Immigrants: Differential Effects of Mortality Salience for Low and High Right-Wing Authoritarians. Eur. Psychol. 2012, 17, 63–72. [Google Scholar] [CrossRef]
- Ritchie, H.; Hasell, J.; Appel, C.; Roser, M. Terrorism. Available online: https://ourworldindata.org/terrorism (accessed on 11 November 2020).
- Worldometer. World Population by Year. Available online: https://www.worldometers.info/world-population/world-population-by-year/#:~:text=World (accessed on 11 November 2020).
- Statista. Number of Terrorist Attacks Worldwide between 2006 and 2019. Available online: https://www.statista.com/statistics/202864/number-of-terrorist-attacks-worldwide/ (accessed on 11 November 2020).
- McPhillips, L.E.; Chang, H.; Chester, M.V.; Depietri, Y.; Friedman, E.; Grimm, N.B.; Kominoski, J.S.; McPhearson, T.; Méndez-Lázaro, P.; Rosi, E.J.; et al. Defining Extreme Events: A Cross-Disciplinary Review. Earth’s Future 2013, 6, 441–455. [Google Scholar] [CrossRef]
- Popper, K. Three Worlds, The Tanner Lecture on Human Values, Talk Delivered at The University of Michigan 7. of April 1978. pp. 143–166. Available online: https://tannerlectures.utah.edu/_documents/a-to-z/p/popper80.pdf (accessed on 12 July 2020).
- WC3 OWL 2 Web Ontology Language Document Overview (Second Edition), W3C Recommendation 2012. Available online: https://www.w3.org/2012/pdf/REC-owl2-overview-20121211.pdf (accessed on 12 July 2020).
- Lásló, E. Introduction to Systems Philosophy: Toward a New Paradigm of Contemporary Thought; Gordon and Breach: New York, NY, USA, 1972; pp. 1–328. [Google Scholar]
- Noy, N.F.; McGuinnes, D.L. Ontology Development 101: A Guide to Creating Your First Ontology. Stanford Knowledge Systems Laboratory Technical Report KSL–01 –05 and Stanford Medical Informatics Technical Report SMI–2001–0880. 2001. Available online: https://protege.stanford.edu/publications/ontology_development/ontology101.pdf (accessed on 23 January 2021).
- Gruber, T. Ontology. In Encyclopedia of Database Systems; Liu, L., Özsu, M., Eds.; Springer: New York, NY, USA, 2016; pp. 1–3. [Google Scholar]
- McCarthy, J. Circumscription—A form of nonmonotonic reasoning. Artif Intell. 1980, 5, 27–39. [Google Scholar] [CrossRef]
- Maedche, A.; Staab, S. Ontology Learning for the Semantic Web. IEEE Intell. Syst. 2001, 16, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Burke, B.L.; Martens, A.; Faucher, E.H. Two Decades of Terror Management Theory: A Meta-analysis of Mortality Salience Research. Pers. Soc. Psychol. Rev. 2010, 14, 155–195. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, G.; Hirschberger, G.; Goldenberg, J. Desire in the face of death: Terror management, attachment, and sexual motivation. Pers. Relatsh. 2011, 18, 1–19. [Google Scholar] [CrossRef]
- Morris, K.L.; Goldenberg, J. Objects become her: The role of mortality salience on men’s attraction to literally objectified women. J. Exp. Soc. Psychol. 2015, 56, 69–72. [Google Scholar] [CrossRef]
- Blair, R.J.R. The Amygdala and Ventromedial Prefrontal Cortex: Functional Contributions and Dysfunction in Psychopathy. Phil. Trans. R. Soc. B. 2008, 363, 2557–2565. [Google Scholar] [CrossRef] [Green Version]
- Yanagisawa, K.; Abe, N.; Kashima, E.S.; Nomura, M. Self-Esteem modulates Amygdala-Ventrolateral-Prefrontal Cortex Connectivity in Response to Mortality Threats. J. Exp. Psychol. Gen. 2016, 145, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Yu, D.; Han, S. 5HTTLPR moderates the association between interdependence and brain responses to mortality threats. Hum. Brain. Mapp. 2017, 38, 6157–6171. [Google Scholar] [CrossRef] [Green Version]
