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Abstract: Prototyping hyperspectral imaging devices in current biomedical optics research requires
taking into consideration various issues regarding optics, imaging, and instrumentation. In summary,
an ideal imaging system should only be limited by exposure time, but there will be technological
limitations (e.g., actuator delay and backlash, network delays, or embedded CPU speed) that should
be considered, modeled, and optimized. This can be achieved by constructing a multiparametric
model for the imaging system in question. The article describes a rotating-mirror scanning
hyperspectral imaging device, its multiparametric model, as well as design and calibration protocols
used to achieve its optimal performance. The main objective of the manuscript is to describe the device
and review this imaging modality, while showcasing technical caveats, models and benchmarks,
in an attempt to simplify and standardize specifications, as well as to incentivize prototyping similar
future designs.

Keywords: biomedical optical imaging; hyperspectral imaging; systems modeling; system
implementation; system integration; benchmark testing

1. Introduction

In the past decade, the advent of embedded computing has produced a new array of imaging
systems that, while based upon mature technologies, have and will increase in complexity. Multi- and
hyperspectral imaging (MSI/HSI) is an imaging modality capable of obtaining spatially resolved
spectral information of a subject of interest, and one of many areas of research that can also exploit
these new developments. This technique has been thoroughly employed in remote sensing [1],
crop analysis and agricultural and soil science [2–4], as well as food quality control [5–7]. In the field of
Biomedical Optics, MSI/HSI systems are used in various diffuse optical imaging technologies, such as
Spatial Frequency Domain Imaging (SFDI) [8], Single Shot Optical Properties (SSOP) [9], and corrected
fluorescence imaging (qF-SSOP) [10], among others [11]. While handheld devices are becoming readily
available on the market [12], for more specific applications such as SFDI, SSOP or qF-SSOP, having
control over the optics and mechatronics of the system (e.g., automatic gain control, exposure control,
communications with additional instrumentation, non-proprietary API control, etc.) is an unavoidable
requirement. In these fields of research, then, it is common practice to design highly controllable, fully
customizable, open-architecture systems with high spectral and spatial resolution.
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The design modalities of HSI systems are well documented [13], and the multiplicity of different
spectroscopic configurations for material classification is certainly notable, with various design
characteristics and tradeoffs (see [14–16]), and increasing in number in recent years (e.g., [17–22]).
The main characteristics of the most ubiquitous imaging systems are left in Table 1. In scanning
imaging systems in particular, the spectra of a single point or line in an object plane is measured at
a time, and a complete spatial image is achieved by moving either the sample, the imaging device,
or components that may change the direction of acquisition (a thorough description of these devices
can be found in the literature [12,13]). To the authors’ knowledge, unfortunately, there are no reported
reviews on scanning imaging system design, modeling, and benchmarking, so relevant tradeoffs may
have been left unexplored. Prototyping a scanning imaging system is indeed a challenging job but,
as will be described in the following sections, in practice there are a few caveats and considerations
which, once thoroughly reviewed, greatly illustrate the most relevant difficulties of HSI imaging
system design. Encouraging the exploitation and implementation of more custom-built devices for
biomedical applications, as well as hopefully endowing some degree of standardization for future
cases, may be deemed desireable.

Table 1. Frequent far-field reflectance hyperspectral imaging systems for biomedical applications,
with its properties and applications (summary from [13,23]). Most devices trade off spatial, spectral
resolution, and speed, depending on the configuration.

Imaging Modality Spatial Channels/Resolution Spectral Channels/Resolution

Snapshot imaging Given by sensor resolution,
∼100 × 100 px/spatial resolution
dependent on optics

Given by optics,
50–100 ch./∼10 nm

Staring systems
(filtering)

Given by sensor resolution, ∼Mpx 6–24 ch./∼100 nm (filter wheel)
variable/∼10–40 nm (LCTF)

Whiskbroom
(point-scanning)

Given by motorized platform (both x
and y)

Given by detector and spectrograph,
100–1000 ch./∼2–10 nm

Pushbroom
(line-scanning)

Given by camera (x) and motor (y)
linear resolution/∼Mpx

Given by detector and spectrograph,
100–1000 ch./∼2–10 nm

Rotating mirror scanner Given by camera (x) and motor (y)
angular resolution/∼Mpx

Given by detector and spectrograph,
100–1000 ch./∼2–10 nm

The main objective of this article, therefore, is to propose a set of metrics that represent scanning
devices such that the key variables that define image quality become adequately established, since
overall system performance is not only dependent on the properties of its constituent parts, but also on
how efficiently these elements are combined together. A second objective is to describe a custom-built
HSI prototype, which presents a structure that may constitute a novel approach, and to use these
defined benchmarks to optimize its properties and evaluate where it could be improved. The proposed
work pursues the optimization of these efficiency metrics, which could also be extrapolated to other
HSI imaging modalities, comparing each other in terms of systems efficiency, evaluating imaging
artifacts and acquisition delays, or using them with already existing custom multi- and hyperspectral
scientific prototypes for debugging and design optimization.

The document is structured as follows. Section 2 describes a model proposition for a
pushbroom/scanning system, as well as a general overview of a custom-built prototype and, finally,
the proposed set of performance benchmarks for scanning devices. In Section 3, these benchmarks are
tested on the prototype with a series of simple protocols. Finally, some optimization considerations
and the complete characterization of the pushbroom scanning system are discussed in the last pages of
the article.
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2. Materials and Methods

2.1. Fundamental Parts of a Scanning Imaging System

Figure 1 shows a brief summary of the components that comprise a far-field scanning imaging
device. Consider the following list as a generic description of the main components of any scanning
system. Their names and properties will be the starting point for the evaluation of the custom device:

1. Optical subsystem. An optical component will take a line in the field of view (FOV) and break it
up into spatial and spectral information, which will be measured by a camera. There will likely be
focusing optics, a spectrographic element and their corresponding couplings and interfaces. From
a systems perspective, optics will constrain our wavelength range of operation, and the spectrograph
and lens will limit the overall spectral resolution, i.e., the minimum spectral distance between two
monochromatic signals that can be spatially separated.

