A Semi-Supervised Reduced-Space Method for Hyperspectral Imaging Segmentation
Abstract
:1. Introduction
2. A Spatial-Spectral Classifier Method for Hyperspectral Images
- (a)
- the image contains a set of approximately homogeneous regions;
- (b)
- spectral variables are also highly correlated that their dimension can be reduced without losing important information;
- (c)
- the features between two neighbouring regions are distinguishable.
2.1. Regularized Linear Discriminant Analysis
Algorithm 1 Efficient RLDA given in [55] |
Require: Ensure: as in (1) ▹ ▹ |
2.2. A Spectral/Spatial Similarity Measure
2.3. The Random Walker Method
2.4. A Local/Global Classification Method
Algorithm 2 Hyperspectral Random Walk by Similarity Index algorithm (HyperRaWaSI) |
|
- they are employed to get the optimal projection of the hyperspectral image and hence the feature image;
- they are used to compute the centroids from the feature image;
- they represent the seeds for the random walker method.
3. Results
- University of Pavia: this image was taken by the German Aerospace Agency (DLR) using the airborne ROSIS (Reflective Optics System Imaging Spectrometer) sensor. The spatial dimensions of the slices are and the number of spectral band is 103: then the dataset size is 207,400. The ground resolution is 1.3 m and the spectral gamma is 430–860 nm. The number g of ground truth labels is 9: Asphalt, Meadows, Gravel, Trees, Painted metal sheets, Bare soil, Bitumen, Self-blocking bricks, and Shadow.
- Pavia Center: this image refers to the center of the city of Pavia, but some samples in this dataset contain no information: the spatial size is and it is then reduced to . The considered spectral bands are 102, leading to a final size of 783,640. The spectral bands lie in the interval 430–860 nm and the ground resolution is 1.3 m. The ground truth labels are Water, Trees, Asphalt, Self-Blocking Bricks, Bitumen, Tiles, Shadows, Meadows, Bare Soil.
- KSC: this image refers to the Kennedy Space Center, Florida (US) and it was acquired by the airborne AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) NASA instrument. The spatial dimensions of the slices are and the number of the spectral bands is 176: the size of the dataset is hence 314,368. The ground resolution is 18 m and the spectral gamma is 400–2500 nm. The g ground truth labels are 13: Scrub, Willow swamp, CP hammock, CP/Oak, Slash pine, Oak/Broadleaf, Hardwood swamp, Graminoid marsh, Spartina marsh, Cattail marsh, Salt marsh, Mud flats, Water.
- Indian Pines: this image refers to the Indian Pines test site in North-Western Indiana, taken by AVIRIS sensor. The spatial dimensions are and the employed bands are 220: The dataset size is hence 21,025: the spectral gamma is – nm. The g ground truth labels are 16: Alfalfa, Corn-notill, Corn-mintill, Corn, Grass-pasture, Grass-trees, Grass-pasture-mowed, Hay-windrowed, Oats, Soybean-notill, Soybean mintill, Soybean-clean, Wheat, Woods, Building-grass-trees-drives, Stone-trees-drives.
- Salinas HSI: this image refers to an area including agricultural fields in the Salinas Valley, California, acquired again by AVIRIS sensor. The spatial size is and the number of bands is 204: the dataset size is hence 111,104 the ground resolution is 3.7 m, while the spectral gamma is – nm. The ground truth labels are: Broccoli gr. wds 1, Broccoli gr. wds, Fallow, Fallow rough plow, Fallow smooth, Stubble, Celery, Grapes untrained, Soil vineyard develop, Corn sen. gr. wds, Lettuce romaine 4 wk, Lettuce romaine 5 wk, Lettuce romaine 6 wk, Lettuce romaine 7 wk, Vineyard untrained, Vineyard vert. trellis.