- Schmid, A.P. Revisiting the Wicked Problem of Defining Terrorism. In Terrorism: Its Past, Present & Future Study —A Special Issue to Commemorate CSTPV; Brunto, G., Wilson, T., Eds.; Contemp. Voices: St Andrews, UK, 2020; pp. 3–11. [Google Scholar]
- Maras, M. Counterterrorism. Jones Bartlett Learn. 2013, 68, 1–368. [Google Scholar]
- Moskalenko, S.; McCauley, C. The Psychology of Lone-Wolf Terrorism. Couns. Psychol. Q. 2011, 24, 115–126. [Google Scholar] [CrossRef]
- Travis, A. MI5 Report Challenges views on Terrorism in Britain–Exclusive: Sophisticated Analysis says there is No Single Pathway to Violent Extremism. The Guardian, 2008. Available online: https://www.theguardian.com/uk/2008/aug/20/uksecurity.terrorism1 (accessed on 12 July 2020).
- Michael, J.; James, P.; Tinsley, H. Profiles of Individual Radicalization in the United States: Preliminary Findings. START, 2015. Available online: https://www.start.umd.edu/pubs/PIRUS%20Research%20Brief_Jan%202015.pdf (accessed on 26 November 2020).
- Morris, K.L.; Boyd, P.; Goldenberg, J.L.; Puryear, C. Shutting the Door on Death: Low Openness Individuals become less Open (to Death) following Mortality Reminders. J. Pers. 2013, 88, 161–173. [Google Scholar]
- Kruglanski, A.W.; Bélanger, J.J.; Gelfand, M.; Nanyang, R.G.; Hettiarachchi, M.; Reinares, F.; Orehek, E.; Sasota, J.; Sharvit, K. Terrorism—A (Self) Love Story Redirecting the Significance Quest Can End Violence. Am. Psychol. 2013, 68, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crossett, C.; Spitaletta, J.A. Radicalization: Relevant Psychological and Sociological Concepts, U.S. Army Assymetric Warfare Group Prepared by The John Hopkins University, Applied Physics Laboratory. 2010, pp. 1–94. Available online: https://info.publicintelligence.net/USArmy-RadicalizationConcepts.pdf (accessed on 26 November 2020).
- Dzhekova, R.; Mancheva, M.; Stoynova, N.; Anagnostou, D. Monitoring Radicalisation A framework for risk indicators. Cent. Study Democr. (CSD) 2017, 34, 1–102. Available online: http://old.csd.bg/artShow.php?id=17916 (accessed on 26 November 2020).
- Koller, S.; Christensen, A.B.; Corduan, G.; Duits, N.; Freund, A.M.; Gill, P.; Moestue, C. Issue Paper: Psychological Factors and Mental Health Issues in Tertiary Prevention. In Proceedings of the InFoEx Workshop, Berlin, Germany, 23–24 May 2019; pp. 1–16. Available online: https://dgap.org/sites/default/files/article_pdfs/infoex_issue_paper_psychological_factors_and_mental_health_issues_in_\tertiary_prevention_en.pdf (accessed on 26 November 2020).
- BioPortal Neurobehavior Ontology. Available online: http://bioportal.bioontology.org/ontologies/NBO (accessed on 12 July 2020).
- Poldrack, R.A.; Yarkoni, T. From Brain Maps to Cognitive Ontologies: Informatics and the Search for Mental Structure. Annu. Rev. Psychol. 2016, 67, 587–612. [Google Scholar] [CrossRef] [Green Version]
- Varoquaux, G.; Schwartz, Y.; Poldrack, R.A.; Gauthier, B.; Bzdok, D.; Poline, J.-B.; Thirion, B. Atlases of Cognition with Large-Scale Human Brain Mapping. PLoS Comput. Biol. 2018, 14, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Allen Brain Atlas Dataportal. Available online: http://help.brain-map.org/display/api/Atlas+Drawings+and+Ontologies (accessed on 12 July 2020).