2. Imaging device. Light spatially separated by wavelength will reach a camera, which will capture
incoming photons across its active pixel sensor. Different wavelengths will, then, be differentiated
by their arrival onto different pixels. Consequently, several imaging parameters will depend on
sensor characteristics, namely quantum efficiency (and wavelength range of operation), exposure
time, camera gain, pixel depth and spectral resolution. While the first parameters will depend on the
specific characteristics of the camera, the latter will be also related to the spectrograph’s ability to
separate wavelengths. In the case of line-scanning hyperspectral devices, the camera will also
specify the spatial resolution for one of the two spatial axes.

3. Actuator subsystem. The actuator subsystem will usually constitute the sole moving part of the
imaging device. In pushbroom systems, for example, either the imaging device or the platform
where the sample is placed is moved by a large actuator. In the case of rotating mirror scanners,
an actuator/motor will drive a mirror fixed to an otherwise free-rotating axle. Depending
on the driving mechanism, (e.g., belts and/or gear mechanisms) there will be mechanical
imperfections—such as backlash—as well as delays due to serial communications between the
main computer and the actuator controller/driver. Consequently, the main variables at play will
be the repeatability of the drive system (i.e., its ability to obtain the same image pixel-wise when
repeating the same motion) and time delays due to serial communications. If using a stepper
motor, its properties (e.g., steps per revolution, stepper resolution, and degree of microstepping)
will define the actuator system and its ability to produce high-resolution images.

4. Communications and storage. Image acquisition and actuation control must be governed by a
main computer, which must communicate with both camera and actuator subsystems, as well
as manage data storage and image calibration. Storage must also be sufficiently efficient so
that storing acquired spectra does not impose a significant hindrance on the overall system.
We will assume that the imaging system must be able to communicate with other instrumentation
and computers within a laboratory network. Camera-computer communications will impose a
restriction on the total time per measurement, and therefore communication delays as well as driver
and application program interface (API) delays will play a significant role in our efficiency models.
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Figure 1. A generalized description of an external rotating mirror scanning imaging system. (A) A
single focused line within the field of view can be captured at a time; (B) each line will consist of a
two-dimensional sensor measurement, where the first axis will represent spatial dimension x, and the
second one specifies wavelength, λ. (C) A complete hyperspectral image is obtained by moving the
rotating mirror and storing more images for each of the mirror’s positions (y).

2.2. Developed Rotating Mirror Scanning HSI Imaging System

The developed device is a custom-built rotating-mirror scanning HSI device with an embedded
computer for storage and control, summarized in Figure 2 and Tables 2–5. As a rotating mirror system,
it has the same properties of a pushbroom system, while at the same time minimizing the number
of moving parts, and thus actuator delays. It consists of an ImSpector V10E spectrograph (Specim,
Spectral Imaging Ltd., Finland) paired with a CS-mount, 10× 5 mm–50 mm f/1.3 varifocal objective
lens with manual iris and zoom, originallly prepared for 1/3” cameras, (T10Z0513CS-3, Computar
Optics Group, Cary, NC, USA) and a Mako G-223B NIR CMOS camera (Allied Vision Technologies
GmbH., Stadtroda, Germany). Coupling the CS-mount objective lens onto the ImSpector and a 2.2
megapixel (2048× 1088) C-mount camera provides a shorter minimum working distance and angle
of view, at the expense of losing a few spectral pixels and half of the spatial pixels of the camera,
resulting in a 1200× 1200 px FOV. This ensemble allows the reading of a single hyperspectral line,
which can then be swept across the sample with a rotating metal mirror system powered with a NEMA
17 stepper motor and a GT2 pulley array, achieving 19,200 steps per revolution with minimal backlash
and CNC-grade (Computer Numerical Control) repeatability.

Communications are handled by a generic Gigabit Ethernet router, while DHCP services and
camera control are handled by an Odroid XU4 (Hardkernel Co., Ltd., GyeongGi, South Korea) running
Ubuntu 16.04. Dedicated Python 3 software was prepared to handle pymba, a Python 3 wrapper for
the Vimba 2.1.3 SDK. Camera control within the laboratory can be achieved through a simplified
Python webserver running Flask. Gain control is in the 0–25 dB range, and camera exposure can be
set anywhere in the 10 ms–2 s time range. Up to 1.4 MP (1200 × 1200 px) image resolution can be
achieved if necessary, although smaller images can be stored via software. The number of sensor bins
in the spectral axis is 1088 channels in total, but the total number of spectral channels will be given by
the spectrograph. Camera aperture, focus and zoom can be controlled manually.
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Figure 2. General schematic of the imaging prototype. (A) Overview and main components.
(B) Closeup of the scanning mirror system. Spectra from a single line is read in a single shot, and then
the scanning mirror allows for the capture of a full Field of View (FOV).

Table 2. Component specifications for the optical subsystem.

Specification Value

Wavelength range 400–1000 nm
Sensor spectral pixels 1088
Spectrograph slit width 30 µm
Spectrograph spectral resolution 2.88 nm
Focusing optics 5–50 mm, f/1.3, var. aperture and zoom
Field of View (min) 5 cm (aprox.)
Depth of Field variable, max. @ 20 cm
Focus range 20 mm–∞

Table 3. Imaging device properties.