3.1. Performance Measurements
- Rand Index (RI) [52]: this index measures if the two partitions of the image, namely and , are coherent. For any couple of pixels in the ground truth , the RI measures the coherence between the partitions: it checks if and belongs to the same subset and at the same time they belongs to the same subset . It checks also if and belongs to the two different subsets and at the same time they belongs to two different subsets . Denote with the number of couples that belongs to the same subset in and that belong to the same subset in , while denote with the number of couples that do not belong to the same subset in and that do not belong to the same subset in , then
- Overall Accuracy (OA): for each true label , we computeThis classifies the label i as belonging to the region of , marked with . The Overall Accuracy is defined as
3.2. Comparison with State–of–the–Art Methods
3.3. Segmentation as Atlas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elmasry, G.; Mandour, N.; Al-Rejaie, S.; Belin, E.; Rousseau, D. Recent applications of multispectral imaging in seed phenotyping and quality monitoring—An overview. Sensors 2019, 19, 1090. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Dao, P.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.W.; Pu, H.; Cheng, J.H.; Wei, Q. Advanced Techniques for Hyperspectral Imaging in the Food Industry: Principles and Recent Applications. Annu. Rev. Food Sci. Technol. 2019, 10, 197–220. [Google Scholar] [CrossRef] [PubMed]
- Ghamisi, P.; Plaza, J.; Chen, Y.; Li, J.; Plaza, A. Advanced Spectral Classifiers for Hyperspectral Images: A review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–32. [Google Scholar] [CrossRef] [Green Version]
- Rasti, B.; Hong, D.; Hang, R.; Ghamisi, P.; Kang, X.; Chanussot, J.; Benediktsson, J. Feature Extraction for Hyperspectral Imagery: The Evolution from Shallow to Deep: Overview and Toolbox. IEEE Geosci. Remote Sens. Mag. 2020, 8, 60–88. [Google Scholar] [CrossRef]
- Gutiérrez-Gutiérrez, J.; Pardo, A.; Real, E.; López-Higuera, J.; Conde, O. Custom scanning hyperspectral imaging system for biomedical applications: Modeling, benchmarking, and specifications. Sensors 2019, 19, 1692. [Google Scholar] [CrossRef] [Green Version]
- Halicek, M.; Fabelo, H.; Ortega, S.; Callico, G.; Fei, B. In-vivo and ex-vivo tissue analysis through hyperspectral imaging techniques: Revealing the invisible features of cancer. Cancers 2019, 11, 756. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, R.; Uzair, M.; Khurshid, K.; Yan, H. Hyperspectral document image processing: Applications, challenges and future prospects. Pattern Recognit. 2019, 90, 12–22. [Google Scholar] [CrossRef]
- Muller-Karger, F.; Hestir, E.; Ade, C.; Turpie, K.; Roberts, D.; Siegel, D.; Miller, R.; Humm, D.; Izenberg, N.; Keller, M.; et al. Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems. Ecol. Appl. 2018, 28, 749–760. [Google Scholar] [CrossRef]
- Goddijn-Murphy, L.; Peters, S.; van Sebille, E.; James, N.; Gibb, S. Concept for a hyperspectral remote sensing algorithm for floating marine macro plastics. Mar. Pollut. Bull. 2018, 126, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Yokoya, N.; Grohnfeldt, C.; Chanussot, J. Hyperspectral and multispectral data fusion: A comparative review of the recent literature. IEEE Geosci. Remote Sens. Mag. 2017, 5, 29–56. [Google Scholar] [CrossRef]
- Li, W.; Feng, F.; Li, H.; Du, Q. Discriminant Analysis-Based Dimension Reduction for Hyperspectral Image Classification: A Survey of the Most Recent Advances and an Experimental Comparison of Different Techniques. IEEE Geosci. Remote Sens. Mag. 2018, 6, 15–34. [Google Scholar] [CrossRef]
- Signoroni, A.; Savardi, M.; Baronio, A.; Benini, S. Deep learning meets hyperspectral image analysis: A multidisciplinary review. J. Imaging 2019, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Khan, H.; Yousaf, A.; Khurshid, K.; Abbas, A. Modern Trends in Hyperspectral Image Analysis: A Review. IEEE Access 2018, 6, 14118–14129. [Google Scholar] [CrossRef]