- Haendel, M.A.; Chute, C.G.; Robinson, P.N. Classification, Ontology, and Precision Medicine. N. Engl. J. Med. 2018, 379, 1452–1462. [Google Scholar] [CrossRef]
- Vidacek-Hains, V.; Loverencic, S.; Kirinic, V. Personality Models Representation using Ontology. In DAAAM International Scientific Book; Katalinic, B., Ed.; DAAAM Scriptorium GmbH: Vienna, Austria, 2007; pp. 423–434. [Google Scholar]
- Salma, G.; Eddine, E.K.; Sabin, C.B. Representing Modeling by using Ontologies: Vocabulary Persona. IJACSA 2013, 4, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, Z.; Kasim, S.; Hasbullah, N.H.M.; Azadin, A.A.; Ahmar, A.S.; Hidayat, R. The Development of Personality Ontology Based on the Methontology Approach. IJET 2018, 7, 73–76. [Google Scholar] [CrossRef]
- Barhamgi, M.; Masmoudi, A.; Lara-Carbrera, R.; Camacho, D. Social networks data analysis with semantics: Application to the radicalization problem. J. Amb. Intel. Hum. Comp. 2018, 1–15. [Google Scholar] [CrossRef]
- Barhamgi, M.; Lara-Cabrera, R.; Benslimane, D.; Camacho, D. Ontology Uses for Radicalisation Detection on Social Networks. In Intelligent Data Engineering and Automated Learning (IDEAL); Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A., Eds.; Springer: Cham, Switzerland, 2018; pp. 3–8. [Google Scholar]
- Masmoudi, A.; Barhamgi, M.; Faci, N.; Saoud, Z.; Belhajjame, K.; Benslimane, D.; Camacho, D. An Ontology-based Approach for Mining Radicalization Indicators from Online Messages. In IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA); IEEE: Kracow, Poland, 2018; pp. 609–616. [Google Scholar]
- Mannes, A.; Golbeck, J. Building a Terrorism Ontology. In SWC Workshop on Ontology Patterns for the Semantic Web; Springer: Galway, Ireland, 2005; pp. 1–12. [Google Scholar]
- Galjano, P.; Popovich, V. Theoretical Investigation of Terrorism. Ontology Development. In Information Fusion and Geographic Information Systems; Lecture Notes in Geoinformation and Cartography; Popovich, V.V., Claramunt, C., Schrenk, M., Korolenko, K.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 227–239. [Google Scholar]
- Rodríguez, N.D.A.; Cuéllar, M.P.; Lilius, J.; Calvo-Flores, M.D. Survey on Ontologies for Human Behavior Recognition. ACM Comput. Surv. 2014, 46, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Bioportal Psychology Ontology (APAONTO). Available online: https://bioportal.bioontology.org/ontologies/APAONTO (accessed on 12 July 2020).
- Narvaes, R.; de Almeida, R.M.M. Aggressive behavior and three neurotransmitters: Dopamine, Gamma Aminobutyric Acid (GABA), and serotonin —A review of the last 10 years. Psychol. Neurosci. 2014, 7, 601–607. [Google Scholar] [CrossRef]
- Laird, A.R.; Lancaster, J.J.; Fox, P.T. BrainMap. Neuroinform 2005, 3, 65–77. [Google Scholar] [CrossRef]
- Brainmap.org. Available online: https://www.brainmap.org/ (accessed on 12 July 2020).
- Global Terrorism Database. Managed by the National Consortium for the Study of Terrorism and Responses to Terrorism (START); University of Maryland: College Park, MD, USA, 2009. [Google Scholar]
- Global Terrorism Database. Available online: https://www.start.umd.edu/gtd/ (accessed on 12 July 2020).