Specification Value

Exposure range 21 µs–153 s
Signal to Noise Ratio (SNR) up to 30 dB
Camera Gain variable, 0–24 dB
Max frame rate at full resolution 49.5 FPS

Table 4. Component specifications for the actuator subsystem.

Specification Value

Stepper driver Pololu DRV8825 (fast decay mode)
Stepper motor NEMA 17 standard, 12 VDC
Controller Arduino Uno
Communications USB 2.0, serial port
Control library AccelStepper library
Steps per mirror revolution 19,200
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Table 5. Communications, interface and storage specifications.

Specification Value

WAN Interface Gigabit Ethernet
API Protocol RESTful (HTTP)
API Metalanguage JSON
SSD Storage 128 GB
Main computer Odroid XU4
Operating system Ubuntu Mate 16.04.5 LTS
Control software language Python 3.5.2
Measurement file format mat or pkl
Display/touchscreen Odroid VU7
Display resolution 800 × 480

2.3. Efficiency Benchmarks and Calibration Procedures

We shall obtain a set of expressions that can serve as adequate overall system performance
metrics, as well as calibration and correction protocols for spatial and spectral information. While the
former will provide insight into this particular imaging modality, the latter are standard procedure in
hyperspectral imaging.

2.3.1. Lines per Second (LPS)

Analogous to frames per second (FPS) in conventional systems, it is the inverse of the total time
required to measure a single line, namely the exposure time plus additional time delays:

LPS =
1

Tline
=

1
Texp + Trx + Tapi + Tmcpy + Tact︸ ︷︷ ︸

Textra

+Trand
. (1)

In this equation, Tline represents the total time needed for acquiring a single line, and it is constituted
by a combination of various different time delays and intervals that take place during acquisition:

• Exposure time, denoted by Texp, is the time that a sensor will spend capturing photons from
a single line of the FOV (shown in Figure 1). Ideally, image acquisition should only consist of
integer multiples of a preset exposure time, and image storage and communications should be
immediate. It will be shown that this is not the case.

• Transfer/receiving time Trx is the relationship between file size and network speed within the
device. Transfer time over an Ethernet network will be practically constant and, thus, for a fixed
image size, transfer time between the camera and the main computer will be fixed. As a general
rule, the total transfer time will be given by

Trx =
h · w · b

Rb
·Ω, (2)

where h, w are the native height and width (in pixels) of the camera, b is the bit depth (either 8 or
12 bits), Rb is the bitrate (in bits/s), and Ω is the overhead of the protocol. In our practical case,
where Vimba uses UDP (with an overhead of 1.9%, Ω = 1.019) on a 2048× 1088 pixel camera with
8 (or 12) bits per pixel connected to a Gigabit Ethernet router, we obtain 18.16 ms and 27.24 ms of
transmission time for 8- and 12-bit images, respectively. This will introduce a limitation of about
55.06 and 27.04 frames per second, respectively, since the camera will be the only device sending
packets to the main computer, and switching time will be considered negligible.

• Camera Application Program Interface (API) delays, Tapi. Any imaging sensor will be controlled
by the computer via an API or driver library. Driver and API delays should be constant delays
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that an imaging device presents that can be shown to be due to runtime execution of precompiled
API dynamic libraries.

• Memory buffer copying and transfer times Tmcpy. They represent buffer copying delays due to
internal bus limitations within the main computer, i.e., between its network interface and memory.

• Actuator/mirror movement delays Tact. These comprise delays in serial communications between
the main computer and the actuator subsystem, and due to stepper motor movement, which will
be negligible for high-resolution images, but noticeable in low-resolution acquisition.

• There will be additional, random delays, mostly due to Operating System (OS) interruptions.
We will denote them as Trand. Unless we work with a real-time operating system, there shall be
random interruptions during acquisition, due to the OS scheduler setting the measurement API
to background due to priority issues. This phenomenon has a stochastic nature and cannot be
controlled unless a real-time operating system is used.

For our model, Textra = Trx + Tapi + Tmcpy + Tact represents all the additional delays in the system
that are not random. This value will be estimated as a constant during nonlinear least squares fitting
in the following sections.

2.3.2. System Efficiency

The efficiency of a scanning imaging device can be described as the ratio between the specified
exposure time per sensor capture and the actual time per line:

ε =
Texp

Tline
=

Texp

Texp + Textra + Trand
, (3)

and this measurement will always be ε ≤ 1, since

εmax = lim
Texp→∞

{ε} = 1. (4)

2.3.3. Object Plane Curvature

Using a rotating mirror for scaning imposes a curvature distortion on the FOV of the camera, such
that the region of space that remains focused is cilindrical, not planar. This nonlinear transformation
can be inferred theoretically by considering Figure 3. Angle θ is the orientation angle of the mirror
with respect to the normal of the object plane, and γ represents the angle between the object plane
normal and the incoming light ray. By the definition of the tangent function, we can infer that the line
position along the object plane, yd, is given by:

yd = r · tan(γ) = r · tan
(π

2
− 2θ

)
, (5)

and the difference between the normal distance to the object plane and the curved object plane,
∆r = r− d, with r = AP and d = AP′, is equal to

∆r = r

(√
1 +

1
tan2 (2θ)

− 1

)
. (6)

Additionally, the width of objects in a line (x, θ) will be linearly distorted by a scaling factor,
which is also a nonlinear function of mirror angle θ:

h(θ) =

√
1 +

1
tan2 (2θ)