- Rasti, B.; Scheunders, P.; Ghamisi, P.; Licciardi, G.; Chanussot, J. Noise reduction in hyperspectral imagery: Overview and application. Remote Sens. 2018, 10, 482. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J. Deep learning for hyperspectral image classification: An overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Shah, S.; Qureshi, S.; Rehman, A.; Shah, S.; Hussain, J. Classification and Segmentation Models for Hyperspectral Imaging—An Overview. Commun. Comput. Inf. Sci. 2021, 1382, 3–16. [Google Scholar] [CrossRef]
- Gu, Y.; Chanussot, J.; Jia, X.; Benediktsson, J. Multiple Kernel Learning for Hyperspectral Image Classification: A Review. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6547–6565. [Google Scholar] [CrossRef]
- Borzov, S.; Potaturkin, O. Spectral-Spatial Methods for Hyperspectral Image Classification. Review. Optoelectron. Instrum. Data Process. 2018, 54, 582–599. [Google Scholar] [CrossRef]
- Le Moan, S.; Cariou, C. Minimax bridgeness-based clustering for hyperspectral data. Remote Sens. 2020, 12, 1162. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Li, Z.; Han, J.; Yao, X.; Guo, L. Exploring Hierarchical Convolutional Features for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6712–6722. [Google Scholar] [CrossRef]
- Bonettini, S.; Benfenati, A.; Ruggiero, V. Primal-dual first order methods for total variation image restoration in presence of poisson noise. In Proceedings of the 2014 IEEE International Conference on Image Processing, ICIP 2014, Paris, France, 27–30 October 2014; pp. 4156–4160. [Google Scholar] [CrossRef]
- Bonettini, S.; Benfenati, A.; Ruggiero, V. Scaling techniques for ϵ-subgradient methods. SIAM J. Optim. 2016, 26, 1741–1772. [Google Scholar] [CrossRef] [Green Version]
- Landgrebe, D. Multispectral land sensing: Where from, where to? IEEE Trans. Geosci. Remote Sens. 2005, 43, 414–421. [Google Scholar] [CrossRef]
- Böhning, D. Multinomial logistic regression algorithm. Ann. Inst. Stat. Math. 1992, 44, 197–200. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.; Plaza, A. Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 2012, 50, 809–823. [Google Scholar] [CrossRef]
- Benediktsson, J.; Swain, P.; Ersoy, O. Conjugate-gradient neural networks in classification of multisource and very-high-dimensional remote sensing data. Int. J. Remote Sens. 1993, 14, 2883–2903. [Google Scholar] [CrossRef]
- Yang, H.; Van Der Meer, F.; Bakker, W.; Tan, Z. A back-propagation neural network for mineralogical mapping from AVIRIS data. Int. J. Remote Sens. 1999, 20, 97–110. [Google Scholar] [CrossRef]
- Zhou, P.; Han, J.; Cheng, G.; Zhang, B. Learning Compact and Discriminative Stacked Autoencoder for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4823–4833. [Google Scholar] [CrossRef]
- Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J. When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2811–2821. [Google Scholar] [CrossRef]
- Merényi, E.; Farrand, W.; Taranik, J.; Minor, T. Classification of hyperspectral imagery with neural networks: Comparison to conventional tools. Eurasip J. Adv. Signal Process. 2014, 2014, 71. [Google Scholar] [CrossRef] [Green Version]
- Del Frate, F.; Pacifici, F.; Schiavon, G.; Solimini, C. Use of neural networks for automatic classification from high-resolution images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 800–809. [Google Scholar] [CrossRef]
- Zhou, Y.; Peng, J.; Chen, C. Extreme Learning Machine with Composite Kernels for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2351–2360. [Google Scholar] [CrossRef]