- McBride, M.K. The Logic of Terrorism: Existential Anxiety, the Search for Meaning, and Terrorist Ideologies. Terror. Polit. Violenc. 2011, 23, 560–581. [Google Scholar] [CrossRef]
- Wendelberg, L. Brain and Body ’Fingerprints’ of Existential Anxiety and Their Relevance for the Identification of Potential Terrorists: A Research Note. Perspect. Terror. 2020, 14, 39–53. [Google Scholar]
- Bal, R.; Sharma, S. Review on meta classification algorithms using WEKA. IJCTT 2016, 35, 38–47. [Google Scholar] [CrossRef]
- Musen, M.A. The Protégé project: A look back and a look forward. Matters Acm Interest Group Artif. Intell. 2015, 1, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Waikato Environment for Knowledge Analysis (WEKA). Available online: https://www.cs.waikato.ac.nz/~ml/weka/index.html (accessed on 26 November 2019).
- SPARQL Query Language for RDF. Available online: https://www.w3.org/TR/rdf-sparql-query/ (accessed on 26 November 2020).
- Wendelberg, L.; Volden, F.; Yildirim-Yayilgan, S. Death Anxiety and Visual Oculomotor Processing of Arousing Stimuli in a Free View Setting. Scand. J. Psychol. 2017, 58, 131–141. [Google Scholar] [CrossRef]
- Wendelberg, L.; Elezaj, O. Optimization Classification of Eye Gaze Patterns of Subjects Belonging to Two Manipulated ’Anxiety’ Groups: A Preventive Approach. Tech. Soc. 2021. Unpublished data. [Google Scholar]
- Abburu, S. A Survey on Ontology Reasoners and Comparison. Int. J. Comput. Appl. 2012, 57, 33–39. [Google Scholar]
- Calvanese, D.; Cogrel, B.; Komla-Ebri, S.; Kontchakov, R.; Lanti, D.; Rezk, M.; Rodriguez-Muro, M.; Xiao, G. Ontop: Answering SPARQL Queries over Relational Databases. Semantic. Web J. 2017, 8, 471–487. [Google Scholar] [CrossRef] [Green Version]
- Polleres, A. SPARQL. In Encyclopedia of Social Network Analysis and Mining; Alhajj, R., Rokne, J., Eds.; Springer: New York, NY, USA, 2017; pp. 1–7. [Google Scholar]
- Liu, A.; Xia, L.; Duchowski, A.; Bailey, R.; Holmqvist, K.; Jain, E. Differential privacy for eye-tracking data. In ETRA ’19: Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications; Association for Computing Machinery: New York, NY, USA, 2019; Volume 34, pp. 1–10. [Google Scholar]
- Tiihonen, J.; Rautiainen, M.-R.; Ollila, H.M.; Repo-Tiihonen, E.; Virkkunen, M.; Palotie, A.; Pietiläinen, O.; Kristiansson, K.; Joukamaa, M.; Lauerma, H.; et al. Genetic background of extreme violent behavior. Mol. Psychiatry 2015, 20, 786–792. [Google Scholar] [CrossRef] [Green Version]
- Sleegers, W.A.; Proulx, T.; van Beest, I. Extremism reduces conflict arousal and increases values affirmation in response to meaning violations. Am. Psychol. 2015, 108, 126–131. [Google Scholar] [CrossRef]
- Hirschberger, G.; Ein-Dor, T.; Caspi, A.; Arzouan, Y.; Zivotofsky, A.Z. Looking away from death: Defensive attention as a form of terror management. J. Exp. Soc. Psychol. 2010, 46, 172–178. [Google Scholar] [CrossRef]
- Klackl, J.; Jonas, E.; Fritsche, I. Neural evidence that the behavioral inhibition system is involved in existential threat processing. Soc. Neurosci. 2017, 13, 355–371. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, G.; Lipp, O.V. Mortality Salience reduces Attentional Bias for Fear-Relevant Animals. Motiv. Emot. 2008, 32, 243–250. [Google Scholar] [CrossRef]
- Henry, E.A.; Bartholow, B.D.; Arndt, J. Death on the Brain: Effects of Mortality Salience on the Neural Correlates of Ingroup and Outgroup Categorization. Soc. Cogn. Affect. Neurosci. 2010, 5, 77–87. [Google Scholar] [CrossRef] [Green Version]
- American Civil Liberties Union (ACLU). Bad Trip, Debunking the TSA’s Behavior Detection Program. Available online: https://www.aclu.org./sites/default/files/field_document/dem17-tsa_detection_report-v02.pdf. (accessed on 26 November 2020).