(7)
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Therefore, every pixel in the image (x, y) will correspond to a spatial position (xd, yd), where

yd = r · tan
(π

2
− 2θk

)
, (8)

xd = x · ∆x · h(θk), (9)

θk = ∆θ · (y− yπ/4) + π/4, (10)

where ∆x is the spatial resolution of the measured line in millimeters (which will be generally a
function of lens optical angle of acceptance and r), yπ/4 corresponds to the pixel index where the ray
path is fully normal to the object plane (also, where θ = π/4), and the angular resolution of the stepper
motor ∆θ, in our case, will be the total number of steps per revolution times a stepping factor s:

∆θ = s
2π

Nres
= s

2π

19,200
. (11)

A representation of the complete nonlinear transformation (without defocusing) is illustrated in
Figure 4. As we diverge from the linear range of operation, the captured image becomes deformed and
downscaled, since we are receiving rays from points that are further away from our object plane normal.
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Figure 3. Rotating mirror geometry and linear range of operation. An image is acquired by varying
rotating mirror angle θ. The optical path is increased by ∆r(θ), which produces distortion and
defocusing. These artifacts can be considered negligible for an angle interval Θ (linear range).

For this approach, the tangent function can be approximated for small values of θ as a linear
transformation between mirror angle θ and position yd in the field of view within focus. In particular,
for values γ ∈ Γ = [−π/8,+π/8] (θ ∈ Θ = [π/4− π/16, π/4 + π/16]), the approximation

yd ≈ ŷd = −r
(

2θ − π

2

)
, (12)

xd ≈ x · ∆x (13)

can hold for ∆r/r ≤ 8% (smaller errors can be obtained by reducing this range further). If lens aperture
is kept within a range such that optical depth of field remains over ∆r, then a clear image can be
captured. Any system should be verified in a real context (at least for a particular value of r), so that its
linear range can be specified.
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Figure 4. Image distortion in a scanning imaging system with a rotating mirror for a system height of
r = 225 mm. Left plot: object plane, normal to the imaging system (axes in mm). Blue dots represent
the positions of a subset of captured pixels that will form a uniform pixel grid in the measured image
(right plot). Aspect ratio is not preserved so that distortions can be better highlighted.

2.3.4. Microstepping Accuracy

Once the main distortions due to using a rotating mirror have been considered, there will
be additional accuracy noise caused by the remaining mechanical factors, namely backlash and
microstepping. We will assume that any remaining errors will be coming from random sources and are
Gaussian-distributed, i.e., n ∼ N (0, σ2), hence simplifying the remaining uncertainties of the model.
The standard deviation of these random events will be estimated by histogram approximation of a
Gaussian probability density function (PDF), and is expected to be negligible for high-resolution images
and quite relevant in low-resolution acquisition, since motor inertia will correct current variations in
the windings of the stepper [24].

2.3.5. Spatial Resolution

Spatial resolution is typically estimated using a resolution test chart. The one we choose to use is
a 1951 USAF Resolution Test Chart (MIL-STD-150), printed with reference lines with known lengths.
Such lines provide a relationship between pixel positions and actual distances in the image plane.

2.3.6. Spectral Calibration

Wavelength separation through a spectrograph is known to be non-linear in nature. Generally,
since a given spectrograph has a fixed response over time, spectral characterization only needs to
be performed once. There are two steps required in order to fully calibrate a hyperspectral system.
First, the polynomic response of the spectrograph as a function of pixel position must be found.
The characteristic polynomial of a spectrograph, λ = P(p), is a least-squares fit that attempts to relate
a spectral wavelength λ to its pixel position p within the sensor:

λ = a0 + a1 p + a2 p2 + · · ·+ ad pd. (14)

Having a material with well-known reflectance peaks, a polynomial of degree d can be obtained
through least-squares regression with d or more reference peaks, λ0, . . . , λd, which can be then
identified at specific pixel locations, p0, . . . , pd [25].

After being able to relate pixels with wavelengths, we can then establish the spectral resolution of
the device. This was achieved via a CAL-2000 Mercury–Argon light source (Ocean Optics Mikropack,
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Ostfildern, Germany) oriented towards the rotating mirror, which shall be kept at a 45◦ angle. After
background substraction, the spectral emission lines of both gasses should be visible. Since their
spectral emission lines are well-known, finding the smallest discernible lines will provide a lower
bound for spectral resolution.

2.3.7. Dark Image Substraction

The term hot pixels refers to the appearance of bright pixels at long exposure times due to sensor
lattice damage; its correction can be achieved via dark image substraction, quite common procedure in
astronomical imaging calibration [26]. Hot pixels in the sensor must be corrected by characterizing
their behavior as a function of exposure time when they are not exposed to any light. This can be
achieved by closing the aperture completely and obtaining several measurements. By obtaining the
baseline pixel values for several exposure times, hot pixel background signals can be modeled in each
pixel by

hbg,ij = aijTexp + bij, (15)

where indices i, j indicate the pixel’s position in the sensor, aij and bij are the coefficients that model the
linear behavior of the pixel as a function of exposure time Texp, and hbg,ij will be the estimated hot pixel
value that should be subtracted to each pixel for every new measurement. This relationship should be
occasionally verified, in order to keep track of the number of damaged pixels in the sensor [27].

2.3.8. Light Source Stability and SNR

Without properly characterizing the main source of optical power, we may incur in inaccuracies
in power output and, therefore, in reflectance measurements. Ideally, for biomedical applications
it is preferable to use stable and power-controlled devices, such as monochromatic lasers and/or
supercontinuum light sources. As a preliminary approach, it is sufficient to use a tungsten halogen
lamp in the Vis–NIR range, due mainly to its thermal inertia, which provides light source stability in
the millisecond-to-second scale. We shall procure two protocols for analyzing how the signal-to-noise
ratio (SNR) of the camera is a function of exposure time and light source optical power.