- Santos, A.; Araujo, A.; Menotti, D. Combining multiple classification methods for hyperspectral data interpretation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1450–1459. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P. Assessment of the effectiveness of support vector machines for hyperspectral data. Future Gener. Comput. Syst. 2004, 20, 1215–1225. [Google Scholar] [CrossRef]
- Li, J.; Marpu, P.; Plaza, A.; Bioucas-Dias, J.; Benediktsson, J. Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4816–4829. [Google Scholar] [CrossRef]
- Friedl, M.; Brodley, C.; Strahler, A. Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Trans. Geosci. Remote Sens. 1999, 37, 969–977. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Xia, J.; Falco, N.; Benediktsson, J.; Du, P.; Chanussot, J. Hyperspectral Image Classification with Rotation Random Forest via KPCA. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1601–1609. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Nasrabadi, N.; Tran, T. Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3973–3985. [Google Scholar] [CrossRef]
- Xing, Z.; Zhou, M.; Castrodad, A.; Sapiro, G.; Carin, L. Dictionary learning for noisy and incomplete hyperspectral images. SIAM J. Imaging Sci. 2012, 5, 33–56. [Google Scholar] [CrossRef]
- Zeng, H.; Liu, Q.; Zhang, M.; Han, X.; Wang, Y. Semi-supervised Hyperspectral Image Classification with Graph Clustering Convolutional Networks. arXiv 2020, arXiv:2012.10932. [Google Scholar]
- Qin, A.; Shang, Z.; Tian, J.; Wang, Y.; Zhang, T.; Tang, Y.Y. Spectral–Spatial Graph Convolutional Networks for Semisupervised Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2019, 16, 241–245. [Google Scholar] [CrossRef]
- Hanachi, R.; Sellami, A.; Farah, I.R.; Mura, M.D. Semi-supervised Classification of Hyperspectral Image through Deep Encoder-Decoder and Graph Neural Networks. In Proceedings of the 2021 International Congress of Advanced Technology and Engineering (ICOTEN), Istanbul, Turkey, 22–23 December 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Aletti, G.; Benfenati, A.; Naldi, G. A Semiautomatic Multi-Label Color Image Segmentation Coupling Dirichlet Problem and Colour Distances. J. Imaging 2021, 7, 208. [Google Scholar] [CrossRef]
- Belkin, M.; Niyogi, P. Towards a theoretical foundation for Laplacian-based manifold methods. J. Comput. Syst. Sci. 2008, 74, 1289–1308. [Google Scholar] [CrossRef] [Green Version]
- Benfenati, A.; Ruggiero, V. Image regularization for Poisson data. J. Phys. Conf. Ser. 2015, 657, 012011. [Google Scholar] [CrossRef] [Green Version]
- Bertero, M.; Boccacci, P.; Ruggiero, V. Inverse Imaging with Poisson Data; IOP Publishing: Bristol, UK, 2018. [Google Scholar] [CrossRef]
- Benfenati, A.; Ruggiero, V. Inexact Bregman iteration for deconvolution of superimposed extended and point sources. Commun. Nonlinear Sci. Numer. Simul. 2015, 20, 882–896. [Google Scholar] [CrossRef]
- Grady, L. Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1768–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bampis, C.G.; Maragos, P.; Bovik, A.C. Graph-Driven Diffusion and Random Walk Schemes for Image Segmentation. IEEE Trans. Image Process. 2017, 26, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Casaca, W.; Gois, J.P.; Batagelo, H.C.; Taubin, G.; Nonato, L.G. Laplacian Coordinates: Theory and Methods for Seeded Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2665–2681. [Google Scholar] [CrossRef]
- Shin, H. An extension of Fisher’s discriminant analysis for stochastic processes. J. Multivar. Anal. 2008, 99, 1191–1216. [Google Scholar] [CrossRef]
- Bandos, T.; Bruzzone, L.; Camps-Valls, G. Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [Google Scholar] [CrossRef]
- Ye, J.; Xiong, T.; Li, Q.; Janardan, R.; Bi, J.; Cherkassky, V.; Kambhamettu, C. Efficient model selection for regularized linear discriminant analysis. In Proceedings of the International Conference on Information and Knowledge Management, Arlington, VA, USA, 6–11 November 2006; pp. 532–539. [Google Scholar] [CrossRef]