- Iverach, L.; Menzies, R.G.; Menzies, R.E. Death Anxiety and Its Role in Psychopathology: Reviewing the Status of a Transdiagnostic Construct. Clin. Psychol. Rev. 2014, 34, 580–593. [Google Scholar] [CrossRef] [Green Version]
- Bennett, D.J.; Ogloff, J.R.P.; Mullen, P.E.; Thomas, S.D.M.; Short, T.; Wallace, C. Schizophrenia disorders, substance abuse and prior offending in a sequential series of 435 homicides. Acta Psychiatr. Scand. 2011, 124, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Richtand, N.R.; McNamara, R.K. Serotonin and dopamine interactions in psychosis prevention. Prog. Brain Res. 2008, 172, 131–153. [Google Scholar]
- Short, T.; Thomas, S.; Mullen, P.; Ogloff, J.R.P. Comparing violence in schizophrenia patients with and without comorbid substance-use disorders to community controls. Acta Psychiatr. Scand. 2013, 128, 306–313. [Google Scholar] [CrossRef]
- Stahl, S.M. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: Dopamine, serotonin, and glutamate. CNS Spectr. 2018, 23, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, J.; López, M.; Trigol, E. Association between Violent Crime and Psychosis in Men Serving Prison Terms. Span. J. Psychol. 2017, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Beyrak-Lev, J.; Gerber, Z.; Ein-Dor, T.; Hirschberger, G. Mortality Salience reduces Tactile Attention among People with Low Body Esteem. Death Stud. 2018, 19, 1–19. [Google Scholar] [CrossRef]
- Gogolla, N. The Insular Cortex. Curr Biol. 2017, 27, 580–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldenberg, J.L.; Heflick, N.A.; Cooper, D.P. The Thrust of the Problem: Bodily Inhibitions and Guilt as a Function of Mortality Salience and Neuroticism. J. Pers. 2008, 76, 1055–1080. [Google Scholar] [CrossRef]
- Goldenberg, J.L.; Hart, J.; Pyszczynski, T.; Warnica, G.M.; Landau, M.; Thomas, L. Ambivalence toward the Body: Death, Neuroticism, and the flight from Physical Sensation. Pers. Soc. Psychol. Bull. 2006, 32, 1264–1277. [Google Scholar] [CrossRef]
- Klackl, J.; Jonas, E.; Kronbichler, M. Existential Neuroscience: Self-Esteem moderates Neuronal Responses to Mortality-Related stimuli. Soc. Cogn. Affect. Neurosci. 2014, 9, 1754–1761. [Google Scholar] [CrossRef] [Green Version]
- Ronchi, R.; Bello-Ruiz, J.; Lukowska, M.; Herbelin, B.; Cabrilo, I.; Schaller, K.; Blanke, O. Right Insular Damage decreases Heart Beat Awareness and alters Cardio-Visual Effects on Bodily Self-Consciousness. Neuropsychologia 2015, 70, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiyoshi, K.; Becker, C.; Oishi, N.; Fukuyama, H. A review of effects of death anxiety on the human brain. J. Neurol. Sci. 2017, 381, 257. [Google Scholar] [CrossRef]
- Chittaro, L.; Sioni, R.; Crescentini, C.; Fabbro, F. Mortality Salience in Virtual Reality Experience and its Effects on User‘s Attitudes Toward Risk. Int. J. Hum. Comput. Stud. 2017, 101, 10–22. [Google Scholar] [CrossRef]
- Miller, R.L.; Mulligan, R.D. Terror Management: The Effects of Mortality Salience and Locus of Control on Risk-Taking Behaviors. Pers. Individ. Differ. 2002, 33, 1203–1214. [Google Scholar] [CrossRef]