We will use either one or two 1-kW tungsten halogen bulbs for all measurements, depending
on the absorption of the sample. For the first experiment, we turn on the light source and take a
low resolution snapshot of an illuminated white Spectralon calibration reference. This is repeated
several times (20 times in our case), and each snapshot is timestamped and stored. The average
Spectralon reflectance value for each timestamp will be calculated, and then plotted as a function of
time. If thermal inertia works well under standard temperature conditions, the average value of this
Spectralon reference should become constant over time.

The second experiment assumes that the received sensor counts are a function of backscattered
optical power. Therefore, the electrical current transformed into a byte in each pixel will be consequence
of the sum of two powers:

Prx = Ps + Pn, Pn ∼ N (0, σ2), (16)

where Prx is the received optical power on that pixel, Ps is the optical power coming from the sample,
and Pn is Additive White Gaussian Noise (AWGN). Under this assumption, the average SNR as a
function of wavelength and exposure time can be calculated via the following expected value ratio:

SNR(Texp; λ) = 10 log10

(
Ps

Pn

)
= 10 log10

(
E[Prx(Texp; λ)]

E[
(

Prx(Texp; λ)− E[Prx(Texp; λ)
)2
]

)
, (17)
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which for the given assumption is equivalent to calculating

µ̂(Texp; λ) =
1
N

N

∑
n=1

xk(Texp; λ), (18)

σ̂2(Texp; λ) =
1
N

N

∑
n=1

(
xk(Texp; λ)− µ̂(Texp; λ)

)2, (19)

SNR(Texp; λ) = 10 log10

(
µ̂

σ̂2

)
, (20)

where here x1, . . . , xN(Texp; λ) are several pixels of a reference material measured at a given exposure
time and wavelength, µ̂ is a maximum likelihood (ML) estimate of the average reflectance of such
material, and σ̂2 the ML estimate of the variance of the light source. These calculations should be
performed on reference-calibrated reflectance data, so two Spectralon captures are required for each
evaluated exposure time, and square-law losses due to light source directionality can be corrected.

3. Results and Discussion

Once all constraints and properties of our model are adequately defined, we must characterize the
imaging system and verify that, indeed, it behaves as described. These results have been obtained from
the device explained in Section 2.2, and attempt to serve as an example of how to measure whether or
not each component is being exploited to its maximum potential. Here, we shall focus on the elements
of the reviewed model that have not been studied by previous work: (1) timing issues, (2) spatial
distortions, (3) microstepping noise, and (4) overall efficiency.

3.1. Timing and Delays

Measuring time spent in each of the modeled operations is an adequate first step in characterizing
system efficiency. In Figure 5, the total time per line is partitioned between its essential tasks. For this
experiment, each measured line is separated by a single motor step (i.e., the device is working at full
resolution). This was tested at 8-bit and 12-bit depth, since bit depth will influence the total time spent
transmitting data. As expected, with no other processes running in the system, transfer and buffer
copying only take a small fraction of the total time, while a fixed time is spent communicating with the
camera and the rest of the time is spent acquiring light.
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Figure 5. Line measurement time distribution for different exposure times, and bit depth (left and
right subplots correspond to 8- and 12-bit depth, respectively). The total time spent in each line is a
combination of exposure time Texp (in blue), network transmission time Trx, dynamic library time Tapi

(in green), memory buffer copying Tmcpy (in red) and actuator delays Tact (in purple).
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By obtaining the inverse of this time per line, we can represent the rate of acquired lines per second
of the scanning device. This calculation is shown in Figure 6, where the dots represent the inverse of
the bars in Figure 5, and the continuous line is a nonlinear least squares fit to 1/(Texp + Textra), being
Textra the constant time parameter that we wish to estimate. Additionally, the ideal model, i.e., 1/Texp,
is shown as a dotted black line. The different graphs represent the average lines per second when
parts of the system are disabled: the red plot represents normal acquisition, while in the case of the
blue line the rotating mirror remains static (i.e., no serial commands are sent to the rotating mirror
actuator) and, for the green line, only acquisition commands are being executed, and acquired images
are discarded (not stored into memory). Driver and API delays are, in theory, constant values that can
be shown to be due to runtime execution of precompiled dynamic libraries. Nevertheless, random
variations in timing are clearly visible after adjusting for our model, and are related to OS schduler
interruptions and multithreading management, since acquisition, actuator control, storage and RAM
management are run by different processes. In order to obtain accurate, stable LPS measurements,
we must use application-specific circuits, and/or real-time operating systems.
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Figure 6. Acquisition speed (in lines per second) as a function of exposure time, disabling different parts
of the imaging equipment. Measurements correspond to the colored scatter plots, while a nonlinear
least-squares fit is superimposed as a continuous line plot for each scenario. As expected, disabling
the scanning system and ignoring buffer copying allows us to reach the theoretical limit of the camera
(40–50 FPS).

Additionally, it must be noted how, regardless of exposure time, all measurements are limited by
the maximum FPS rate that the camera and/or network protocol can manage (49.5 FPS/LPS for 8 bits is
limited by camera performance, 27 FPS/LPS for 12 bits is limited by network speed). All measurements
are bounded from above from the value given by Equation (2) due to network bandwidth, overheads
in transmission, as well as transmission delays, router switching delays, and DLL runtime delays
(which cannot be optimized since the Vimba API is already compiled and no source code is available).
These issues produce an additional limit, as well as random acquisition speed variability. Some clinical
approaches, like fluorescence quantification, will require 12-bit images, while other methods could
benefit of much faster acquisition times rather than a higher pixel resolution; these issues should be
considered in advance depending on the application.