- Yu, W.; Gu, Y.; Li, Y. Efficient randomized algorithms for the fixed-precision low-rank matrix approximation. SIAM J. Matrix Anal. Appl. 2018, 39, 1339–1359. [Google Scholar] [CrossRef]
- Cagli, E.; Carrera, D.; Aletti, G.; Naldi, G.; Rossi, B. Robust DOA estimation of speech signals via sparsity models using microphone arrays. In Proceedings of the 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, 20–23 October 2013; pp. 1–4. [Google Scholar]
- Aletti, G.; Naldi, G.; Parigi, G. Around the image analysis of the vessels remodelling during embryos development. In Proceedings of the 19th European Conference on Mathematics for Industry, Santiago de Compostela, Spain, 13–17 June 2016; p. 225. [Google Scholar]
- Aletti, G.; Moroni, M.; Naldi, G. A new nonlocal nonlinear diffusion equation for data analysis. Acta Appl. Math. 2020, 168, 109–135. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhu, C.; Bichot, C.E.; Masnou, S. Graph-based image segmentation using weighted color patch. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; pp. 4064–4068. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, J.A.; Choi, Y.P.; Totzeck, C.; Tse, O. An analytical framework for consensus-based global optimization method. Math. Model. Methods Appl. Sci. 2018, 28, 1037–1066. [Google Scholar] [CrossRef] [Green Version]
- Benfenati, A.; Coscia, V. Nonlinear microscale interactions in the kinetic theory of active particles. Appl. Math. Lett. 2013, 26, 979–983. [Google Scholar] [CrossRef]
- Kennedy, J. Particle Swarm Optimization. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2010; pp. 760–766. [Google Scholar] [CrossRef]
- Grady, L.; Polimeni, J.R. Discrete Calculus: Applied Analysis on Graphs for Computational Science; Springer: London, UK, 2010. [Google Scholar]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer Science & Business Media: Boston, MA, USA, 2013. [Google Scholar]
- Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cariou, C.; Chehdi, K. A new k-nearest neighbor density-based clustering method and its application to hyperspectral images. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6161–6164. [Google Scholar] [CrossRef]
- Iglesias, J.; Sabuncu, M. Multi-atlas segmentation of biomedical images: A survey. Med. Image Anal. 2015, 24, 205–219. [Google Scholar] [CrossRef] [Green Version]
Dataset | Size | Time |
---|---|---|
Pavia University | 207,400 | 1.08 |
Indian Pines | 21,025 | 0.13 |
Salinas HSI | 111,104 | 0.45 |
Salinas | Pavia | KSC | ||||
---|---|---|---|---|---|---|
Method | O.A. | Purity | O.A. | Purity | O.A. | Purity |
FCM | 54.6 | 0.63 | 41.9 | 0.47 | 52.5 | 0.56 |
FDPC | 62.2 | 0.71 | 44.2 | 0.54 | 47.6 | 0.64 |
GWEEN | 65.3 | 0.77 | 47.9 | 0.62 | 49.8 | 0.69 |
K–MBC | 76.5 | 0.93 | 65.9 | 0.91 | 58.2 | 0.74 |
HyperRaWaSI | 93.8 | 0.94 | 91.1 | 0.90 | 97.8 | 0.98 |
Salinas | Pavia | |||
---|---|---|---|---|
Size | O.A. | Purity | O.A. | Purity |
3 | 89.9 | 0.92 | 80.1 | 0.80 |
5 | 92.7 | 0.94 | 82.7 | 0.81 |
7 | 93.8 | 0.94 | 91.1 | 0.90 |
Dataset | Size | Time |
---|---|---|
Pavia University | 783,640 | 5.24 |
KSC | 314,368 | 3.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aletti, G.; Benfenati, A.; Naldi, G. A Semi-Supervised Reduced-Space Method for Hyperspectral Imaging Segmentation. J. Imaging 2021, 7, 267. https://doi.org/10.3390/jimaging7120267
Aletti G, Benfenati A, Naldi G. A Semi-Supervised Reduced-Space Method for Hyperspectral Imaging Segmentation. Journal of Imaging. 2021; 7(12):267. https://doi.org/10.3390/jimaging7120267
Chicago/Turabian StyleAletti, Giacomo, Alessandro Benfenati, and Giovanni Naldi. 2021. "A Semi-Supervised Reduced-Space Method for Hyperspectral Imaging Segmentation" Journal of Imaging 7, no. 12: 267. https://doi.org/10.3390/jimaging7120267
APA StyleAletti, G., Benfenati, A., & Naldi, G. (2021). A Semi-Supervised Reduced-Space Method for Hyperspectral Imaging Segmentation. Journal of Imaging, 7(12), 267. https://doi.org/10.3390/jimaging7120267