- Horrey, W.J.; Wickens, C.D. Focal and Ambient Visual Contribution and Driver Visual Scanning in Lane Keeping and Hazzard Detection. Proc. Hum. Fact Ergon. Soc. Annu. Meet. 2004, 48, 2325–2329. [Google Scholar] [CrossRef] [Green Version]
- Motofei, I.G.; Rowland, D.L. The Ventral-Hypothalamic Input Route: A Common Neural Network for Abstract Cognition and Sexuality. BJUI Int. 2013, 113, 296–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rottschy, C.; Capsers, S.; Roski, C.; Reetz, K.; Dogan, I.; Schulz, J.; Zilles, K.; Laird, A.R.; Fox, P.T.; Eickhoff, S.B. Differentiated Parietal Connectivity of Frontal Regions for “What” and “Where” Memory. Brain Struct Funct. 2013, 218, 115–1567. [Google Scholar] [CrossRef] [Green Version]
- McCrae, R.R.; Costa, P.T. Validation of the Five-Factor Model of Personality across Instruments and Observers. J. Pers. Soc. Psychol. 1987, 52, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Berkovsky, S.; Taib, R.; Koprinska, I.; Wang, E.; Zeng, Y.; Li, J.; Kleitman, S. Detecting Personality Traits Using Eye-Tracking Data. In CHI ‘19: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, 2019; Volume N221, pp. 1–12. [Google Scholar]
- Kosinski, M.; Stillwell, D.; Graepel, T. Private Traits and Attributes are Predictable from Digital Records of Human Behavior. Proc. Natl. Acad. Sci. USA 2013, 110, 5802–5805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Easden, D.; Gurvich, C.; Kaplan, R.; Rossell, S. An Exploration of Fear of Death and Psychosis Proneness: Positive Schizotypy as a Function of Death Anxiety and Maladaptive Coping. In World Congress of Behavioural and Cognitive Therapies; ANU, Monasch University, Swinburne University: Berlin, Germany, 2019; Available online: https://www.researchgate.net/publication/\332543814_An_Exploration_of_Fear_of_Death_and_Psychosis_Proneness_Positive_Schizotypy_\as_a_Function_of_Death_Anxiety_and_Maladaptive_Coping (accessed on 26 November 2020).
- Agroskin, D.; Jonas, E.; Klackl, J.; Prentice, M. Inhibition Underlies the Effect of High Need for Closure on Cultural Closed-Mindedness under Mortality Salience. Front. Psychol. 2016, 7, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davey, L.; Day, A.; Howells, K. Anger, Overcontrol and Serious Violent Offending. Aggress Violent Behav. 2005, 10, 624–635. [Google Scholar] [CrossRef]
- Loftus, E.F. Intelligence Gathering Post-9/11. Am. Psychol. 2011, 66, 532–541. [Google Scholar] [CrossRef]
- Weinberger, S. Airport security: Intent to deceive? Nat. Int. Wkly. J. Sci. 2010, 465, 412–415. [Google Scholar] [CrossRef]
- Greenberg, J.; Vail, K.; Pyszczynski, T. Chapter three–Terror Management Theory and Research: How the Desire for Death Transcendence drives our Strivings for Meaning and Significance. Adv. Motiv. Sci. 2014, 1, 85–134. [Google Scholar]
- Ohnishi, Y.; Sugaya, S. Bayesian Hierarchical Bernoulli-Weibull Mixture Model for Extremely Rare Events. arXiv 2020, arXiv:2003.11606. [Google Scholar]
- Neurosynth. Available online: https://github.com/neurosynth (accessed on 12 July 2020).
- NiMARE. Available online: https://pypi.org/project/NiMARE/ (accessed on 12 July 2020).