A similar approach can be done for the other modalities shown in Table 1, considering their
ideal efficiency or throughput (Table 6). For the spatial and spectral resolution considered in Table 1,
a rotating mirror scanning system would score favorably with respect to other modalities, considering
that rotating a small mirror will take a shorter amount of time and less power consumption than
displacing either the sample or the imaging system (i.e., as indicated in the table, Tact � Tmove).
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Table 6. Ideal throughput/efficiency summary with the proposed device (other entries extracted
from [23]). We have shown that ideal efficiencies diverge from real ones by various timing issues that
should be overcome. These systems, then, can benefit from the evaluation approaches in this article.

Imaging Modality Ideal Acquisition Time

Snapshot imaging Texp

Staring systems (Texp + Tchange)× Nfilters
Whiskbroom (point-scanning) (Texp + Tmove)× Nx × Ny
Pushbroom (line-scanning) (Texp + Tmove)× Nlines
Rotating mirror scanner (Texp + Tact)× Nlines

Texp := exposure time (in s), Nfilters := number of filters, Nx , Ny := number of spatial positions in the
point-scanner, Nlines := number of line positions in pushbroom and scanning systems, Tchange := time needed
for changing filters, Tmove := time needed for moving the imaging platform or device, Tact := scanning mirror
actuator rotation time.

3.2. Image Distortions and Noise

Since focusing optics are independent from the actuator subsystem in many cases, the object
plane will inevitably suffer nonlinearities. A rotating mirror with a stepper motor will incur three
types of measurement errors. First, the object plane will be curved, as the focusing distance will be
fixed for any mirror angle; this curvature effect must be limited to a linear range, and its effects must
be quantified. Second, there will be backlash in the transmission system that connects the motor to
the mirror axle; such backlash can damage repeatability, and must be minimized. Third, and finally,
there will be microstepping noise due to spurious currents in both driver and stepper rotor; those must
be minimized by using an adequate stepper driver and microstepping factor.

Although we can model theoretical distortion due to mirror rotation and avoid exceeding its
linear range of operation, overall distortion and noise can (and should) be characterized by imaging
an Amsler grid with various lengths and forcing the rotating mirror to capture a half/quarter rotation
at maximum resolution. Then, the first finite difference along the y axis can be obtained, which allows
for edge detection in the grid. The variation in grid cell width can be approximated by the nonlinear
scaling factor of Section 2.3.3, and therefore a nonlinear least-squares fit of Equation (5) can be obtained.
This deterministic distortion allows for obtaining r, the total distance to our object, as well as isolating
any remaining errors coming from other sources. The result of this calculation is left in Figure 7.
To obtain a successful alignment, an Amsler grid with 6× 6 mm squares was printed at maximum
resolution, screwed to an optical table, where a SMS20 Heavy Duty Boom stand/crane (Diagnostic
Instruments, Inc., Michigan, US) was situated holding the instrument above the grid. Then, horizontal
(x-wise) alignment between grid and camera was achieved by constantly previewing the image and
overlaying a series of horizontal lines in a custom-designed graphical user interface (GUI), moving and
fixing the stand until centering and alignment of the center dot of the grid was achieved at θ = π/4
(or, alternatively, γ = 0). The relationship between position y and angle θ is linear within the range
±π/8 ≈ ±0.3926 and distortions in the x axis can be corrected by an inverse affine transformation.

The residual in the right subplot shows a cosine-like pattern that is likely due to misalignment
errors that cannot be compensated by the GUI and manual adjustment. While this non-random
variation cannot be corrected any further without more precise equipment, random variations in
yd can still be accounted for by FFT clipping this signal down to its average noise spectral power
density. The results of this experiment are shown in Figure 8, where the left plot shows the variations
in grid size beyond misalignment, and the right subplot presents a histogram and a Gaussian fit for
an estimated mean µ and variance σ2. This variability is therefore in the order of σ ≈ 0.2 mm at
a distance of 348.73 mm and a FOV size of 120× 120 mm, which can be considered negligible for
far-field measurement.
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Figure 7. Tangential image distortions due to the selected rotating mirror configuration.
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Figure 8. Image noise due to microstepping.

3.3. Spectral Calibration

As specified in the Materials and Methods section, a Wavelength Calibration Standard plate
with tabulated absorption peaks was imaged with a tungsten halogen lamp . The result of finding
at least 8 tabulated peaks is displayed in Figure 9, where absorption peak distribution before and
after calibration can be seen. Spectral resolution was empirically obtained using a calibration light
source with known proximal emission peaks within the wavelength range and peak distances within
the range tolerated by the spectrograph. The top subfigure in Figure 10 shows such measurement,
with superimposed well-known argon and mercury peak wavelengths. Lines closer than 3 nm to each
other were not discernible (e.g., 576.96 and 579.07 nm), which means that spectral resolution shall be
bounded by 3 nm. This provides an upper bound on the number of spectral channels, namely 218
(i.e., 5 pixels or 3 nm per channel). Taking resolution into consideration, the spectrograph response
can be calculated, resulting in λ(p) = 370.79 + 2.68p− 0.0001p2, with p being one of the 218 channels.
This fairly linear response is expected.
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Figure 9. Spectral calibration with Wavelength Calibration Standard (WCS) WCS-MC-020. Top left:
labeled absorption peaks in the measured reference. Bottom left: reference and measured spectra after
calibration. Right: fitted quadratic polynomial with respect to labeled points.
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Figure 10. Spectral resolution bound obtained with the emission lines of a mercury-argon light
source. Top subplot: labeled emission peaks and measured spectrum. Bottom left: closeup of argon
emission peaks in the 720–840 nm range. Bottom right: closeup of some mercury emission peaks in the
530–600 nm range. Spectral resolution is bounded by 3 nm.