- Neurostuff/NiMARE. Available online: https://github.com/neurostuff/NiMARE (accessed on 12 July 2020).
- GDPR. Available online: https://gdpr.eu/ (accessed on 12 July 2020).
- LaFree, G. Using Open Source Data to Track Worldwide Terrorism Patterns. In Pathways to Peace and Security, Special Issue: Addressing Terrorism, Violent Extremism and Radicalization (Perspectives from Russia and the United States); Stepanova, E., Ed.; IMEMO: Moscow, Russia, 2017; pp. 64–76. [Google Scholar]
- Tucker, D. The End of Intelligence, Espionage and State Power in the Information Age; Stanford University Press: Stanford, CA, USA, 2014; pp. 1–190. [Google Scholar]
- Wiil, U.K. (Ed.) Counterterrorism and Open Source Intelligence: Models, Tools, Techniques, and Case Studies. In Counterterrorism and Open Source Intelligence; Springer-Verlag: Vienna/Wien, Austria, 2011; pp. 1–6. [Google Scholar]
- Elezaj, O.; Yayilgan, S.Y.; Kalemi, E.; Wendelberg, L.; Abomhara, M.; Ahmed, J. Towards Designing a Knowledge Graph-Based Framework for Investigating and Preventing Crime on Online Social Networks. In E-Democracy-Safeguarding Democracy and Human Rights in the Digital Age; Katsikas, S., Zorkadis, V., Eds.; Springer: Athens, Greece, 2020; pp. 181–195. [Google Scholar]
- Croft, S. Constructing Ontological Insecurity: The Insecuritization of Britain‘s Muslims. Contemp Secur. Policy. 2012, 33, 219–235. [Google Scholar] [CrossRef]
- Iyer, P. The Myth of ’Pure Evil’: Using Behavioural Science to Help Understand and Counter Terrorism. ORF Issue Brief 2020, 333, 1–16. [Google Scholar]
- Fox, B.; Farrington, D.P. What have we learned from offender profiling? A systematic review and meta-analysis of 40 years of research. Psychol. Bull. 2018, 144, 1247–1274. [Google Scholar] [CrossRef]
- Changes from DSM-IV-TR to DSM-5 (pdf) and Paraphilic Disorders in the DSM-5 (pdf). Available online: https://www.psychiatry.org/home/search-results?k=paraphilic (accessed on 20 August 2020).
- Rubinstein, G. The Decision to Remove Homosexuality from the DSM: Twenty Years Later. Am. J. Psychother. 1995, 49, 416–427. [Google Scholar] [CrossRef]
World | Defintion | Example Entities | World View |
---|---|---|---|
One | physical objects | non-living physical objects, | monism |
living things, optical fibers, | |||
individuals, memory traces | |||
Two | psychological | feelings, pain, pleasure | dualism (world 1 and 2) |
objects | subjective experience, | ||
suffering, conscious and | |||
mental processes | subconscious experiences, | exist through world one | |
thought processes, beliefs, | |||
subjective states | |||
Three | products of | religious myths, songs, art | threefold realism |
human mind | theories, articles, airports | ||
objects | information, language | logical relationships between | |
thought content, qualitative | world three objects | ||
evaluations, true or false | |||
(bool), e.g., belief, plans of | causal effect on world | ||
action, maps, computer | |||
programs, plans | gives world two power to | ||
change world one | |||
is shareable, can be criticized |
Model | Variables | Type | Probability p/p |
---|---|---|---|
I | Pupil Diameter | B | 0.02/0.01 |
Fixation | B/CP* | ||
Ambient and Focal **** | B/CP ** | ||
Radical Values/Belief | B/CP | ||
II | Pupil Diameter | B | 0.13/0.06 |
Ambient and Focal | B/CP ** | ||
Radical Values/Belief | B/CP | ||
III | Pupil Diameter | B | 0.02/0.01 |
Latency | B/CP * | ||
Age | I/CP | ||
Low Self Esteem | I | ||
IV | Pupil Diameter | B | 0.05/0.01 |
Low Self Esteem | I | ||
Body Awareness | B | ||