3.4. Spatial Resolution

A spatially calibrated image of the aforementioned resolution test chart is displayed in Figure 11.
Closeups for 2, 1, and 0.5 millimeter-wide bands are provided on the right side of the figure. Vertical
resolution (in red) degrades much faster than horizontal resolution (in green), with horizontal lines
(vertical resolution, in red) blurring out at about 0.5 mm, and vertical lines (discerned by horizontal
resolution, in green) can be distinguished at up to 0.2–0.3 mm. If spatial resolution is defined as the
maximum between horizontal and vertical resolution, then the spatial resolution of the imaging device
is 0.5 mm with the camera placed at a 35 cm distance from the test chart. Given the actuator noise
shown in Figure 8, we can conclude that vertical resolution is currently limited by microstepping noise.
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Figure 11. 1951 USAF resolution test chart, average reflectance (left) and cross-section intensities at
different band widths (right). Total resolution is limited by vertical (actuator) resolution, which could
be improved in future versions by improving mechanical resolution and actuator repeatability. Best
viewed in color.

3.5. Light Source Calibration and SNR

The outcomes of the experiments described in Section 2.3.8 are shown in Figure 12. The left subplot
provides empirical support to explain how the SNR of reflectance signals behaves as a combination
of exposure time, reference reflectance, and camera quantum efficiency. The right subplot shows the
average received optical power during the first 20 seconds of operation following the activation of the
halogen light source. From these results, we can conclude that (1) the response of the camera is linear
with respect to exposure time, (2) that the SNR of reflectance data is limited by the spectral response of
the optical imaging equipment, and (3) that our light source is stable, on average, within the timescale
of operation.
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Figure 12. Left: Signal-to-noise ratio (SNR) of reflectance as a function of exposure time and wavelength.
Right: Light source stability during the first 800 s of operation.

3.6. Benchmark Results and Characterized Equipment

Once our image is as clear as possible, spectral information has been calibrated, and timing issues
are well characterized, it is time to benchmark overall system performance. While LPS values show the
maximum acquisition speed of the system, efficiency values (as described in Section 2) will show how
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much the maximum LPS rates are throttled by time not spent in acquiring lines. For Figure 13, the same
LPS measurements are repeated and efficiency is plotted (scatter plots) and nonlinear least-squares fit
to Equation (3) (smooth line plots), for the three scenarios explained in Section 3.1 and for 8- and 12-bit
images. The behavior of this graph is expected, as efficiency is a monotonically increasing function
with respect to exposure time, and rises quickly as less tasks take control of the main computer and
spend time performing non-essential tasks.
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Figure 13. Measured system efficiency and nonlinear least squares fit, as defined by Equation (3) for 8-
and 12-bit depth. As exposure time increases, the fraction of time spent in camera communications
becomes negligible and efficiency increases. This is also increased with bit depth, as the data must
traverse a bandwidth-limited network. As can be seen, mirror rotation and memory buffering produces
a noticeable decrease in efficiency of about 10% for typical exposure times (100–300 ms).

Although efficiency can be seen as an indirect measurement of LPS rates, it can be considered an
explicit benchmark in and of itself, since it only indicates the divergence between an ideal, theoretical
measuring machine, and the device under test. It completely ignores every other specification of the
system, and focuses on how much CPU time is dedicated to measuring only. Better cameras can be
substituted in the system and its efficiency can be reevaluated, which facilitates device adaptation
and updating to different acquisition environments. For example, higher efficiencies could be more
practical in constantly moving environments (such as real-time, in-vivo diagnostics during a surgical
procedure), while lower efficiencies can be sufficient for slower scenarios (i.e., ex-vivo imaging).
Also, they could be used in industrial manufacturing as a way to quantitatively compare camera
efficiency the various tradeoffs between resolution, gain, sensor quantum efficiency, network interface,
and spectral range of operation, when selecting a sensor in a commercial device or process.

Another interesting conclusion is related to scanning hyperspectral devices as an imaging modality.
Artifacts due to subject motion and/or metabolic changes, such as sample oxidation, changes in
oxygenation, degradation, or decay will be more severe as the total time spent capturing is increased.
While under these conditions other imaging modalities can prove more useful, a fair tradeoff between
speed and resolution can be achieved in these systems, since the total time spent in an image with Nlines
lines measured will be Timg = NlinesTline/εavg(Texp), where εavg(Texp) is the average measurement
efficiency for a given exposure time. Consequently, the higher the efficiency, the smaller the number
of uncorrectable artifacts that could be found in an image with an adequate choice of resolution and
exposure time.

Finally, by assuming that the model takes into account all timing and nonlinearity issues, its final
characteristics can be summarized, as in Table 7. Understandably, some of its specifications (e.g., gain
and exposure time ranges) are extracted from their parts’ corresponding tables, while the rest are a
consequence of the benchmarks described throughout the article. Resolved distances, nonlinearity
corrections, delays and efficiencies may be illuminating, for example, when comparing tradeoffs and
similarities with known equipment, commercial or otherwise; both device manufacturers and applied
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optics scientists can compare, select, replicate and improve their systems, based on how well different
parts perform together.

As for now, we can report on the protyping of a high-resolution, highly efficient hyperspectral
imaging system, capable of 1.44 Mpx spatial resolution, 200 wavelength channels over the Vis–NIR
range, fully modifiable optics, variable gain, exposure time and acquisition mode for HSI, SFDI,
and SSOP measurements (as well as any additional experimental methods) which can be controlled
via a RESTful Web Service from any computer within the laboratory network. An HSI image of
a hand obtained with this device (r = 350 mm, Texp = 200 ms, full resolution), as well as some
random spectra within the image, can be seen in Figure 14. Color reconstruction is achieved via
CIE 1931 Color Matching Functions (CMFs) applied on the acquired spectra, providing XYZ/RGB
images with identical resolution. A near-infrared channel (Figure 14b), namely 803 nm, reveals existing
vascular structures in the hand. Some random spectra are also displayed at the bottom plot, with 1%
transparency for each spectrum, to stand out repeated features (i.e., skin and background spectra) from
unlabeled spectra.
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Figure 14. HSI system performance example. Top row: (a) RGB color reconstruction of a captured
hand over the complete VISNIR range (400–1000 nm). (b) 803 nm channel image. Bottom row: 100
overlaid random spectra with 1/100 transparency, showing common spectral signatures.
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Table 7. Specifications of the custom-built imaging instrument.

Specification Value

Wavelength range 400–1000 nm
Spectral resolution 200 (5 px, 3 nm per channel)
Exposure range 10–1000 µs
Resolution (max.) 1200×1200 (1.44 MP)
Steps per mirror revolution 19,200
Rotation range π/8 rad (45◦)
Focusing optics 5–50 mm, f/1.3, var. aperture and zoom
Field of View (min) 7× 7 cm (aprox.)
Depth of Field variable, max. @ 20 cm
Signal to Noise Ratio (SNR) up to 30 dB
Camera Gain variable, 0–25 dB
Intensity distortions due to microstepping <10% per pixel
Efficiency @ 8 bits, 100 ms 75%
USAF 1951 best resolved distance 0.5 mm at 35 cm distance

4. Conclusions

Prototyping hyperspectral scanning equipment is a multiparameter, interdisciplinary task that
requires harmonious and efficient behavior amongst components at play. This manuscript has
described and summarized the main obstacles faced when constructing a scanning HSI device and
has defined a few ideal objectives (and benchmarks to measure them) which system developers can
consider when building devices as described in Section 2.

As reviewed throughout the article, an ideal system will always spend the vast majority of its time
performing acquisition, while minimizing all preprocessing, communications, storage and API-based
delays as much as possible. In real case scenarios, full control of its specifications (gain, exposure
time, focusing distance, aperture, zoom) within a local network is also desireable, especially with
multi-purpose camera systems that unlock numerous potential biomedical imaging applications.

In order to determine how well a specific custom device behaves (and how much it can be
improved), methods like measuring timing constraints and metrics such as system efficiency can
provide information on how close to ideal, asymptotic behavior the system under test is. Optics-related
parameters, such as nonlinear distortions and microstepping noise, have been characterized as well
(at least for the case of rotating mirror scanning systems), and in most cases system redesign has been
sufficient to keep them as minimized as possible. Some interesting results include the fact that API
communications can be the most significant cause of timing innefficiencies in a scanning system, that
spatial distortions can be almost completely eliminated by keeping the FOV of the camera within a
linear range, and that vertical resolution is limited by microstepping noise.

Interesting future lines of research include, among others: (1) applying flatter, more stable light
sources, such as supercontinuum laser sources, in order to achieve a flatter SNR with respect to
wavelength; (2) using curved mirrors for depth-of-field and focus plane correction; (3) approaching
other wavelength ranges, such as NIR-SWIR; (4) using Application-Specific Integrated Circuits (ASICs),
Field Programmable Gate Arrays (FPGAs), or real-time operating systems for minimizing all the
aforementioned delays; (5) using various spectrograph slit sizes and combinations with other focusing
optics, such as macro and/or telecentric lenses; (6) evaluating sensor lattice damage with more complex
hot-pixel models, since these exhibit slight nonlinear behavior; (7) studying the exact influence of
object motion artifacts in this imaging modality; and (8) using profilometry for source intensity
correction, especially when using far-field sources, such as structured light projectors. All these possible
improvements stem from the evaluation of the described equipment via the proposed methodology.

A more general conclusion that can be reached from these experiments is that a full characterization
is necessary when it comes to understanding how the different components of an imaging system relate
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to each other, so that the root causes of imperfections and/or slowdowns in image acquisition can be
adequately detected, and design can be improved in further versions, especially when building and
testing devices with clinical and surgical applications, where timeliness and precision are fundamental.
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Abbreviations

The following abbreviations are used in this manuscript:

API Application Program Interface
CCD Charge-Coupled Device
CMOS Complementary Metal-Oxide Semiconductor
CNC Computer Numerical Control
CPU Central Processing Unit
dB Decibel
DC Direct Current
DHCP Dynamic Host Configuration Protocol
FOV Field of View
FPS Frames Per Second
GPU Graphics Processing Unit
HSI Hyperspectral Imaging
LAN Local Area Network
LPS Lines Per Second
LTS Long Term Support
MSI Multispectral Imaging
MP, Mpx Megapixel (106 pixels)
NAT Network Address Translation
NEMA National Electrical Manufacturer Association
qF-SSOP Corrected Fluorescence SSOP imaging
SDK Software Development Kit
SFDI Spatial Frequency Domain Imaging
SSOP Single-Shot Optical Properties
USB Universal Serial Bus
WAN Wide Area Network
WCS Wavelength Calibration Standard
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