Serotonin | B/CP | ||
V | Pupil Diameter | B | 0.05/0.01 |
Inhibition | B/CP *** | ||
High Extraversion | I | ||
High Self-Esteem | I |
Numbers Personality Metrics | Numbers Eye Behavior Metrics | Numbers Total | Accuracy Level | Comments |
---|---|---|---|---|
6 | 1–5 | 7–11 | >95% | Big five personality traits |
and self–esteem. | ||||
0 | 1–6 | 1–6 | 50–68 | Lack of individual traits |
max 79 | produce accuracy drop. | |||
Other models may produce | ||||
higher accuracy but not | ||||
very high. | ||||
3 | 2 | 5 | ⩾95% | Tuned variables. |
2 | 2 | 4 | 84–90% | Tuned variables. |
Type | Metrics |
---|---|
Axiom | 2084–2216 |
Logical axiom count | 1673–1762 |
Declaration axioms count | 331–381 |
Class count | 150–173 |
Object property count | 60–66 |
Data property count | 84–103 |
Subclass of | 144–165 |
Individuals * | 34–36 |
Variables | Reasoning | Summary Generalizability | Test/Science |
---|---|---|---|
Pupil | Scope of evidence limited. Small | Can be generalized to some degree | Science & Test |
Diameter | pupils are related to extremism [66]. | ||
Large pupils“=”high emotion. | |||
Small pupils“=”low emotion. | |||
Stimuli type should be considered. | |||
Radical | High evidence EA and terrorism. | Can be generalized | Science |
Values/ | |||
beliefs | |||
Ambient/ | Low evidence direct. High evidence | Can be generalized to some degree. | Science & Test |
Focal | indirect, e.g., change in sexual motiva- | Indirect findings must be considered. | |
Paths | tion. Evidence in test data. | ||
Fixation | Does change in EA [59]. Depend on | Can be generalized to some degree. | Science & Test |
stimuli type, e.g., familiar or novel. | Cannot be used as a sole measure. | ||
Latency | Few evidence. Average latency (emot- | Can be generalized to some degree. | Science & Test |
ion) may be more important [59] | |||
than onset of first saccade (impulsiv-. | |||
ity) Stimuli dependent. | |||
Age | Age matters EA and terrorism. | Can be generalized | Science & Test |
Test show no difference because | |||
all subjects are young (mean). | |||
Self-Esteem | Many studies. Test sample (n = 80) | Can be generalized | Science & Test |
had no subjects with low self-esteem. | |||
Serotonin | One study related to EA [22]. | Can be generalized to some degree | Science |
Studies about other aspects as, e.g., | |||
burnout may support relationship. | |||
Inhibition | Relatively high evidence. | Can be generalized | Science |
Body- | Good evidence. Findings related to | Can be generalized | Science |
Awareness | insula (brain region) may support | ||
The field of terrorism may also provide | |||
evidence. Violence is less aware. | |||
High | Few evidence. Supported by work | Can be generalized only based on test data | Test |
Extraverion | made by present author [60] | Young high self-esteem subjects | |
Compare findings about openness [28]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wendelberg, L. An Ontological Framework to Facilitate Early Detection of ‘Radicalization’ (OFEDR)—A Three World Perspective. J. Imaging 2021, 7, 60. https://doi.org/10.3390/jimaging7030060
Wendelberg L. An Ontological Framework to Facilitate Early Detection of ‘Radicalization’ (OFEDR)—A Three World Perspective. Journal of Imaging. 2021; 7(3):60. https://doi.org/10.3390/jimaging7030060
Chicago/Turabian StyleWendelberg, Linda. 2021. "An Ontological Framework to Facilitate Early Detection of ‘Radicalization’ (OFEDR)—A Three World Perspective" Journal of Imaging 7, no. 3: 60. https://doi.org/10.3390/jimaging7030060